1
|
Wilson NA, Mantzioris E, Villani A. Sensory preferences are important motivators for using herbs and spices: A cross-sectional analysis of Australian adults. J Hum Nutr Diet 2025; 38:e13406. [PMID: 39623726 DOI: 10.1111/jhn.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/05/2025]
Abstract
INTRODUCTION Herbs and spices have been used in cooking and food preparation to add flavour and aroma for centuries. However, many herbs and spices are also associated with a number of health benefits. Despite this, little is known about the types and frequency of use of herbs and spices in Australian households. Therefore, the aim of this study was to determine the types of herbs and spices used in cooking and food preparation in Australian households. METHODS A cross-sectional study was undertaken amongst Australian adults aged ≥18 years. Participants were recruited via social media platforms requesting voluntary participation in an online questionnaire. The survey tool included questions related to the types of herbs and spices used and consumed in Australian households, frequency of use, and adherence to a Mediterranean diet (MedDiet) using the Mediterranean Diet Adherence Screener. RESULTS A total of n = 400 participants responded and completed the survey. Participants were mostly female (n = 341; 85.3%) aged between 25 and 64 years (n = 331; 82.8%) and were overweight (body mass index: 26.5 ± 5.9 kg/m2). In the previous 12 months, two-thirds of participants (n = 257; 64.3%) reported consuming herbs and spices 1-2 times per day, which were mostly consumed as part of lunch/dinner meals (n = 372; 93%). Basil (n = 391; 97.8%), pepper (n = 390; 97.5%) and garlic (n = 387; 96.8%) were amongst the most frequently used herbs and spices. Moderate to high adherence to a MedDiet was associated with daily use of herbs and spices [χ2 (1, n = 397) = 5.6, P = 0.018]. CONCLUSION This cross-sectional analysis of Australian households shows that most Australian adults consume herbs and spices daily. Further investigation into the quantities used and needed to elicit potential health benefits of herbs and spices when incorporated into a healthy dietary pattern warrants future investigation.
Collapse
Affiliation(s)
- Nina A Wilson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Evangeline Mantzioris
- Clinical and Health Sciences and Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
2
|
Zazuli Z, Hartati R, Rowa CR, Asyarie S, Satrialdi. The Potential Application of Nanocarriers in Delivering Topical Antioxidants. Pharmaceuticals (Basel) 2025; 18:56. [PMID: 39861119 PMCID: PMC11769529 DOI: 10.3390/ph18010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated. Several strategies have been developed to enhance the penetration of antioxidants through the skin, one of which is nanotechnology. This review focuses on utilizing several nanocarrier systems, including nanoemulsions, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and polymeric nanoparticles, for transporting antioxidants into the skin. We also reveal ROS formation in the skin and the role of antioxidant therapy, as well as the natural sources of antioxidants. Furthermore, we discuss the clinical application of topical antioxidant therapy concomitantly with the current status of using nanotechnology to deliver topical antioxidants. This review will accelerate the advancement of topical antioxidant therapy.
Collapse
Affiliation(s)
- Zulfan Zazuli
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Rika Hartati
- Department of Pharmaceutical Biology, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Cornelia Rosasepti Rowa
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| | - Sukmadjaja Asyarie
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| | - Satrialdi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| |
Collapse
|
3
|
Carlson DA, True C, Wilson CG. Oxidative stress and food as medicine. Front Nutr 2024; 11:1394632. [PMID: 39262430 PMCID: PMC11387802 DOI: 10.3389/fnut.2024.1394632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
There has been a sea of change in our understanding of the contribution of food to both our well-being and disease states. When one addresses "food as medicine," the concept of oxidative stress needs to be included. This review interconnects the basic science findings of oxidative stress and redox balance with the medicinal use of food, emphasizing optimization of the redox balance. To better illustrate the impacts of oxidative stress, the concept of the "triple oxidant sink" is introduced as a theoretical gauge of redox balance. Utilizing the concept, the true importance of dietary and lifestyle factors can be emphasized, including the limitations of supplements or a handful of "superfoods," if the remainder of the factors are pro-oxidant. The effects of a whole plant food diet compared with those of dietary supplements, processed foods, animal based nutrients, or additional lifestyle factors can be visually demonstrated with this concept. This paper provides an overview of the process, acknowledging that food is not the only mechanism for balancing the redox status, but one that can be strategically used to dramatically improve the oxidative state, and thus should be used as medicine.
Collapse
Affiliation(s)
- DuWayne A Carlson
- Community Hospital of Grand Junction, Grand Junction, CO, United States
| | - Cheryl True
- Genesis Health System, Davenport, IA, United States
| | | |
Collapse
|
4
|
Kompoura V, Karapantzou I, Mitropoulou G, Parisis NA, Gkalpinos VK, Anagnostou VA, Tsiailanis AD, Vasdekis EP, Koutsaliaris IK, Tsouka AN, Karapetsi L, Madesis P, Letsiou S, Florou D, Koukkou AI, Barbouti A, Tselepis AD, Kourkoutas Y, Tzakos AG. Exploiting the beneficial effects of Salvia officinalis L. extracts in human health and assessing their activity as potent functional regulators of food microbiota. Food Chem 2024; 441:138175. [PMID: 38194793 DOI: 10.1016/j.foodchem.2023.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.
