1
|
Rouhová L, Podlahová Š, Kmet P, Žurovec M, Sehadová H, Sauman I. A comprehensive gene expression analysis of the unique three-layered cocoon of the cecropia moth, Hyalophora cecropia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104152. [PMID: 38944399 DOI: 10.1016/j.ibmb.2024.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The larvae of the moth Hyalophora cecropia spin silk cocoons with morphologically distinct layers. We investigated the expression of the individual silk protein components of these cocoons in relation to the morphology of the silk gland and its affiliation to the different layers of the cocoon. The study used transcriptomic and proteomic analyses to identify 91 proteins associated with the silk cocoons, 63 of which have a signal peptide indicating their secretory nature. We checked the specificity of their expression in different parts of the SG and the presence of the corresponding protein products in each cocoon layer. Differences were observed among less abundant proteins with unclear functions. The representation of proteins in the inner envelope and intermediate space was similar, except for a higher proportion of probable contaminating proteins, mostly originating from the gut. On the other hand, the outer envelope contains a number of putative enzymes with unclear function. However, the protein most specific to the outer layer has sequence homology to putative serine/threonine kinase-like proteins and some adhesive proteins, and its closest homolog in Bombyx mori was found in the scaffold silk. This research provides valuable insights into the silk production of the cecropia moth, highlighting both similarities and differences to other moth species.
Collapse
Affiliation(s)
- Lenka Rouhová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Šárka Podlahová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Peter Kmet
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
| | - Michal Žurovec
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| | - Hana Sehadová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| | - Ivo Sauman
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Amino Acid Substitutions at P1 Position Change the Inhibitory Activity and Specificity of Protease Inhibitors BmSPI38 and BmSPI39 from Bombyx mori. Molecules 2023; 28:molecules28052073. [PMID: 36903318 PMCID: PMC10004685 DOI: 10.3390/molecules28052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
It was found that silkworm serine protease inhibitors BmSPI38 and BmSPI39 were very different from typical TIL-type protease inhibitors in sequence, structure, and activity. BmSPI38 and BmSPI39 with unique structure and activity may be good models for studying the relationship between the structure and function of small-molecule TIL-type protease inhibitors. In this study, site-directed saturation mutagenesis at the P1 position was conducted to investigate the effect of P1 sites on the inhibitory activity and specificity of BmSPI38 and BmSPI39. In-gel activity staining and protease inhibition experiments confirmed that BmSPI38 and BmSPI39 could strongly inhibit elastase activity. Almost all mutant proteins of BmSPI38 and BmSPI39 retained the inhibitory activities against subtilisin and elastase, but the replacement of P1 residues greatly affected their intrinsic inhibitory activities. Overall, the substitution of Gly54 in BmSPI38 and Ala56 in BmSPI39 with Gln, Ser, or Thr was able to significantly enhance their inhibitory activities against subtilisin and elastase. However, replacing P1 residues in BmSPI38 and BmSPI39 with Ile, Trp, Pro, or Val could seriously weaken their inhibitory activity against subtilisin and elastase. The replacement of P1 residues with Arg or Lys not only reduced the intrinsic activities of BmSPI38 and BmSPI39, but also resulted in the acquisition of stronger trypsin inhibitory activities and weaker chymotrypsin inhibitory activities. The activity staining results showed that BmSPI38(G54K), BmSPI39(A56R), and BmSPI39(A56K) had extremely high acid-base and thermal stability. In conclusion, this study not only confirmed that BmSPI38 and BmSPI39 had strong elastase inhibitory activity, but also confirmed that P1 residue replacement could change their activity and inhibitory specificity. This not only provides a new perspective and idea for the exploitation and utilization of BmSPI38 and BmSPI39 in biomedicine and pest control, but also provides a basis or reference for the activity and specificity modification of TIL-type protease inhibitors.
