1
|
Vernia F, Viscido A, Latella G. Adsorptive cytapheresis in ulcerative colitis: A non-pharmacological therapeutic approach revisited. J Clin Apher 2023; 38:746-754. [PMID: 37787399 DOI: 10.1002/jca.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Adsorptive cytapheresis proves effective in a proportion of patients affected by ulcerative colitis. Relatively high cost and the need for apheresis facilities, prevented the widespread use of this therapeutic approach. More so following the introduction of anti-TNFα biosimilars which proved both effective and inexpensive. Anti-TNFα agents, however, are burdened by high rate of primary and secondary non-response and prompt switching to new, high-cost biologics, and small molecules. The present review analyzes advantages and disadvantages of adsorptive cytapheresis in the present clinical scenario and suggests its repositioning in the therapeutic workup of selected subgroups of ulcerative colitis patients. The extremely favorable safety profile makes adsorptive cytapheresis a viable therapeutic option in elderly and high-risk UC patients, as well as potential second-line treatment in corticosteroid-dependent patients and poor responders to first-line biologics.
Collapse
Affiliation(s)
- Filippo Vernia
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Miyaji MJ, Ide K, Takashima K, Maeno M, Krallman KA, Lazear D, Goldstein SL. Comparison of nafamostat mesilate to citrate anticoagulation in pediatric continuous kidney replacement therapy. Pediatr Nephrol 2022; 37:2733-2742. [PMID: 35348901 DOI: 10.1007/s00467-022-05502-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Regional citrate anticoagulation (RCA) is the preferred continuous kidney replacement therapy (CKRT) anticoagulation strategy for children in the USA. Nafamostat mesilate (NM), a synthetic serine protease, is used widely for CKRT anticoagulation in Japan and Korea. We compared the safety and efficacy of NM to RCA for pediatric CKRT. METHODS Starting June 2019, the most recent 100 medical records of children receiving CKRT with either RCA or NM were reviewed retrospectively, at one children's hospital in Japan (NM) and one in the USA (RCA). The number of hours a single CKRT filter was in use, was the primary outcome. Safety was assessed by bleeding complications for the NM group and citrate toxicity leading to RCA discontinuation or electrolyte imbalance in the RCA group. RESULTS Eighty patients received NM and 78 patients received RCA. Median filter life was longer for the NM group (NM: 38 [22, 74] vs. RCA: 36 [17, 66] h, p = 0.02). When filter life was censored for discontinuation other than clotting, the 60-h survival rate was higher for RCA (71% vs. 54%). The hazard ratio comparing NM over RCA varied over time (HR 0.7; 0.2-1.5, p = 0.33 at 0 h to HR 5.5; 1.3-23.7, p = 0.334 at 72 h). The lack of difference in filter survival persisted controlling for filter surface area, catheter diameter, and pre-CKRT platelet count. Major bleeding rates did not differ between groups (NM: 5% vs. RCA: 9%). CONCLUSIONS RCA and NM provide satisfactory anticoagulation for CKRT in children with no difference in major bleeding rates. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mai J Miyaji
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, OH, 45229, USA
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
- Master of Science Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mikiko Maeno
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kelli A Krallman
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, OH, 45229, USA
| | - Danielle Lazear
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, OH, 45229, USA
| | - Stuart L Goldstein
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7022, Cincinnati, OH, 45229, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Gnesotto L, Mioso G, Alaibac M. Use of granulocyte and monocyte adsorption apheresis in dermatology (Review). Exp Ther Med 2022; 24:536. [PMID: 35837066 PMCID: PMC9257973 DOI: 10.3892/etm.2022.11463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Adsorptive granulocyte and monocyte apheresis (GMA) is an extracorporeal treatment that selectively removes activated myeloid lineage leukocytes from peripheral blood. This technique consists of a column with cellulose acetate beads as absorptive leukocytapheresis carriers, and was initially used to treat ulcerative colitis. A literature search was conducted to extract recently published studies about the clinical efficacy of GMA in patients with different skin disorders, reporting information on demographics, clinical symptoms, treatment and clinical course. Dermatological diseases, in which GMA has been performed, include generalized pustular psoriasis, pyoderma gangrenosum, palmoplantar pustular psoriasis, Behcet's disease, Sweet's syndrome, adult-onset Still's disease, impetigo herpetiformis, reactive arthritis, acne and hidradenitis suppurativa syndrome, cutaneous allergic vasculitis and systemic lupus erythematosus. In most patients, GMA was started after the failure of conventional therapeutic options and it was helpful in the majority of cases. Based on the information summarized, GMA could be considered a valid non-pharmacological treatment option for patients with several dermatological conditions, which are difficult to treat with other pharmacological preparations.