Collapse
Affiliation(s)
- Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Karapantzou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos A Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios K Gkalpinos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki A Anagnostou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Antonis D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioannis K Koutsaliaris
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Aikaterini N Tsouka
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Stavroula Letsiou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Florou
- Department of Forensic Medicine & Toxicology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna-Irini Koukkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; University Research Center of Ioannina, Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
5
|
Zelicha H, Yang J, Henning SM, Huang J, Lee RP, Thames G, Livingston EH, Heber D, Li Z. Effect of cinnamon spice on continuously monitored glycemic response in adults with prediabetes: a 4-week randomized controlled crossover trial. Am J Clin Nutr 2024; 119:649-657. [PMID: 38290699 DOI: 10.1016/j.ajcnut.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Previous clinical studies showing that cinnamon spice lowers blood glucose concentrations had inconsistent results. OBJECTIVES To determine the effect of daily cinnamon spice supplementation in an amount commonly used for seasoning on glucose concentrations in adults with obesity and prediabetes. METHODS Following a 2-wk run-in period of maintaining a low polyphenol/fiber diet, 18 participants with obesity and prediabetes underwent a 10-wk randomized, controlled, double-blind, crossover trial (mean age 51.1 y; mean fasting plasma glucose 102.9 mg/dL). The participants were randomly assigned to take cinnamon (4 g/d) or placebo for 4-wk, followed by a 2-wk washout period, and then crossed over to the other intervention for an additional 4-wk. Glucose changes were measured with continuous glucose monitoring. Oral glucose tolerance testing immediately following ingestion of cinnamon or placebo was performed at 4-time points to assess their acute effects both at the baseline and end of each intervention phase. Digestive symptom logs were obtained daily. RESULTS There were 694 follow-up days with 66,624 glucose observations. When compared with placebo, 24-h glucose concentrations were significantly lower when cinnamon was administered [mixed-models; effect size (ES) = 0.96; 95 % confidence interval (CI): -2.9, -1.5; P < 0.001]. Similarly, the mean net-area-under-the-curve (netAUC) for glucose was significantly lower than for placebo when cinnamon was given (over 24 h; ES = -0.66; 95 % CI: 2501.7, 5412.1, P = 0.01). Cinnamon supplementation resulted in lower glucose peaks compared with placebo (Δpeak 9.56 ± 9.1 mg/dL compared with 11.73 ± 8.0 mg/dL; ES = -0.57; 95 % CI: 0.8, 3.7, P = 0.027). Glucose-dependent-insulinotropic-polypeptide concentrations increased during oral glucose tolerance testing + cinnamon testing (mixed-models; ES = 0.51; 95 % CI: 1.56, 100.1, P = 0.04), whereas triglyceride concentrations decreased (mixed-models; ES = 0.55; 95 % CI: -16.0, -1.6, P = 0.02). Treatment adherence was excellent in both groups (cinnamon: 97.6 ± 3.4 % compared with placebo: 97.9 ± 3.7 %; ES = -0.15; 95 % CI: -1.8, 0.2, P = 0.5). No differences were found in digestive symptoms (abdominal pain, borborygmi, bloating, excess flatus, and stools/day) between cinnamon and placebo groups. CONCLUSIONS Cinnamon, a widely available and low-cost supplement, may contribute to better glucose control when added to the diet in people who have obesity-related prediabetes. This trial was registered at clinicaltrials.gov as NCT04342624.
Collapse
Affiliation(s)
- Hila Zelicha
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jieping Yang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Susanne M Henning
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Jianjun Huang
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Ru-Po Lee
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Gail Thames
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Edward H Livingston
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Heber
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States
| | - Zhaoping Li
- Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, Los Angeles, United States.
| |
Collapse
|
6
|
Siles-Sánchez MDLN, García-Ponsoda P, Fernandez-Jalao I, Jaime L, Santoyo S. Development of Pectin Particles as a Colon-Targeted Marjoram Phenolic Compound Delivery System. Foods 2024; 13:188. [PMID: 38254489 PMCID: PMC10814463 DOI: 10.3390/foods13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Marjoram is a culinary herb that has been widely employed in folk medicine and presents a high content in phenolics. Thus, the aim of this project was to design formulations to encapsulate phenolic compounds from marjoram to allow their release in the colon. For this purpose, pectin was used as an encapsulating agent, applying two different encapsulation techniques (ionic gelation and spray-drying), followed by a CaCl2 bath. The ionic gelation technique showed a higher yield (77%) compared to spray-drying (31%), and the particles obtained were smaller (267 nm). However, the microparticles obtained by spray-drying presented a higher encapsulation efficiency (93%). Moreover, spray-dried microparticles protected a higher percentage of the encapsulated phenolics from the action of gastrointestinal pHs and enzymes. Hence, the results showed that spray-drying was a more appropriate technique than ionic gelation for the encapsulation of marjoram phenolics in order to protect them during the gastrointestinal step, facilitating their arrival in the colon. These microparticles would also be suitable for inclusion in food matrices for the development of phenolic colon delivery systems.
