1
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Haładyn K, Wojdyło A, Nowicka P. Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation. Molecules 2024; 29:4184. [PMID: 39275032 PMCID: PMC11397186 DOI: 10.3390/molecules29174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Calendula officinalis L. has numerous health-promoting properties due to the presence of a large number of lipophilic compounds. Their effective delivery to the body requires the use of an appropriate technique such as emulsification. So, the main purpose of this study was to understand how the profile of lipophilic compounds from pot marigold and the pro-health potential are shaped by different types of protein, oil, and drying techniques in o/w nanoemulsion. To obtain this, the profiles of carotenoid compounds and tocols were measured. Additionally, antioxidant potential and the ability to inhibit α-amylase and α-glucosidase were measured. Pea protein emulsion exhibited a higher final content of carotenoid compounds (23.72-39.74 mg/100 g), whereas those with whey protein had stronger α-amylase inhibition (487.70 mg/mL). The predominant compounds in the studied nanoemulsions were β-carotene (between 19% and 40%), followed by α-tocopherol/γ-tocopherol. The type of proteins shaped the health-promoting properties and determined the content of health-promoting compounds.
Collapse
Affiliation(s)
- Kamil Haładyn
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
3
|
Li H, Zhang Y, Liu T, Zhang L, Li M, Li H, Li D, Wang X, Yu J. Transglutaminase, glucono-δ-lactone, and citric acid-induced whey protein isolation-milk fat emulsion gel embedding lutein and its application in processed cheese. J Dairy Sci 2023; 106:6635-6645. [PMID: 37210368 DOI: 10.3168/jds.2022-23097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/04/2023] [Indexed: 05/22/2023]
Abstract
In this study, transglutaminase (TG), glucono-δ-lactone (GDL), and citric acid (CA) were used to induce the formation of whey protein isolate (WPI)-milk fat emulsion gels to embed lutein, and the emulsion gels induced in different ways were used for the preparation of processed cheese. The protective effect of emulsion gels induced in different ways on lutein was investigated, and the stability of lutein in emulsion gels and processed cheese was analyzed. The results showed that the acidification rate of CA was higher than that of GDL, which was the key step in acid-induced gels, and that the difference in acidification rate led to differences in gel structure. Compared with the 2 acid inducers (GDL and CA), TG exhibited greater potential for forming gel structures with high strength. The TG-induced emulsion gels showed the best physical stability and the highest embedding efficiency for lutein. After heat treatment (85°C), the GDL-induced emulsion gels had higher retention rate of lutein and showed good thermal stability compared with the CA-induced emulsion gels. The processed cheese added with the TG-induced emulsion gel had higher hardness and springiness compared with the processed cheese added with the other 2 kinds of emulsion gels, whereas the processed cheese added with the CA-induced emulsion gel had a lower density of network structure, showing porosity and a larger aggregated structure, but the highest bioavailability of lutein. These results provide valuable information for the formation of cold-set emulsion gel and provide the possibility for the application of emulsion gel embedding active substances in processed cheese.
Collapse
Affiliation(s)
- Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Yumeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Tingting Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Leilei Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Mengfan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China
| | - Dan Li
- Miao Ke Landuo (Tianjin) Food Technology Co. Ltd., Tianjin Economic-Technological Development Area, Tianjin, 300462, China
| | - Xiaopeng Wang
- Henan Huahuaniu Dairy Co. Ltd., Zhengzhou, 463514, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area, Tianjin, 300457, China.
| |
Collapse
|
4
|
Suwanklang P, Thilavech T, Limwikrant W, Kitphati W, Supharattanasitthi W, Lomarat P. Analysis of Lutein Content in Microencapsulated Marigold Flower Extract ( Tagetes erecta L.) Using UHPLC-Q-Orbitrap-HRMS and Its Cytotoxicity in ARPE-19 Cells. Molecules 2023; 28:6025. [PMID: 37630277 PMCID: PMC10460044 DOI: 10.3390/molecules28166025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Organic solvents are commonly used to extract lutein. However, they are toxic and are not environmental-friendly. There are only a few reports on the quantification of lutein. Therefore, this study aimed to determine a suitable extraction method by which to obtain lutein from marigold flower (Tagetes erecta L.), using coconut oil to evaluate the cytotoxicity of extract in ARPE-19 cells, to optimize the encapsulation process for the development of microencapsulated marigold flower extract, and to develop the method for analysis of lutein by using UHPLC-Q-Orbitrap-HRMS. Coconut oil was used for the extraction of marigold flowers with two different extraction methods: ultrasonication and microwave-assisted extraction. The UHPLC-Q-Orbitrap-HRMS condition for the analysis of lutein was successfully developed and validated. Marigold flower extract obtained using the microwave method had the highest lutein content of 27.22 ± 1.17 mg/g. A cytotoxicity study revealed that 16 µM of lutein from marigold extract was non-toxic to ARPE-19 cells. For the development of microencapsulated marigold extract, the ratio of oil to wall at 1:5 had the highest encapsulation efficiency and the highest lutein content. Extraction of lutein using coconut oil and the microwave method was the suitable method. The microencapsulated marigold extract can be applied for the development of functional ingredients.