Collapse
Affiliation(s)
- Laura Gnesotto
- Dermatology Unit, Department of Medicine, University of Padova, I‑35128 Padova, Italy
| | - Guido Mioso
- Dermatology Unit, Department of Medicine, University of Padova, I‑35128 Padova, Italy
| | - Mauro Alaibac
- Dermatology Unit, Department of Medicine, University of Padova, I‑35128 Padova, Italy
| |
Collapse
|
4
|
Boehm T, Alix M, Petroczi K, Vakal S, Gludovacz E, Borth N, Salminen TA, Jilma B. Nafamostat is a potent human diamine oxidase inhibitor possibly augmenting hypersensitivity reactions during nafamostat administration. J Pharmacol Exp Ther 2022; 382:113-122. [PMID: 35688477 DOI: 10.1124/jpet.122.001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Nafamostat is an approved short acting serine protease. However, its administration is also associated with anaphylactic reactions. One mechanism to augment hypersensitivity reactions could be inhibition of diamine oxidase (DAO). The chemical structure of nafamostat is related to the potent DAO inhibitors pentamidine and diminazene. Therefore we tested whether nafamostat is a human DAO inhibitor. Using different activity assays nafamostat reversibly inhibited recombinant human DAO with an IC50 of 300 to 400 nM using 200 µM substrate concentrations. The Ki of nafamostat for the inhibition of putrescine and histamine deamination is 27 nM and 138 nM respectively. For both substrates nafamostat is a mixed mode inhibitor with p-values <0.01 compared to other inhibition types. Using 80% to 90% EDTA plasma the IC50 of nafamostat inhibition was approximately 360 nM using 20 µM cadaverine. In 90% EDTA plasma the IC50 concentrations were 2-3 µM using 0.9 µM and 0.18 µM histamine as substrate. In silico modeling showed a high overlap compared to published diminazene crystallography data, with a preferred orientation of the guanidine group towards topaquinone. In conclusion, nafamostat is a potent human DAO inhibitor and might increase severity of anaphylactic reaction by interfering with DAO‑mediated extracellular histamine degradation. Significance Statement Treatment with the short-acting anticoagulant nafamostat during hemodialysis, leukocytapheresis, extracorporeal membrane oxygenator procedures and disseminated intravascular coagulation is associated with severe anaphylaxis in humans. Histamine is a central mediator in anaphylaxis. Potent inhibition of the only extracellular histamine-degrading enzyme diamine oxidase could augment anaphylaxis reactions during nafamostat treatment.