Collapse
|
7
|
Gut microbial modulation by culinary herbs and spices. Food Chem 2023; 409:135286. [PMID: 36599291 DOI: 10.1016/j.foodchem.2022.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Culinary herbs and spices have previously been recognised for their potential impact on health through antioxidant and antimicrobial properties. They may also be promotors of positive microbial modulation by stimulating beneficial gut bacteria during fermentation, increasing the production of short chain fatty acids and thereby exhibiting a prebiotic effect. In the present paper, current literature around herb and spice consumption, gut microbiota modulation and prospective health benefits were reviewed. Herb and spice consumption can positively modulate gut microbes and possibly play an important role in inflammation related afflictions such as obesity. Current literature indicates that few human studies have been conducted to confirm the impact of herb and spice consumption on gut microbiota in connection with prospective health outcomes and inconsistencies in conclusions therefore remain.
Collapse
|
8
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
9
|
Ampatzoglou A, Gruszecka‐Kosowska A, Aguilera‐Gómez M. Microbiota analysis for risk assessment of xenobiotics: toxicomicrobiomics, incorporating the gut microbiome in the risk assessment of xenobiotics and identifying beneficial components for One Health. EFSA J 2022; 20:e200915. [PMID: 36531267 PMCID: PMC9749437 DOI: 10.2903/j.efsa.2022.e200915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This work explores three areas of relevance to the gut microbiome in the context of One Health; the incorporation of the microbiome in food safety risk assessment of xenobiotics; the identification and application of beneficial microbial components to various areas under One Health, and specifically, in the context of antimicrobial resistance. We conclude that, although challenging, focusing on the microbiota resilience, function and active components, are critical for advancing the incorporation of the gut microbiome in the risk assessment of xenobiotics. Moreover, research technologies, such as toxicomicrobiomics, culturomics and genomics, especially in combination, have revealed that the human microbiota may be a promising source of beneficial taxa or other components, with the potential to metabolise and biodegrade xenobiotics. These may have possible applications in several health areas, including in animals or plants for detoxification or in the environment for bioremediation. This approach would be of particular interest for antimicrobials, with the potential to ameliorate antimicrobial resistance development. Finally, we propose that the concept of resistance to xenobiotics in the context of the gut microbiome may deserve further investigation in the pursuit of holistically elucidating their involvement in the balance between health and disease.
Collapse
Affiliation(s)
- Antonios Ampatzoglou
- "José Mataix Verdú" Institute of Nutrition and Food TechnologyUniversity of Granada (INYTA‐UGR)GranadaSpain
| | | | - Margarita Aguilera‐Gómez
- "José Mataix Verdú" Institute of Nutrition and Food TechnologyUniversity of Granada (INYTA‐UGR)GranadaSpain
| |
Collapse
|
10
|
Bu S, Kar W, Tucker RM, Comstock SS. Minimal Influence of Cayenne Pepper on the Human Gastrointestinal Microbiota and Intestinal Inflammation in Healthy Adult Humans-A Pilot Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111849. [PMID: 36430985 PMCID: PMC9695709 DOI: 10.3390/life12111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Diet impacts human gut microbial composition. Phytochemicals in cayenne pepper (CP), such as capsaicin, have anti-inflammatory properties and alter bacterial growth in vitro. However, the evidence that CP impacts the human microbiota and intestinal inflammation in free-living adults is lacking. Thus, the objective of this randomized cross-over study was to determine the influence of CP on human gut microbiota and intestinal inflammation in vivo. A total of 29 participants were randomly allocated to consume two 250 mL servings of tomato juice plus 1.8 g of CP each day or juice only for 5 days before crossing over to the other study arm. Fecal samples were analyzed. CP reduced Oscillibacter and Phascolarctobacterium but enriched Bifidobacterium and Gp6. When stratified by BMI (body mass index), only the increase in Gp6 was observed in all BMI groups during CP treatment. Stool concentrations of lipocalin-2 and calprotectin were similar regardless of CP treatment. However, lipocalin-2 and calprotectin levels were positively correlated in samples taken after CP consumption. Neither lipocalin-2 nor calprotectin levels were related to gut microbial composition. In conclusion, in healthy adult humans under typical living conditions, consumption of CP minimally influenced the gut microbiota and had little impact on intestinal inflammation.