Collapse
Affiliation(s)
- Pornson Suwanklang
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.S.); (T.T.)
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.S.); (T.T.)
| | - Waree Limwikrant
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (W.K.); (W.S.)
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Mahidol-Liverpool Joint Unit for Ageing Research, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wasu Supharattanasitthi
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (W.K.); (W.S.)
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Mahidol-Liverpool Joint Unit for Ageing Research, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Pattamapan Lomarat
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.S.); (T.T.)
| |
Collapse
|
5
|
Jv DJ, Ji TH, Xu Z, Li A, Chen ZY. The Remarkable Enhancement of Photo-Stability and Antioxidant Protection of Lutein Coupled with Carbon-dot. Food Chem 2022; 405:134551. [DOI: 10.1016/j.foodchem.2022.134551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
|
6
|
Zhao W, Zhang B, Liang W, Liu X, Zheng J, Ge X, Shen H, Lu Y, Zhang X, Sun Z, Ospankulova G, Li W. Lutein encapsulated in whey protein and citric acid potato starch ester: Construction and characterization of microcapsules. Int J Biol Macromol 2022; 220:1-12. [PMID: 35970362 DOI: 10.1016/j.ijbiomac.2022.08.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
The poor water solubility and stability of lutein limit its application in industry. Microencapsulation technology is an excellent strategy to solve these problems. This study used citric acid esterified potato starch and whey protein as an emulsifier to prepare oil-in-water lutein emulsion, and microcapsules were constructed by spray drying technology. The effects of different component proportions on microcapsules' microstructure, physical and chemical properties, and storage stability were analyzed. Citrate esterified potato starch had good emulsifying properties, and when compounded with whey protein, the encapsulation efficiency (EE) of microcapsules increased, and the embedding effect of lutein improved. After microencapsulation, the solubility of lutein increased significantly, reaching over 49.71 %, and gradually raised with more whey protein content. Furthermore, the high proportion of whey protein helped improve microcapsules' EE and thermal properties, with the maximum EE reaching 89.36 %. The glass transition temperatures of microcapsules were all higher than room temperature, which indicated that they keep a stable state under general storage conditions. The experimental results of this study may provide a reference for applying lutein in food and other fields.
Collapse
Affiliation(s)
- Wenqing Zhao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Bo Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yifan Lu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuyun Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Zhuangzhuang Sun
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Kazakhstan
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Ding Z, Wang X, Wang L, Zhao Y, Liu M, Liu W, Han J, Prakash S, Wang Z. Characterisation of spray dried microencapsules with amorphous lutein nanoparticles: Enhancement of processability, dissolution rate, and storage stability. Food Chem 2022; 383:132200. [DOI: 10.1016/j.foodchem.2022.132200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
8
|
Mora-Gutierrez A, Marquez SA, Attaie R, Núñez de González MT, Jung Y, Woldesenbet S, Moussavi M. Mixed Biopolymer Systems Based on Bovine and Caprine Caseins, Yeast β-Glucan, and Maltodextrin for Microencapsulating Lutein Dispersed in Emulsified Lipid Carriers. Polymers (Basel) 2022; 14:2600. [PMID: 35808646 PMCID: PMC9268938 DOI: 10.3390/polym14132600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
Lutein is an important antioxidant that quenches free radicals. The stability of lutein and hence compatibility for food fortification is a big challenge to the food industry. Encapsulation can be designed to protect lutein from the adverse environment (air, heat, light, pH). In this study, we determined the impact of mixed biopolymer systems based on bovine and caprine caseins, yeast β-glucan, and maltodextrin as wall systems for microencapsulating lutein dispersed in emulsified lipid carriers by spray drying. The performance of these wall systems at oil/water interfaces is a key factor affecting the encapsulation of lutein. The highest encapsulation efficiency (97.7%) was achieved from the lutein microcapsules prepared with the mixed biopolymer system of caprine αs1-II casein, yeast β-glucan, and maltodextrin. Casein type and storage time affected the stability of lutein. The stability of lutein was the highest (64.57%) in lutein microcapsules prepared with the mixed biopolymer system of caprine αs1-II casein, yeast β-glucan, and maltodextrin, whereas lutein microcapsules prepared with the biopolymer system of bovine casein, yeast β-glucan, and maltodextrin had the lowest (56.01%). The stability of lutein in the lutein microcapsules dramatically decreased during storage time. The antioxidant activity of lutein in the lutein microcapsules was closely associated with the lutein concentration.