Collapse
Affiliation(s)
- Thomas Boehm
- Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | - Nicole Borth
- University of Natural Resources and Life Sciences, Austria
| | | | | |
Collapse
|
5
|
Decraecker L, Boeckxstaens G, Denadai-Souza A. Inhibition of Serine Proteases as a Novel Therapeutic Strategy for Abdominal Pain in IBS. Front Physiol 2022; 13:880422. [PMID: 35665224 PMCID: PMC9161638 DOI: 10.3389/fphys.2022.880422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Serine proteases are heavily present in the gastrointestinal tract where they are essential in numerous physiological processes. An imbalance in the proteolytic activity is a central mechanism underlying abdominal pain in irritable bowel syndrome (IBS). Therefore, protease inhibitors are emerging as a promising therapeutic tool to manage abdominal pain in this functional gastrointestinal disorder. With this review, we provide an up-to-date overview of the implications of serine proteases in the development of abdominal pain in IBS, along with a critical assessment of the current developments and prospects of protease inhibitors as a therapeutic tool. In particular, we highlight the current knowledge gap concerning the identity of dysregulated serine proteases that are released by the rectal mucosa of IBS patients. Finally, we suggest a workflow with state-of-the-art techniques that will help address the knowledge gap, guiding future research towards the development of more effective and selective protease inhibitors to manage abdominal pain in IBS.
Collapse
|
6
|
Niemeyer BF, Benam KH. Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. Pharmacol Ther 2022; 233:108027. [PMID: 34718070 PMCID: PMC8552695 DOI: 10.1016/j.pharmthera.2021.108027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Responding quickly to emerging respiratory viruses, such as SARS-CoV-2 the causative agent of coronavirus disease 2019 (COVID-19) pandemic, is essential to stop uncontrolled spread of these pathogens and mitigate their socio-economic impact globally. This can be achieved through drug repurposing, which tackles inherent time- and resource-consuming processes associated with conventional drug discovery and development. In this review, we examine key preclinical and clinical therapeutic and prophylactic approaches that have been applied for treatment of SARS-CoV-2 infection. We break these strategies down into virus- versus host-targeting and discuss their reported efficacy, advantages, and disadvantages. Importantly, we highlight emerging evidence on application of host serine protease-inhibiting anticoagulants, such as nafamostat mesylate, as a potentially powerful therapy to inhibit virus activation and offer cross-protection against multiple strains of coronavirus, lower inflammatory response independent of its antiviral effect, and modulate clotting problems seen in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Brian F Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Niemeyer BF, Miller CM, Ledesma‐Feliciano C, Morrison JH, Jimenez‐Valdes R, Clifton C, Poeschla EM, Benam KH. Broad antiviral and anti-inflammatory efficacy of nafamostat against SARS-CoV-2 and seasonal coronaviruses in primary human bronchiolar epithelia. NANO SELECT 2022; 3:437-449. [PMID: 34541574 PMCID: PMC8441815 DOI: 10.1002/nano.202100123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Antiviral strategies that target host systems needed for SARS-CoV-2 replication and pathogenesis may have therapeutic potential and help mitigate resistance development. Here, we evaluate nafamostat mesylate, a potent broad-spectrum serine protease inhibitor that blocks host protease activation of the viral spike protein. SARS-CoV-2 is used to infect human polarized mucociliated primary bronchiolar epithelia reconstituted with cells derived from healthy donors, smokers and subjects with chronic obstructive pulmonary disease. Nafamostat markedly inhibits apical shedding of SARS-CoV-2 from all donors (log10 reduction). We also observe, for the first-time, anti-inflammatory effects of nafamostat on airway epithelia independent of its antiviral effects, suggesting a dual therapeutic advantage in the treatment of COVID-19. Nafamostat also exhibits antiviral properties against the seasonal human coronaviruses 229E and NL6. These findings suggest therapeutic promise for nafamostat in treating SARS-CoV-2 and other human coronaviruses.
Collapse
Affiliation(s)
- Brian F. Niemeyer
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Caitlin M. Miller
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Carmen Ledesma‐Feliciano
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - James H. Morrison
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Rocio Jimenez‐Valdes
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Clarissa Clifton
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eric M. Poeschla
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kambez H. Benam
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Zhu M, Ran Z. Clinical characteristics of ulcerative colitis in elderly patients. JGH Open 2021; 5:849-854. [PMID: 34386591 PMCID: PMC8341179 DOI: 10.1002/jgh3.12612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The incidence of ulcerative colitis (UC) in elderly patients is increasing. Elderly UC patients are likely to exhibit distinct features both at diagnosis and during follow-up. Age-related problems, including complications, immune dysfunction, and multidrug use, make the diagnosis and treatment of elderly UC more challenging. Suboptimal treatment considering adverse events leads to poor clinical outcome in elderly UC patients. Here, we reviewed the epidemiology, clinical presentation, medical therapy, colorectal cancer surveillance of UC in elderly patients.