Collapse
|
11
|
Calder PC, Ortega EF, Meydani SN, Adkins Y, Stephensen CB, Thompson B, Zwickey H. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Adv Nutr 2022; 13:S1-S26. [PMID: 36183242 PMCID: PMC9526826 DOI: 10.1093/advances/nmac052] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
The immune system is key to host defense against pathogenic organisms. Aging is associated with changes in the immune system, with a decline in protective components (immunosenescence), increasing susceptibility to infectious disease, and a chronic elevation in low-grade inflammation (inflammaging), increasing the risk of multiple noncommunicable diseases. Nutrition is a determinant of immune cell function and of the gut microbiota. In turn, the gut microbiota shapes and controls the immune and inflammatory responses. Many older people show changes in the gut microbiota. Age-related changes in immune competence, low-grade inflammation, and gut dysbiosis may be interlinked and may relate, at least in part, to age-related changes in nutrition. A number of micronutrients (vitamins C, D, and E and zinc and selenium) play roles in supporting the function of many immune cell types. Some trials report that providing these micronutrients as individual supplements can reverse immune deficits in older people and/or in those with insufficient intakes. There is inconsistent evidence that this will reduce the risk or severity of infections including respiratory infections. Probiotic, prebiotic, or synbiotic strategies that modulate the gut microbiota, especially by promoting the colonization of lactobacilli and bifidobacteria, have been demonstrated to modulate some immune and inflammatory biomarkers in older people and, in some cases, to reduce the risk and severity of gastrointestinal and respiratory infections, although, again, the evidence is inconsistent. Further research with well-designed and well-powered trials in at-risk older populations is required to be more certain about the role of micronutrients and of strategies that modify the gut microbiota-host relationship in protecting against infection, especially respiratory infection.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Edwin Frank Ortega
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Simin N Meydani
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Yuriko Adkins
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Brice Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| |
Collapse
|
12
|
Domínguez-Balmaseda D, Bressa C, Fernández-Romero A, de Lucas B, Pérez-Ruiz M, San Juan AF, Roller M, Issaly N, Larrosa M. Evaluation of a Zingiber officinale and Bixa orellana Supplement on the Gut Microbiota of Male Athletes: A Randomized Placebo-Controlled Trial. PLANTA MEDICA 2022; 88:1245-1255. [PMID: 35226949 DOI: 10.1055/a-1671-5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The gut microbiota has emerged as a factor that influences exercise performance and recovery. The present study aimed to test the effect of a polyherbal supplement containing ginger and annatto called "ReWin(d)" on the gut microbiota of recreational athletes in a pilot, randomized, triple-blind, placebo-controlled trial. Thirty-four participants who practice physical activity at least three times weekly were randomly allocated to two groups, a ReWin(d) group or a maltodextrin (placebo) group. We evaluated the gut microbiota, the production of short-chain fatty acids, and the serum levels of interleukin-6 and lipopolysaccharide at baseline and after 4 weeks. Results showed that ReWin(d) supplementation slightly increased gut microbiota diversity. Pairwise analysis revealed an increase in the relative abundance of Lachnospira (β-coefficient = 0.013; p = 0.001), Subdoligranulum (β-coefficient = 0.016; p = 0.016), Roseburia (β-coefficient = 0.019; p = 0.001), and Butyricicoccus (β-coefficient = 0.005; p = 0.035) genera in the ReWin(d) group, and a decrease in Lachnoclostridium (β-coefficient = - 0.008; p = 0.009) and the Christensenellaceae R7 group (β-coefficient = - 0.010; p < 0.001). Moreover, the Christensenellaceae R-7 group correlated positively with serum interleukin-6 (ρ = 0.4122; p = 0.032), whereas the Lachnospira genus correlated negatively with interleukin-6 (ρ = - 0.399; p = 0.032). ReWin(d) supplementation had no effect on short-chain fatty acid production or on interleukin-6 or lipopolysaccharide levels.
Collapse
Affiliation(s)
- Diego Domínguez-Balmaseda
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Biomedicine Department, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Arantxa Fernández-Romero
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Beatriz de Lucas
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Margarita Pérez-Ruiz
- Research Group on Exercise, health and biomarkers applied, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alejandro F San Juan
- Department of Health and Human Performance, Sport Biomechanics Laboratory, Faculty of Physical Activity and Sport Sciences, INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Mar Larrosa
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Department of Nutrition and Food Science, School of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
13
|
Lindell AE, Zimmermann-Kogadeeva M, Patil KR. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 2022; 20:431-443. [PMID: 35102308 PMCID: PMC7615390 DOI: 10.1038/s41579-022-00681-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota contributes to diverse aspects of host physiology, ranging from immunomodulation to drug metabolism. Changes in the gut microbiota composition are associated with various diseases as well as with the response to medications. It is therefore important to understand how different lifestyle and environmental factors shape gut microbiota composition. Beyond the commonly considered factor of diet, small-molecule drugs have recently been identified as major effectors of the microbiota composition. Other xenobiotics, such as environmental or chemical pollutants, can also impact gut bacterial communities. Here, we review the mechanisms of interactions between gut bacteria and antibiotics, host-targeted drugs, natural food compounds, food additives and environmental pollutants. While xenobiotics can impact bacterial growth and metabolism, bacteria in turn can bioaccumulate or chemically modify these compounds. These reciprocal interactions can manifest in complex xenobiotic-microbiota-host relationships. Our Review highlights the need to study mechanisms underlying interactions with pollutants and food additives towards deciphering the dynamics and evolution of the gut microbiota.