Collapse
Affiliation(s)
- Adela Mora-Gutierrez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.); (S.W.); (M.M.)
| | - Sixto A. Marquez
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Rahmat Attaie
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.); (S.W.); (M.M.)
| | - Maryuri T. Núñez de González
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.); (S.W.); (M.M.)
| | - Yoonsung Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.); (S.W.); (M.M.)
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.); (S.W.); (M.M.)
| | - Mahta Moussavi
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.); (S.W.); (M.M.)
| |
Collapse
|
9
|
Wang Y, Ghosh S, Nickerson MT. Microencapsulation of Flaxseed Oil by Lentil Protein Isolate-κ-Carrageenan and -ι-Carrageenan Based Wall Materials through Spray and Freeze Drying. Molecules 2022; 27:molecules27103195. [PMID: 35630671 PMCID: PMC9145131 DOI: 10.3390/molecules27103195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Lentil protein isolate (LPI)-κ-carrageenan (κ-C) and -ι-carrageenan (ι-C) based microcapsules were prepared through spray-drying and freeze-drying to encapsulate flaxseed oil in order to reach final oil levels of 20% and 30%. Characteristics of the corresponding emulsions and their dried microcapsules were determined. For emulsion properties, all LPI-κ-C and LPI-ι-C emulsions remained 100% stable after 48 h, while the LPI emulsions destabilized quickly (p < 0.05) after homogenization mainly due to low emulsion viscosity. For spray-dried microcapsules, the highest yield was attributed to LPI-ι-C with 20% oil, followed by LPI-κ-C 20% and LPI-ι-C 30% (p < 0.05). Flaxseed oil was oxidized more significantly among the spray-dried capsules compared to untreated oil (p < 0.05) due to the effect of heat. Flaxseed oil was more stable in all the freeze-dried capsules and showed significantly lower oil oxidation than the untreated oil after 8 weeks of storage (p < 0.05). As for in vitro oil release profile, a higher amount of oil was released for LPI-κ-C powders under simulated gastric fluid (SGF), while more oil was released for LPI-ι-C powders under simulated gastric fluid and simulated intestinal fluid (SGF + SIF) regardless of drying method and oil content. This study enhanced the emulsion stability by applying carrageenan to LPI and showed the potential to make plant-based microcapsules to deliver omega-3 oils.
Collapse
|
10
|
Fabrication and Characterization of Whey Protein—Citrate Mung Bean Starch—Capsaicin Microcapsules by Spray Drying with Improved Stability and Solubility. Foods 2022; 11:foods11071049. [PMID: 35407136 PMCID: PMC8998035 DOI: 10.3390/foods11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Capsaicin was microencapsulated in six different wall systems by spray drying whey protein and citrate mung bean starch at various ratios (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, 0:10) to improve its stability and water solubility and reduce its pungency. The morphological, rheological, storage stability, and physicochemical properties of capsaicin emulsion and capsaicin microcapsules were characterized. As a result, the yield of six capsaicin microcapsules was 19.63–74.99%, the encapsulation efficiency was 26.59–94.18%, the solubility was 65.97–96.32%, the moisture content was lower than 3.63% in all systems, and particle size was broadly distributed in the range of 1–60 μm. Furthermore, microcapsules with high whey protein content in the encapsulation system had an excellent emulsifier effect and wetness, smooth particle surface, and higher lightness (L*). Moreover, the system formed by composite wall materials at a ratio of whey protein to citrate mung bean starch of 7:3 had the highest retention rate and the best stability. The overall results demonstrate that whey protein combined with citrate mung starch through spray drying could be a promising strategy to produce microcapsules of poorly water-soluble compounds such as capsaicin.