Collapse
|
3
|
Li Y, Wang Y, Zhu R, Yang X, Wei M, Zhang Z, Chen C, Zhao P. Tandem Multimerization Can Enhance the Structural Homogeneity and Antifungal Activity of the Silkworm Protease Inhibitor BmSPI39. Cells 2023; 12:cells12050693. [PMID: 36899829 PMCID: PMC10000547 DOI: 10.3390/cells12050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Previous studies have shown that BmSPI39, a serine protease inhibitor of silkworm, can inhibit virulence-related proteases and the conidial germination of insect pathogenic fungi, thereby enhancing the antifungal capacity of Bombyx mori. The recombinant BmSPI39 expressed in Escherichia coli has poor structural homogeneity and is prone to spontaneous multimerization, which greatly limits its development and application. To date, the effect of multimerization on the inhibitory activity and antifungal ability of BmSPI39 remains unknown. It is urgent to explore whether a BmSPI39 tandem multimer with better structural homogeneity, higher activity and a stronger antifungal ability can be obtained by protein engineering. In this study, the expression vectors of BmSPI39 homotype tandem multimers were constructed using the isocaudomer method, and the recombinant proteins of tandem multimers were obtained by prokaryotic expression. The effects of BmSPI39 multimerization on its inhibitory activity and antifungal ability were investigated by protease inhibition and fungal growth inhibition experiments. In-gel activity staining and protease inhibition assays showed that tandem multimerization could not only greatly improve the structural homogeneity of the BmSPI39 protein, but also significantly increase its inhibitory activity against subtilisin and proteinase K. The results of conidial germination assays showed that tandem multimerization could effectively enhance the inhibitory ability of BmSPI39 on the conidial germination of Beauveria bassiana. A fungal growth inhibition assay showed that BmSPI39 tandem multimers had certain inhibitory effects on both Saccharomyces cerevisiae and Candida albicans. The inhibitory ability of BmSPI39 against these the above two fungi could be enhanced by tandem multimerization. In conclusion, this study successfully achieved the soluble expression of tandem multimers of the silkworm protease inhibitor BmSPI39 in E. coli and confirmed that tandem multimerization can improve the structural homogeneity and antifungal ability of BmSPI39. This study will not only help to deepen our understanding of the action mechanism of BmSPI39, but also provide an important theoretical basis and new strategy for cultivating antifungal transgenic silkworms. It will also promote its exogenous production and development and application in the medical field.
Collapse
Affiliation(s)
- Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, Shaanxi Province, China
- Correspondence:
| | - Yuan Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Rui Zhu
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, Shaanxi Province, China
| | - Xi Yang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Meng Wei
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Zhaofeng Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi Province, China
| | - Changqing Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, Shaanxi Province, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Dong Z, Xia Q, Zhao P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol 2022; 224:68-78. [DOI: 10.1016/j.ijbiomac.2022.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
5
|
Zhang X, Ni Y, Guo K, Dong Z, Chen Y, Zhu H, Xia Q, Zhao P. The mutation of SPI51, a protease inhibitor of silkworm, resulted in the change of antifungal activity during domestication. Int J Biol Macromol 2021; 178:63-70. [PMID: 33609582 DOI: 10.1016/j.ijbiomac.2021.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Domestication of silkworm has led to alterations in various gene expression patterns. For instance, many protease inhibitors were significantly downregulated in the domestic silkworm cocoon compared to its wild progenitor. Considering that SPI51 is the most abundant protease inhibitor in silkworm cocoons, herein, we compared the gene structures and sequences of SPI51 from B. mori (BmoSPI51) and B. mandarina (BmaSPI51). Comparing to the "RGGFR" active site in BmaSPI51, that of BmoPI51 is "KGSFP" and the C-terminal "YNTCECSCP" tail sequence is lost in the latter. To investigate the effect elicited by the active site and tail sequences on the function of SPI51, we expressed two mutated forms of BmoSPI51, namely, BmoSPI51 + tail and BmoSPI51M. BmoSPI51, BmoSPI51 + tail and BmoSPI51M were compared and found to have similar levels of inhibitory activity against trypsin. However, the BmoSPI51 + tail and BmoSPI51M proteins exhibited significantly stronger capacities to inhibit fungi growth, compared to BmoSPI51. We concluded that the specific amino acid sequence of the active site, as well as its the disulfide bond formed by C-terminal sequence in the BmaSPI51, represent the key factors responsible for its higher antifungal activity. This study provided new insights into the antifungal mechanisms elicited by protease inhibitors in the cocoons of silkworms.