Collapse
Affiliation(s)
- Anna E Lindell
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Kiran R Patil
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The Role of Nutritional Factors in the Modulation of the Composition of the Gut Microbiota in People with Autoimmune Diabetes. Nutrients 2022; 14:2498. [PMID: 35745227 PMCID: PMC9227140 DOI: 10.3390/nu14122498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a disease marked by oxidative stress, chronic inflammation, and the presence of autoantibodies. The gut microbiota has been shown to be involved in the alleviation of oxidative stress and inflammation as well as strengthening immunity, thus its' possible involvement in the pathogenesis of T1DM has been highlighted. The goal of the present study is to analyze information on the relationship between the structure of the intestinal microbiome and the occurrence of T1DM. The modification of the intestinal microbiota can increase the proportion of SCFA-producing bacteria, which could in turn be effective in the prevention and/or treatment of T1DM. The increased daily intake of soluble and non-soluble fibers, as well as the inclusion of pro-biotics, prebiotics, herbs, spices, and teas that are sources of phytobiotics, in the diet, could be important in improving the composition and activity of the microbiota and thus in the prevention of metabolic disorders. Understanding how the microbiota interacts with immune cells to create immune tolerance could enable the development of new therapeutic strategies for T1DM and improve the quality of life of people with T1DM.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Karolina Jachimowicz
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
15
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
16
|
Baptista BG, Ribeiro M, Cardozo LF, Leal VDO, Regis B, Mafra D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin Nutr ESPEN 2022; 49:1-16. [PMID: 35623800 DOI: 10.1016/j.clnesp.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/10/2023]
Abstract
Ginger (Zingiber officinale) is a famous dietary spice rich in bioactive components like gingerols, and it has been used for a long time as food and medicine. Indeed, clinical studies have confirmed the anti-inflammatory and antioxidant properties of ginger. Thus, ginger seems to be an excellent complementary nutritional strategy for non-communicable diseases (NCD) such as obesity, diabetes, cardiovascular disease and chronic kidney disease. This narrative review aims to discuss the possible effects of ginger on the mitigation of common complications such as inflammation, oxidative stress, and gut dysbiosis in NCD.
Collapse
Affiliation(s)
- Beatriz G Baptista
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Viviane de O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State of Rio de Janeiro University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
17
|
Vita AA, McClure R, Farris Y, Danczak R, Gundersen A, Zwickey H, Bradley R. Associations between Frequency of Culinary Herb Use and Gut Microbiota. Nutrients 2022; 14:nu14091981. [PMID: 35565947 PMCID: PMC9099813 DOI: 10.3390/nu14091981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
While evidence suggests that culinary herbs have the potential to modulate gut microbiota, much of the current research investigating the interactions between diet and the human gut microbiome either largely excludes culinary herbs or does not assess use in standard culinary settings. As such, the primary objective of this study was to evaluate how the frequency of culinary herb use is related to microbiome diversity and the abundance of certain taxa, measured at the phylum level. In this secondary data analysis of the INCLD Health cohort, we examined survey responses assessing frequency of culinary herb use and microbiome analysis of collected stool samples. We did not observe any associations between frequency of culinary herb use and Shannon Index, a measure of alpha diversity. Regarding the abundance of certain taxa, the frequency of use of polyphenol-rich herbs and herbs with certain quantities of antibacterial compounds was positively associated with Firmicutes abundance, and negatively associated with Proteobacteria abundance. Additionally, the total number of herbs used with high frequency, defined as over three times per week, was also positively associated with Firmicutes abundance, independent of adjustments, and negatively associated with Proteobacteria abundance, after adjusting for dietary factors. Frequency of culinary herb use was not associated with Bacteroidota or Actinobacteria abundance.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
- Correspondence:
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (R.M.); (Y.F.); (R.D.)