Collapse
|
11
|
Sodium Caseinate and Acetylated Mung Bean Starch for the Encapsulation of Lutein: Enhanced Solubility and Stability of Lutein. Foods 2021; 11:foods11010065. [PMID: 35010190 PMCID: PMC8750002 DOI: 10.3390/foods11010065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/22/2023] Open
Abstract
Lutein is a kind of vital carotenoid with high safety and significant advantages in biological functions. However, poor water solubility and stability of lutein have limited its application. This study selected different weight ratios of sodium caseinate to acetylated mung bean starch (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, and 0:10) to prepare lutein emulsions, and the microcapsules were produced by spray drying technology. The microstructure, physicochemical properties, and storage stability of microcapsules were investigated. The results show that the emulsion systems were typical non-Newtonian fluids. Lutein microcapsules were light yellow fine powder with smooth and relatively complete particle surface. The increase of sodium caseinate content led to the enhanced emulsion effect of the emulsion and the yield and solubility of microcapsules increased, and wettability and the average particle size became smaller. The encapsulation efficiency of lutein microcapsules ranged from 69.72% to 89.44%. The thermal characteristics analysis showed that the endothermic transition of lutein microcapsules occurred at about 125 °C. The microcapsules with sodium caseinate as single wall material had the worst stability. Thus, it provides a reference for expanding the application of lutein in food, biological, pharmaceutical, and other industries and improving the stability and water dispersion of other lipid-soluble active ingredients.
Collapse
|
12
|
Zafar J, Aqeel A, Shah FI, Ehsan N, Gohar UF, Moga MA, Festila D, Ciurea C, Irimie M, Chicea R. Biochemical and Immunological implications of Lutein and Zeaxanthin. Int J Mol Sci 2021; 22:10910. [PMID: 34681572 PMCID: PMC8535525 DOI: 10.3390/ijms222010910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout history, nature has been acknowledged for being a primordial source of various bioactive molecules in which human macular carotenoids are gaining significant attention. Among 750 natural carotenoids, lutein, zeaxanthin and their oxidative metabolites are selectively accumulated in the macular region of living beings. Due to their vast applications in food, feed, pharmaceutical and nutraceuticals industries, the global market of lutein and zeaxanthin is continuously expanding but chemical synthesis, extraction and purification of these compounds from their natural repertoire e.g., plants, is somewhat costly and technically challenging. In this regard microbial as well as microalgal carotenoids are considered as an attractive alternative to aforementioned challenges. Through the techniques of genetic engineering and gene-editing tools like CRISPR/Cas9, the overproduction of lutein and zeaxanthin in microorganisms can be achieved but the commercial scale applications of such procedures needs to be done. Moreover, these carotenoids are highly unstable and susceptible to thermal and oxidative degradation. Therefore, esterification of these xanthophylls and microencapsulation with appropriate wall materials can increase their shelf-life and enhance their application in food industry. With their potent antioxidant activities, these carotenoids are emerging as molecules of vital importance in chronic degenerative, malignancies and antiviral diseases. Therefore, more research needs to be done to further expand the applications of lutein and zeaxanthin.
Collapse
Affiliation(s)
- Javaria Zafar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Naureen Ehsan
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Marius Alexandru Moga
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Dana Festila
- Radiology and Maxilo Facial Surgery Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Radu Chicea
- Faculty of Medicine, “Lucian Blaga” University, 550169 Sibiu, Romania;
| |
Collapse
|
13
|
Wang X, Ding Z, Zhao Y, Prakash S, Liu W, Han J, Wang Z. Effects of lutein particle size in embedding emulsions on encapsulation efficiency, storage stability, and dissolution rate of microencapsules through spray drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
A Review of the Extraction and Closed-Loop Spray Drying-Assisted Micro-Encapsulation of Algal Lutein for Functional Food Delivery. Processes (Basel) 2021. [DOI: 10.3390/pr9071143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the physical and chemical properties and bioavailability of lutein have been summarized, with the novelty of this work being the review of lutein from production to extraction, through to preservation and drying, in order to deliver a functional food ingredient. The potential health functions of lutein have been introduced in detail. By comparing algae and marigold flowers, the advantages of algae extraction technology have been discussed. In this article, we have introduced the use of closed-loop spray drying technology to microencapsulate lutein to improve its stability and solubility. Microencapsulation of unstable substances by spray drying is a potentially useful direction that is worth exploring further.