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Yuhui Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongtao Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Zhang Y, Tang M, Dong Z, Zhao D, An L, Zhu H, Xia Q, Zhao P. Synthesis, secretion, and antifungal mechanism of a phosphatidylethanolamine-binding protein from the silk gland of the silkworm Bombyx mori. Int J Biol Macromol 2020; 149:1000-1007. [PMID: 32018011 DOI: 10.1016/j.ijbiomac.2020.01.310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
A silkworm cocoon contains several antimicrobial proteins such as protease inhibitors and seroins to provide protection for the enclosed pupa. In this study, we identified a new Bombyx mori phosphatidylethanolamine-binding protein (BmPEBP) with antimicrobial activity in the cocoon silk using semi-quantitative and quantitative RT-PCR, western blotting, and immunofluorescence. The results indicated that BmPEBP was synthesized in the middle silk gland and secreted into the sericin layer of the cocoon silk. Functional analysis showed that BmPEBP could inhibit the spore growth of four types of fungi, Candida albicans, Saccharomyces cerevisiae, Beauveriabassiana, and Aspergillus fumigates, by binding to the fungal cell membrane. Investigation of the interaction of BmPEBP with membrane phospholipids revealed that the protein showed a strong binding affinity to phosphatidylethanolamine, weak affinity to phosphatidylinositol, and no affinity to phosphatidylserine or phosphatidylcholine. Circular dichroism spectroscopy showed that binding to phosphatidylethanolamine caused conformational changes in the BmPEBP molecule by reducing β-sheet formation and inducing the appearance of an α-helix motif. We speculate that BmPEBP performs antifungal function in the cocoon silk through interaction with phosphatidylethanolamine in the fungal membrane.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Muya Tang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Lingna An
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Hongtao Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Zhang X, Guo K, Dong Z, Chen Z, Zhu H, Zhang Y, Xia Q, Zhao P. Kunitz-type protease inhibitor BmSPI51 plays an antifungal role in the silkworm cocoon. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103258. [PMID: 31678582 DOI: 10.1016/j.ibmb.2019.103258] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The protease inhibitors found in silkworm cocoons can be divided into several families, a majority of which contain serpin, TIL, or Kunitz domains. Previously, it has been reported that TIL-type protease inhibitors have antimicrobial activity. To date, however, it has not been determined whether the Kunitz-type protease inhibitor BmSPI51, the most abundant of cocoon protease inhibitors, plays an antimicrobial role. Thus, in this study, we sought to determine the biological role of BmSPI51 in silkworm cocoons. Our results obtained from real-time quantitative reverse transcription PCR and immunofluorescence analyses indicate that BmSPI51 is expressed exclusively in the silk glands during the larval fifth instar stage and is subsequently secreted into cocoon silk. Moreover, at a molar ratio of 1:1, BmSPI51 produced via prokaryotic expression exhibited inhibitory activity against trypsin and also proved to be highly stable over wide ranges of temperature and pH values. The expression of BmSPI51 was also found to be significantly upregulated in the larval fat body after infection with three species of fungi, namely, Candida albicans, Beauveria bassiana, and Saccharomyces cerevisiae. In vitro inhibition tests revealed that BmSPI51 significantly inhibited the sporular growth of all three of these fungal species. Further, results obtained from a binding assay showed that BmSPI51 binds to β-d-glucan and mannan on the surface of fungal cells. In this study, we, thus, revealed the antimicrobial activity of BmSPI51 and its underlying mechanism in silkworm, thereby contributing to our present understanding of defense mechanisms in silkworm cocoons.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Kaiyu Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Zhiyong Chen