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA; (A.G.); (H.Z.); (R.B.)
| |
Collapse
|
18
|
Ampatzoglou A, Gruszecka-Kosowska A, Torres-Sánchez A, López-Moreno A, Cerk K, Ortiz P, Monteoliva-Sánchez M, Aguilera M. Incorporating the Gut Microbiome in the Risk Assessment of Xenobiotics and Identifying Beneficial Components for One Health. Front Microbiol 2022; 13:872583. [PMID: 35602014 PMCID: PMC9116292 DOI: 10.3389/fmicb.2022.872583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Three areas of relevance to the gut microbiome in the context of One Health were explored; the incorporation of the microbiome in food safety risk assessment of xenobiotics; the identification and application of beneficial microbial components to various areas under One Health, and; specifically, in the context of antimicrobial resistance. Although challenging, focusing on the microbiota resilience, function and active components is critical for advancing the incorporation of microbiome data in the risk assessment of xenobiotics. Moreover, the human microbiota may be a promising source of beneficial components, with the potential to metabolize xenobiotics. These may have possible applications in several areas, e.g., in animals or plants for detoxification or in the environment for biodegradation. This approach would be of particular interest for antimicrobials, with the potential to ameliorate antimicrobial resistance development. Finally, the concept of resistance to xenobiotics in the context of the gut microbiome may deserve further investigation.
Collapse
Affiliation(s)
- Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain
| |
Collapse
|
19
|
Huang Y, Tsai MF, Thorat RS, Xiao D, Zhang X, Sandhu AK, Edirisinghe I, Burton-Freeman BM. Endothelial Function and Postprandial Glucose Control in Response to Test-Meals Containing Herbs and Spices in Adults With Overweight/Obesity. Front Nutr 2022; 9:811433. [PMID: 35273988 PMCID: PMC8902252 DOI: 10.3389/fnut.2022.811433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives Herbs and Spices (H/S) contain bioactive compounds with purported health benefits. This study investigated the effect of H/S intake on indicators of vascular and metabolic health over 24 h using a test-meal challenge paradigm in adults with overweight or obesity. Methods In a randomized, single-blinded, 4-arm, 24 h, multi-sampling, crossover clinical trial, adults (n = 25) aged 36.6 ± 3.1 years with BMI 28.5 ± 0.6 kg/m2 (mean ± SEM) consumed a high-fat, high-carbohydrate challenge meal (~810 kcal) with salt/pepper only (control) or control with one of three different H/S combinations: Italian herb (rosemary, basil, thyme, oregano, and parsley), cinnamon, or pumpkin pie spice mix (cinnamon, ginger, nutmeg, and allspice) on four separate visits at least 3 days apart. Meals provided 35% of subjects' energy to maintain weight and ~1 g H/S per 135 kcal of the meal. Flow-mediated dilation (FMD) and blood samples were collected at 0, 1, 2, 4, 5.5, 7, and 24 h for endpoint analysis (additional blood draw at 0.5 h for insulin/glucose). Mixed-model analysis of repeated measures via PROC MIXED PC-SAS 9.4 was performed on the primary outcome (FMD) and secondary outcome variables. This study was registered at ClinicalTrials.gov (NCT03926442). Results Italian herb and pumpkin spice meals significantly increased %FMD at 24 h compared to the control meal (P = 0.048 and P = 0.027, respectively). The cinnamon meal reduced postprandial glycemia (Δ) compared to control (P = 0.01), and pumpkin pie spice mix and cinnamon meals reduced postprandial insulin at 0.5 h compared to the control meal (P = 0.01 and P = 0.04, respectively). IL-6 and triglycerides increased in response to all meals (Time, P < 0.0001) but were not significantly different between meals. Conclusions The test-meal challenge study design coupled with multiple sampling over 24 h provides insights into time-course bioactivity of H/S on vascular function and metabolic indices in overweight/obese adults. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT03926442.
Collapse
|
20
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Inhibition of E. coli and bio-preservation of ground beef by Lactobacillus, black pepper extract and EDTA. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Lai W, Yang S, Lin X, Zhang X, Huang Y, Zhou J, Fu C, Li R, Zhang Z. Zingiber officinale: A Systematic Review of Botany, Phytochemistry and Pharmacology of Gut Microbiota-Related Gastrointestinal Benefits. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1007-1042. [PMID: 35729087 DOI: 10.1142/s0192415x22500410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a traditional edible medicinal herb with a wide range of uses and long cultivation history. Fresh ginger (Zingiberis Recens Rhizoma; Sheng Jiang in Chinese, SJ) and dried ginger (Zingiberis Rhizoma; Gan Jiang in Chinese, GJ) are designated as two famous traditional Chinese herbal medicines, which are different in plant cultivation, appearances and functions, together with traditional applications. Previous researches mainly focused on the differences in chemical composition between them, but there was no systematical comparison on the similarity concerning research achievements of the two herbs. Meanwhile, ginger has traditionally been used for the treatment of gastrointestinal disorders, but so far, the possible interaction with human gut microbiota has hardly been considered. This review comprehensively presents similarities and differences between SJ and GJ retrospectively, particularly proposing them the significant differences in botany, phytochemistry and ethnopharmacology, which can be used as evidence for clinical application of SJ and GJ. Furthermore, the pharmacology of gut microbiota-related gastrointestinal benefits has also been discussed in order to explore better ways to prevent and treat gastrointestinal disorders, which can be used as a reference for further research.