Collapse
|
15
|
Caballero S, Li YO, McClements DJ, Davidov-Pardo G. Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit Rev Food Sci Nutr 2021; 62:8028-8044. [PMID: 33983085 DOI: 10.1080/10408398.2021.1922873] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus pomace consists of the peel, pulp, and membrane tissues remaining after juice expression. Globally, around one million tons of citrus pomace are generated annually, which contains a variety of bioactive constituents that could be used as value-added functional ingredients in foods. However, the polyphenols in citrus pomace are not currently being utilized to their full potential, even though they can be used as nutraceuticals in functional foods and beverages. Citrus phenolics face significant roadblocks to their successful incorporation into these products. In particular, they have poor water solubility, chemical stability, and bioavailability. This review describes the diverse range of colloidal systems that have been developed to encapsulate and deliver citrus phenolics. Examples of the application of these systems for the encapsulation, protection, and delivery of polyphenols from citrus pomace are given. The use of colloidal delivery systems has been shown to improve the stability, dispersibility, and bioaccessibility of encapsulated polyphenols from citrus pomace. The selection of an appropriate delivery system determines the handling, storage, shelf life, encapsulation efficiency, dispersibility, and gastrointestinal fate of the citrus polyphenols. Furthermore, the purity, solubility, and chemical structure of the polyphenols are key factors in delivery system selection.
Collapse
Affiliation(s)
- Sarah Caballero
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - Yao Olive Li
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
16
|
Lopez C, Mériadec C, David-Briand E, Dupont A, Bizien T, Artzner F, Riaublanc A, Anton M. Loading of lutein in egg-sphingomyelin vesicles as lipid carriers: Thermotropic phase behaviour, structure of sphingosome membranes and lutein crystals. Food Res Int 2020; 138:109770. [PMID: 33292950 DOI: 10.1016/j.foodres.2020.109770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Lutein is a xanthophyll carotenoid provided exclusively by the diet, that has protective functions and beneficial effects on human health. Supplementation in lutein is necessary to reach the recommended daily dietary intake. However, the introduction of lutein into foods and beverages is a real challenge since this lipophilic nutrient has a poor aqueous solubility and a low bioavailability. In this study, we investigated the capacity of egg-sphingomyelin (ESM) vesicles called sphingosomes to solubilise lutein into the bilayers. The thermal and structural properties of ESM bilayers were examined in presence of various amounts of lutein by differential scanning calorimetry (DSC) and temperature-controlled X-ray diffraction (XRD), the structures of sphingosomes and lutein crystals were observed by microscopic techniques. ESM bilayers were in the fluid Lα phase above the phase transition temperature Tm = 39.6 °C and in the lamellar ripple Pβ' phase below Tm where ESM sphingosomes exhibited ondulations and were facetted. Lutein molecules were successfully incorporated into the ESM bilayers where they induced a structural disorganisation. For ESM/lutein 90/10 %mol (91.8/8.2 %wt; 89 mg lutein / g ESM), lutein partitioning occured with the formation of lutein crystals in the aqueous phase together with lutein-loaded ESM vesicles. This study highlighted the capacity of new lipid carriers such as egg-sphingosomes to solubilise lutein and opens perspectives for the formulation of effective lutein-fortified functionnal foods and beverages providing health benefits.
Collapse
Affiliation(s)
- Christelle Lopez
- INRAE, BIA, 44316 Nantes, France; INRAE, STLO, 35000 Rennes, France.
| | | | | | - Aurélien Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT - UMS 3480, US_S 018, 35000 Rennes, France
| | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Franck Artzner
- IPR, UMR 6251, CNRS, University of Rennes 1, 35042 Rennes, France
| | | | | |
Collapse
|
17
|
Wang L, Li Y, Xiang D, Zhang W, Bai X. Stability of lutein in O/W emulsion prepared using xanthan and propylene glycol alginate. Int J Biol Macromol 2020; 152:371-379. [PMID: 32084481 DOI: 10.1016/j.ijbiomac.2020.02.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/08/2022]
Abstract
Lutein is a hydrophobic carotenoid with diverse bioactivities. For encapsulating the molecule in a novel method, we prepared two emulsions from xanthan and propylene glycol alginate at the ratios of 3:7 and 4:6. The instability index and particle size of the emulsions were determined using a stability analyzer and laser particle size analyzer. The influence of crystallization on the emulsions was observed under a polarizing microscope. The effects of centrifugal force and storage on the lutein emulsions were analyzed by measuring the changes in absorbance. The results showed that the emulsion fabricated by xanthan and propylene glycol alginate at the ratio of 4:6 was highly stable, and crystals were dispersed when xanthan and propylene glycol alginate existed. These results revealed that the hydrophobicity and absorption kinetics of emulsifiers would determine the stability of emulsion when the viscosity of emulsifiers reached a certain value, and the stability of emulsions would affect the stability of lutein in the emulsions.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China
| | - Yujie Li
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China
| | - Dong Xiang
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, No.58 Renmin Avenue, Haikou 570228, China.