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Hongtao Zhu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Yan Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Tang M, Dong Z, Guo P, Zhang Y, Zhang X, Guo K, An L, Liu X, Zhao P. Functional analysis and characterization of antimicrobial phosphatidylethanolamine-binding protein BmPEBP in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:1-9. [PMID: 30943432 DOI: 10.1016/j.ibmb.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Phosphatidylethanolamine-binding proteins (PEBPs) are a class of highly conserved, biologically diverse proteins, which are widely distributed in plants, insects, and mammals. In this study, a Bombyx mori PEBP (BmPEBP) gene was reported, which encodes a protein composed of 209 amino acid residues. BmPEBP includes a predicted signal peptide, indicating that it is an extracellular protein, which differs from the cytoplasmic PEBPs of plants and mammals. Recombinant soluble BmPEBP was successfully synthesized using a prokaryotic expression system and was then purified effectively by Ni2+-NTA affinity chromatography and gel filtration. Far-ultraviolet circular dichroism spectra indicated that BmPEBP had a well-defined β-sheet structure, with the β-sheet content accounting for about 41% of the protein. BmPEBP had a relatively stable structure at temperatures ranging from 15 °C to 57.5 °C. The Tm, ΔH, and ΔS of BmPEBP were 62.27 °C ± 0.14 °C, 570.10 ± 0.17 kJ/mol, and 1.70 ± 0.03 KJ/(mol·K), respectively. Homology modeling analysis suggested that the active sites of BmPEBP were conserved, comprising Pro96, His111, and His143. Quantitative real-time PCR showed that BmPEBP was highly expressed in the silk gland and had very low expression in other tissues. However, BmPEBP expression was significantly upregulated in the larval fat body after infection with two kinds of fungi, Beauveria bassiana and Candida albicans. Moreover, in vitro fungal inhibition tests showed that BmPEBP could significantly inhibit the sporular growth of Saccharomyces cerevisiae, C. albicans, B. bassiana, and Aspergillus fumigatus. To our knowledge, this is the first report to reveal the antifungal role of a PEBP in insects.
Collapse
Affiliation(s)
- Muya Tang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Pengchao Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Yan Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Xiaolu Zhang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Kaiyu Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Lingna An
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Xinyang Liu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
9
|
Li Y, Dong Z, Liu H, Zhu R, Bai Y, Xia Q, Zhao P. The fungal-resistance factors BmSPI38 and BmSPI39 predominantly exist as tetramers, not monomers, in Bombyx mori. INSECT MOLECULAR BIOLOGY 2018; 27:686-697. [PMID: 29845671 DOI: 10.1111/imb.12504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Previous studies have indicated that trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, BmSPI38 and BmSPI39, suppress conidial germination and integument penetration of entomopathogenic fungi by inhibiting their cuticle-degrading proteases and might functions as fungal-resistance factors in the silkworm. To date, the physiological forms and functional significance of multimerization of BmSPI38 and BmSPI39 remain unknown. In this study, we investigated the physiological forms of BmSPI38 and BmSPI39 in Bombyx mori silkworms using multiple complementary methods, including activity staining, reducing and nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, western blotting and immunofluorescence. We found that recombinant BmSPI38 and BmSPI39 tend to form homologous multimers, and their dimers, trimers and tetramers possessed intense inhibitory activity against subtilisin A from Bacillus licheniformis. In contrast, their monomers showed no detectable inhibitory activity. Both BmSPI38 and BmSPI39 also exist mainly as stable tetramers in silkworm tissues, and they also predominantly function as a tetramer in these tissues. This study is the first to demonstrate this preferred quaternary form of a TIL-type protease inhibitor and will likely help to elucidate the mechanisms of BmSPI38 and BmSPI39 in the innate immune response of the silkworm.
Collapse
Affiliation(s)
- Y Li
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
- Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
| | - Z Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - H Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - R Zhu
- Mental Health Education Center, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
| | - Y Bai
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, Shaanxi Province, China
| | - Q Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Guo W, Wu Z, Yang L, Cai Z, Zhao L, Zhou S. Juvenile hormone–dependent Kazal‐type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. FASEB J 2018; 33:917-927. [DOI: 10.1096/fj.201801068r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Zhongxia Wu
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| | - Libin Yang
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| | - Zhaokui Cai
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Lianfeng Zhao
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Shutang Zhou
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| |
Collapse
|