Collapse
Affiliation(s)
- Mingming Zhu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of MedicineShanghai Jiao Tong University, Shanghai Jiao Tong University; Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of MedicineShanghai Jiao Tong University, Shanghai Jiao Tong University; Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
9
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide since its first incidence in Wuhan, China, in December 2019. Although the case fatality rate of COVID-19 appears to be lower than that of SARS and Middle East respiratory syndrome (MERS), the higher transmissibility of SARS-CoV-2 has caused the total fatality to surpass other viral diseases, reaching more than 1 million globally as of October 6, 2020. The rate at which the disease is spreading calls for a therapy that is useful for treating a large population. Multiple intersecting viral and host factor targets involved in the life cycle of the virus are being explored. Because of the frequent mutations, many coronaviruses gain zoonotic potential, which is dependent on the presence of cell receptors and proteases, and therefore the targeting of the viral proteins has some drawbacks, as strain-specific drug resistance can occur. Moreover, the limited number of proteins in a virus makes the number of available targets small. Although SARS-CoV and SARS-CoV-2 share common mechanisms of entry and replication, there are substantial differences in viral proteins such as the spike (S) protein. In contrast, targeting cellular factors may result in a broader range of therapies, reducing the chances of developing drug resistance. In this Review, we discuss the role of primary host factors such as the cell receptor angiotensin-converting enzyme 2 (ACE2), cellular proteases of S protein priming, post-translational modifiers, kinases, inflammatory cells, and their pharmacological intervention in the infection of SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
10
|
Ishiguro Y, Ohmori T, Umemura K, Iizuka M. Factors associated with the outcomes in ulcerative colitis patients undergoing granulocyte and monocyte adsorptive apheresis as remission induction therapy: A multicenter cohort study. Ther Apher Dial 2020; 25:502-512. [PMID: 33029920 DOI: 10.1111/1744-9987.13594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) patients harbor activated myeloid leukocytes, which exacerbate and perpetuate UC by releasing inflammatory cytokines. Granulocyte and monocyte adsorptive apheresis (GMA) with an Adacolumn depletes elevated myeloid leukocytes, inducing efficacy with favorable safety. To understand how the clinical outcome with GMA is affected by prior corticosteroid treatment or concomitant immunomodulators, a retrospective multicenter study in 102 UC patients, who had not responded well to first-line medications was undertaken. The remission rates after a course of GMA therapy were significantly higher in corticosteroid-naïve patients compared with those with prior corticosteroid exposure. Absence of corticosteroid background was an independent predictive factor of response to GMA. Further, in corticosteroid-naïve patients, the 1-year cumulative sustained remission rate in patients who did not receive immunomodulators was significantly higher than in patients who received immunomodulators. Accordingly, multivariate analysis revealed that immunomodulator was associated with higher risk of relapse. In conclusion, GMA was an effective treatment for corticosteroid-naïve patients and the efficacy sustained longer in those not receiving immunomodulators during GMA. GMA fulfills the notion that apheresis is to induce disease remission by removing from the body factors known to perpetuate disease. In therapeutic settings, these findings should help better decision making and avoid futile use of medical resources.