| | - Weimin Zhang
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China
| | - Xinpeng Bai
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, No.58 Renmin Avenue, Haikou 570228, China
| |
Collapse
|
18
|
|
19
|
Improved encapsulation efficiency and storage stability of spray dried microencapsulated lutein with carbohydrates combinations as encapsulating material. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ding Z, Tao T, Wang X, Prakash S, Zhao Y, Han J, Wang Z. Influences of different carbohydrates as wall material on powder characteristics, encapsulation efficiency, stability and degradation kinetics of microencapsulated lutein by spray drying. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhuang Ding
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Tao Tao
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Xiao Wang
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences University of Queensland Brisbane QLD 4072 Australia
| | - Yanna Zhao
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Jun Han
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research Liaocheng University Liaocheng 252059 China
| |
Collapse
|
21
|
Eun JB, Maruf A, Das PR, Nam SH. A review of encapsulation of carotenoids using spray drying and freeze drying. Crit Rev Food Sci Nutr 2019; 60:3547-3572. [PMID: 31876161 DOI: 10.1080/10408398.2019.1698511] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carotenoids are potent antioxidants, but they are highly unstable and susceptible during processing and storage. Encapsulation technologies protect against degradation and are capable of releasing individual or combination of bioactive substances during processing as well as development of various functional food products. Moreover, encapsulating agents can be used to increase the stability of carotenoids and form a barrier between the core and wall materials. Suitable encapsulating agents, temperature, and drying methods are the most important factors for the encapsulation process. In this report, we reviewed the current status of encapsulation of carotenoids from different fruits, vegetables, spices, seaweeds, microorganisms, and synthetic sources using various types of encapsulating agents through spray drying and freeze drying. We also focused on the degradation kinetics and various factors that affect the stability and bioavailability of encapsulated carotenoids during their processing and storage.
Collapse
Affiliation(s)
- Jong-Bang Eun
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| | - Ahmed Maruf
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| | - Protiva Rani Das
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| | - Seung-Hee Nam
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwanju, South Korea
| |
Collapse
|
22
|
Huang X, Lee EJ, Ahn DU. Development of non-dairy creamer analogs/mimics for an alternative of infant formula using egg white, yolk, and soy proteins. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:881-890. [PMID: 30744367 PMCID: PMC6498084 DOI: 10.5713/ajas.18.0738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A study was conducted to develop non-dairy creamer analogs/mimics using egg white, egg yolk, soy protein and their combinations, and their nutrient content, shelf-life and flavor acceptability were compared. METHODS Spray dried egg white, egg yolk, and soy protein isolate were purchased from manufacturers and used for the formulae. RESULTS The protein contents of the non-dairy creamer analogs/mimics were about 8.5% as calculated. The amounts of oleic and linoleic acid content increased as the amount of yolk increased in the formula, but the increases of polyunsaturated fatty acids were <0.5% of total fat. Addition of egg yolk to the formula increased choline and lutein content in the products, but the amounts were <0.4 mg/g for choline and 4 μg/g for lutein. The lutein in the products continued to decrease over the storage time, and only about 15% to 20% of the 0-month amounts were left after 3 months of storage. Although the thiobarbituric acid reactive substances values of the spray-dried non-dairy creamer analogs/mimics increased as storage time increased, the values were still low. Yellowness, darkness, and egg flavor/odor of the non-dairy creamer analogs/mimics increased as the amount of egg yolk in the formula increased. The overall acceptability of the non-dairy creamer analogs/mimics was closely related to the intensity of egg flavor/odor, but storage improved their overall acceptance because most of the off-odor volatiles disappeared during the storage. Water temperature was the most important parameter in dissolving spray-dried non-dairy creamer analogs/mimics, and 55°C to 75°C was the optimal water temperature conditions to dissolve them. CONCLUSION Higher amounts of yolk and soy protein combinations in place of egg white reduced the cost of the products significantly and those products contained better and balanced nutrients than the commercial coffee creamers. However, off-flavor and solubility were two important issues in the products.