Collapse
Affiliation(s)
- Wenjing Lai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shasha Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xia Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - You Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jingwei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co., Ltd., Pengzhou 610081, P. R. China
| |
Collapse
|
23
|
A single serving of mixed spices alters gut microflora composition: a dose-response randomised trial. Sci Rep 2021; 11:11264. [PMID: 34050197 PMCID: PMC8163817 DOI: 10.1038/s41598-021-90453-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Short-term changes in dietary intake can induce changes in gut microbiome. While various dietary polyphenols have been shown to modulate gut microflora, the acute influence of polyphenol-rich mixed spices has not been explored in a controlled setting. We investigated the effects of a single serving of mixed spices Indian curry consumption, in two separate doses, on the gut microbiome in 15 healthy, Singaporean Chinese males, with age and BMI of 23.5 ± 2.4 years and 22.9 ± 2.2 kg/m2 respectively. We found that a low-polyphenol, no spices Dose 0 Control (D0C) meal led to an increase in Bacteroides and a decrease in Bifidobacterium. In comparison to D0C, there was significant suppression of Bacteroides (p < 0.05) and an increase in Bifidobacterium (p < 0.05) with increasing doses of curry meal Dose 1 Curry (D1C) and Dose 2 Curry (D2C) containing 6 g and 12 g mixed spices respectively. Significant correlations were also found between bacterial changes and plasma phenolic acids. No differences between treatments were observed in the alpha-diversity of the gut microflora. This study has shown that a single serving of mixed spices can significantly modify/restore certain commensal microbes, particularly in people who do not regularly consume these spices.
Collapse
|
24
|
Uncovering Prospective Role and Applications of Existing and New Nutraceuticals from Bacterial, Fungal, Algal and Cyanobacterial, and Plant Sources. SUSTAINABILITY 2021. [DOI: 10.3390/su13073671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutraceuticals are a category of products more often associated with food but having pharmaceuticals property and characteristics. However, there is still no internationally accepted concept of these food-pharmaceutical properties, and their interpretation can differ from country to country. Nutraceuticals are used as part of dietary supplements in most countries. They can be phytochemicals which are biologically active and have health benefits. These can be supplied as a supplement and/or as a functional food to the customer. For human health and longevity, these materials are likely to play a vital role. Consumption of these items is typical without a therapeutic prescription and/or supervision by the vast majority of the public. The development of nutraceuticals can be achieved through many bioresources and organisms. This review article will discuss the current research on nutraceuticals from different biological sources and their potential use as an agent for improving human health and well-being, as well as the gaps and future perspective of research related to nutraceutical development.
Collapse
|
25
|
Yu J, Xiang H, Xie Q. The difference of regulatory effect of two Inonotus obliquus extracts on high-fat diet mice in relation to the fatty acid elongation function of gut microbiota. Food Sci Nutr 2021; 9:449-458. [PMID: 33473306 PMCID: PMC7802550 DOI: 10.1002/fsn3.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a disease that causes metabolic disorders in the human body and is closely related to intestinal microbes. This experiment compares the therapeutic effects of two Inonotus obliquus extracts on high-fat diet (HFD) mice and explores the effects and mechanisms of intestinal flora and its metabolites. The energy intake (EI), weight gain (BWG), fecal flora diversity, fecal and urine metabolites, and fecal triglycerides (TG) of mice were measured at 4 temporal points. We found that due to the difference in energy intake between the two groups in the early stage of the experiment, the ethanol extract of Inonotus obliquus (IOE) had a stronger effect on the accumulated BWG than the polysaccharide (IOP) of Inonotus obliquus at the end of the experiment. Moreover, the difference caused by IOE and IOP intake was the largest in the second week, in four temporal points. Compared with IOP, IOE in the second week can reduce EI, fecal short-chain fatty acids (SCFA) and TG, reduce host metabolism, increase fecal Akkermansia and fatty acid elongation, and increase host substrate phosphorylation. The change trend of the fatty acid elongation P value from 2 to 14 weeks is consistent with the overall difference trend between the two groups. The difference in the regulating effect of the two Inonotus obliquus extracts on HFD mice is related to the fatty acid elongation function of the intestinal flora, which leads to the reduction of IOE and the effect of BWG is better than IOP. It provides a theoretical reference for the development of functional food using the extract of Inonotus obliquus.