Collapse
Affiliation(s)
- Yoh Ishiguro
- Department of Clinical Research, National Hirosaki Hospital, National Hospital Organization, Hirosaki, Japan
| | | | - Ken Umemura
- Department of Gastroenterology, South Miyagi Medical Center, Shibata-gun, Japan
| | - Masahiro Iizuka
- Akita Health Care Center, Akita Red Cross Hospital, Akita, Japan
| |
Collapse
|
11
|
Peng L, Zhang H, Hu Z, Zhao Y, Liu S, Chen J. Nafamostat mesylate inhibits chlamydial intracellular growth in cell culture and reduces chlamydial infection in the mouse genital tract. Microb Pathog 2020; 147:104413. [PMID: 32712115 DOI: 10.1016/j.micpath.2020.104413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Urogenital Chlamydia trachomatis (C. trachomatis) infection is one of the most common bacterial sexually transmitted diseases worldwide. Untreated C. trachomatis infections that ascend to the upper genital tract lead to a series of severe complications. To search for novel antichlamydial drugs, we evaluated the effect of nafamostat mesylate (NM), a synthetic serine protease inhibitor, on chlamydial infection. NM inhibited chlamydial intracellular growth and reduced both the inclusion size and number in cell culture. NM may mainly target the intracellular reticulate bodies for inhibition. NM was also effective in enhancing chlamydial clearance from mouse genital tract when NM was applied to mice via intravaginal inoculation. The vaginal NM did not significantly alter inflammatory cytokine responses in the mouse genital tract. Thus, we have demonstrated a novel role of NM in inhibiting the obligate intracellular bacterium Chlamydia.
Collapse
Affiliation(s)
- Liang Peng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihao Hu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Zhao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Chen XL, Mao JW, Wang YD. Selective granulocyte and monocyte apheresis in inflammatory bowel disease: Its past, present and future. World J Gastrointest Pathophysiol 2020; 11:43-56. [PMID: 32435521 PMCID: PMC7226913 DOI: 10.4291/wjgp.v11.i3.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/05/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
The etiology and pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, are not fully understood so far. Therefore, IBD still remains incurable despite the fact that significant progress has been achieved in recent years in its treatment with innovative medicine. About 20 years ago, selective granulocyte and monocyte apheresis (GMA) was invented in Japan and later approved by the Japanese health authority for IBD treatment. From then on this technique was extensively used for IBD patients in Japan and later in Europe. Clinical trials from Japan and European countries have verified the effectiveness and safety of GMA therapy in patients with IBD. In 2013, GMA therapy was approved by China State Food and Drug Administration for therapeutic use for the Chinese IBD patients. However, GMA therapy has not been extensively used in China, although a few clinical studies also showed that it was effective in clinical and endoscopic induction of remission in Chinese IBD patients with a high safety profile. This article reviews past history, present clinical application as well as the future prospective of GMA therapy for patients with IBD.
Collapse
Affiliation(s)
- Xiu-Li Chen
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jing-Wei Mao
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Ying-De Wang
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
13
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Chen X, Xu Z, Zeng S, Wang X, Liu W, Qian L, Wei J, Yang X, Shen Q, Gong Z, Yan Y. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front Oncol 2019; 9:852. [PMID: 31552177 PMCID: PMC6733886 DOI: 10.3389/fonc.2019.00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Nafamostat mesylate (NM), a synthetic serine protease inhibitor first placed on the market by Japan Tobacco in 1986, has been approved to treat inflammatory-related diseases, such as pancreatitis. Recently, an increasing number of studies have highlighted the promising effects of NM in inhibiting cancer progression. Alone or in combination treatments, studies have shown that NM attenuates various malignant tumors, including pancreatic, colorectal, gastric, gallbladder, and hepatocellular cancers. In this review, based on several activating pathways, including the canonical Nuclear factor-κB (NF-κB) signaling pathway, tumor necrosis factor receptor-1 (TNFR1) signaling pathway, and tumorigenesis-related tryptase secreted by mast cells, we summarize the anticancer properties of NM in existing studies both in vitro and in vivo. In addition, the efficacy and side effects of NM in cancer patients are summarized in detail. To further clarify NM's antitumor activities, clinical trials devoted to validating the clinical applications and underlying mechanisms are needed in the future.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuying Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|