Collapse
Affiliation(s)
- Xi Huang
- College of Food Science & Technology, Huazhong Agricultural University, Egg Processing Technology Local Joint National Engineering Research Center, National R&D Center for Egg Processing, Wuhan, Hubei 430070,
China
| | - Eun Joo Lee
- Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI 54751,
USA
| | - Dong U. Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011,
USA
| |
Collapse
|
23
|
Curi-Borda CK, Linares-Pastén JA, Tat T, Tarqui-Dueñas R, Chino-Flores N, Alvarado JA, Bergenstahl B. Multilayer Bixin Microcapsules: The Impact of Native Carbohydrates on the Microencapsulation Efficiency and Dispersion Stability. Foods 2019; 8:foods8030108. [PMID: 30909470 PMCID: PMC6463031 DOI: 10.3390/foods8030108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
Bixin is a hydrophobic carotenoid present in the integument of the seeds of Bixa orellana. Microencapsulation was applied to obtain water dispersible formulations and protect the colorant against degradation. Microencapsulated systems were obtained by spray-drying a mild alkaline bixin dispersion with different encapsulating materials. The encapsulation trials were performed with and without native carbohydrates of the integument in addition to the main encapsulant. It was possible to dry dispersions with up to 10% bixin counted on total solids. All the studied systems were characterized by colorimetry, UV-vis spectroscopy, Scanning Electron Microscopy, light microscopy, turbidometric sedimentation analyses and laser light diffraction analyses. All the systems showed aqueous dispersibility but displayed differences in their transparency, UV-vis spectra and physical stability at pH 3. The results show that the native carbohydrates enhance the encapsulation efficiency of other encapsulating materials. The chemical composition of this native carbohydrate fraction shows the presence of polysaccharides containing arabinose, galactose and glucose as monomers. Starch was identified enzymatically. The native carbohydrates allowed the encapsulation of bixin in its native microcrystalline form, resulting in a multilayer structure after spray-drying. In addition, the colorant particles displayed dispersibility under acidic aqueous conditions suggesting that they are stabilized by the native carbohydrates after the microcapsules are dissolved.
Collapse
Affiliation(s)
- Cecilia K Curi-Borda
- Food Science and Technology Department, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
- Institute of Chemical Research, Universidad Mayor de San Andrés, 27th Cota Cota, P.O. Box 303, La Paz, Bolivia.
| | - Javier A Linares-Pastén
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Tuba Tat
- Department of Food Engineering, Ankara University, TR 06532 Ankara, Turkey.
| | - Rosmery Tarqui-Dueñas
- Institute of Chemical Research, Universidad Mayor de San Andrés, 27th Cota Cota, P.O. Box 303, La Paz, Bolivia.
| | - Ninoska Chino-Flores
- Institute of Chemical Research, Universidad Mayor de San Andrés, 27th Cota Cota, P.O. Box 303, La Paz, Bolivia.
| | - Juan-Antonio Alvarado
- Institute of Chemical Research, Universidad Mayor de San Andrés, 27th Cota Cota, P.O. Box 303, La Paz, Bolivia.
| | - Bjorn Bergenstahl
- Food Science and Technology Department, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
24
|
Zhao T, Liu F, Duan X, Xiao C, Liu X. Physicochemical Properties of Lutein-Loaded Microcapsules and Their Uptake via Caco-2 Monolayers. Molecules 2018; 23:E1805. [PMID: 30037053 PMCID: PMC6099687 DOI: 10.3390/molecules23071805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
Lutein is one of the most important carotenoids that can be utilized in foods as a natural pigment and nutraceutical ingredient to improve eye health. However, its utilization is limited due to its poor solubility. Chemically, the highly unsaturated structure of lutein makes it extremely susceptible to light, oxygen, heat, and pro-oxidants and therefore easily oxidized, decomposed or dissociated. In this study, we aimed to imbed natural lutein to improve its storage stability and enhance its water dispersibility. As two commonly studied water-soluble and water-insoluble food-grade surfactants, lecithin and sodium caseinate (NaCas) were chosen as the wall materials, and lutein-loaded lecithin microcapsules and NaCas microcapsules were prepared, the results revealed the lutein-loaded NaCas microcapsules not only exhibited better solubility and stability than those of lutein-loaded lecithin microcapsules, but also were more stable when stored at 4 °C, 25 °C, 37 °C. Moreover, the lutein-loaded NaCas microcapsules were more easily absorbed by the intestinal Caco-2 cells than natural lutein. Considering the dispersibility, stability and cell absorption effect, the NaCas-based microparticle is a potential carrier for lutein.
Collapse
Affiliation(s)
- Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Fuguo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xiang Duan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Chunxia Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
25
|
Pal S, Bhattacharjee P. Spray dried powder of lutein-rich supercritical carbon dioxide extract of gamma-irradiated marigold flowers: Process optimization, characterization and food application. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Álvarez-Henao MV, Saavedra N, Medina S, Jiménez Cartagena C, Alzate LM, Londoño-Londoño J. Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chem 2018; 256:181-187. [PMID: 29606436 DOI: 10.1016/j.foodchem.2018.02.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 02/11/2018] [Indexed: 01/09/2023]
Abstract
Lutein, a xanthophyll, is associated to decreased risk of age-related macular degeneration, atherosclerosis and other diseases (Bovier et al., 2013; El-raey, Ibrahim, & Eldahshan, 2013). When lutein is extracted, it becomes highly unstable, reducing its functionality as an antioxidant. The aim of this research was to improve the stability of lutein using maltodextrin, arabic gum and a modified starch, to obtain micro-particles using spray-drying. Each of the formulations was characterized in terms of yield, encapsulation efficiency, particle size distribution, water activity and moisture content. The formulations with arabic gum (100%) and arabic gum:maltodextrin:modified starch (33.3:33.3:33.3%), with encapsulation efficiencies of 91.94 ± 6.88 and 65.72 ± 0.93%, respectively, were selected to study stability at 45 °C and 75% RH (relative humidity). Based on our results, encapsulation could be considered as an alternative for the generation of high value-added functional ingredients that can be used in different industries.
Collapse
Affiliation(s)
| | - Nataly Saavedra
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | - Sonia Medina
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | | | - Luz Maria Alzate
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | - Julián Londoño-Londoño
- Faculty of Engineering, Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| |
Collapse
|
27
|
Li RY, Shi Y. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:896-904. [PMID: 28686292 DOI: 10.1002/jsfa.8535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil. RESULTS The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg-1 , GLU 100 g kg-1 and MD 475 g kg-1 of microencapsulation) conferred borage oil with high protection against lipid oxidation. CONCLUSION The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ru-Yi Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
| | - Yan Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
| |
Collapse
|
28
|
Chang D, Ma Y, Cao G, Wang J, Zhang X, Feng J, Wang W. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1018-1024. [DOI: 10.1080/21691401.2017.1358732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daoxiao Chang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanni Ma
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guoyu Cao
- Forestry Technology Extension Station of Yantai City, Yantai, Shandong, China
| | - Jianhuan Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xia Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun Feng
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenping Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine & Key Lab of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, Ningxia, China
| |
Collapse
|
29
|
Teo A, Lee SJ, Goh KK, Wolber FM. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem 2017; 221:1269-1276. [DOI: 10.1016/j.foodchem.2016.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/29/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
30
|
Wang B, Duke SR, Wang Y. Microencapsulation of lipid materials by spray drying and properties of products. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bangping Wang
- Department of Biosystems EngineeringAuburn UniversityAlabama36849 USA
| | - Steve R. Duke
- Department of Chemical EngineeringAuburn UniversityAlabama36849 USA
| | - Yifen Wang
- Department of Biosystems EngineeringAuburn UniversityAlabama36849 USA
| |
Collapse
|
31
|
Tippel J, Reim V, Rohn S, Drusch S. Colour stability of lutein esters in liquid and spray dried delivery systems based on Quillaja saponins. Food Res Int 2016; 87:68-75. [DOI: 10.1016/j.foodres.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
|
32
|
Nalawade PB, Gajjar AK. Microencapsulation of lutein extracted from marigold flowers ( Tagetes erecta L.) using full factorial design. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Bajaj PR, Tang J, Sablani SS. Pea Protein Isolates: Novel Wall Materials for Microencapsulating Flaxseed Oil. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1589-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|