Collapse
Affiliation(s)
- Jian Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationSchool of Life SciencesJilin UniversityChangchunJilinChina
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationSchool of Life SciencesJilin UniversityChangchunJilinChina
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunJilinChina
- School of Life SciencesJilin UniversityChangchunJilinChina
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationSchool of Life SciencesJilin UniversityChangchunJilinChina
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunJilinChina
- School of Life SciencesJilin UniversityChangchunJilinChina
| |
Collapse
|
26
|
Wilson OC. Biobased Materials for Medical Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Wang S, Pan J, Zhang Z, Yan X. Investigation of dietary fructooligosaccharides from different production methods: Interpreting the impact of compositions on probiotic metabolism and growth. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Munekata PES, Alcántara C, Žugčić T, Abdelkebir R, Collado MC, García-Pérez JV, Jambrak AR, Gavahian M, Barba FJ, Lorenzo JM. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res Int 2020; 134:109242. [PMID: 32517919 DOI: 10.1016/j.foodres.2020.109242] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/19/2022]
Abstract
Mediterranean herbs, specially thyme and rosemary, are important ingredients in food preparation and more recently have been studied as natural sources of bioactive compounds. This study aimed to study the effect of matrix (thyme vs. rosemary), and extraction protocol (conventional extraction vs. ultrasound assisted extraction) solvent composition (water vs. 50:50 ethanol:water solution) on the extraction of high value compounds (phenolic compounds, flavonoids and carotenoids) and also explore the antioxidant, antimicrobial (Listeria innocua, Staphylococcus aureus, and Salmonella enterica), probiotic (Lactobacillus casei and Bifidobacterium lactis), and anti-inflammatory activities. The phenolic, flavonoid and carotenoid content of extracts was greatly influenced by extraction conditions wherein the ultrasound pre-treatment improved the extraction of carotenoids but induced the opposite effect for polyphenols and flavonoids in both herbs. Only the aqueous extract of thyme obtained from ultrasound pre-treatment was the only extract that inhibited the growth of potentially pathogenic bacteria, stimulated the probiotic bacteria and achieved high anti-inflammatory and antioxidant activity. Moreover, this extract also was rich on phenolic compounds (such as p-coumaric acid 4-O-glucoside, kaempferol 3-O-rutinoside, feruloyl glucose, and 4-vinylguaiacol) and carotenoids. Therefore, ultrasound extraction of bioactive compounds with water as solvent could be explored in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Tihana Žugčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Radhia Abdelkebir
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Range Ecology Laboratory in the Institute of Arid Regions (IRA) of Medenine, Medenine, Tunisia
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain.
| | - Jose V García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201 Taiwan
| | - Francisco J Barba
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| |
Collapse
|
29
|
Haddad EN, Sugino KY, Tucker RM, Comstock SS. Gut enterotypes are stable during Bifidobacterium and Lactobacillus probiotic supplementation. J Food Sci 2020; 85:1596-1604. [PMID: 32267970 DOI: 10.1111/1750-3841.15127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 01/15/2023]
Abstract
The human gut microbiome has been classified into three distinct enterotypes (Bacteroides, Prevotella, and Ruminococcus). The relationship between probiotics and gut enterotype is not yet clear. Cayenne pepper is effective in vitro as a prebiotic for Bifidobacteria and Lactobacilli, so cayenne ingestion with probiotics may lead to more profound gut microbial shifts. We aimed to determine whether probiotics (with or without cayenne pepper) alter gut bacterial community composition and if these changes are associated with the original gut enterotype of the individual. A total of 27 adult participants provided three fecal samples: prior to probiotic treatment (baseline), post probiotic treatment (probiotic), and post probiotic plus cayenne pepper treatment (probiotic + cayenne). DNA was extracted, amplified, and the V4 region sequenced on the Illumina MiSeq platform using V2 chemistry. Sequence reads were processed in mothur and assigned using the SILVA reference by phylotype. Three enterotypes characterized the study population-Bacteroides (B; n = 6), Prevotella (P; n = 11), and Ruminoccocus (R; n = 10). There was no significant increase in probiotic genera in fecal samples after treatment periods. Alpha diversity scores were significantly lower in B-type but not in P- or R-type individuals after probiotic treatment. For the majority of individuals, their enterotype remained constant regardless of probiotic (and cayenne) treatment. This suggests that baseline gut community characteristics and enterotype classification influence responsiveness to probiotic treatment, but that enterotype is stable across administration of prebiotic and probiotics. PRACTICAL APPLICATION: A person's gut microbial community influences their responsiveness to probiotics and prebiotic ingredients. Consumers must understand that it is difficult to shift their gut microbiota even with simultaneous administration of prebiotic and probiotic. Greater understanding of these phenomena will enable consumers to choose the most efficacious products for their needs.
Collapse
Affiliation(s)
- Eliot N Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Kameron Y Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Robin M Tucker
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
30
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
31
|
O'Bryan T, Rountree R. Food Sensitivities, Inflammation, and Autoimmune Disease: A Clinical Conversation with Tom O’Bryan, DC, CCN, DACBN, and Robert Rountree, MD. ALTERNATIVE AND COMPLEMENTARY THERAPIES 2020; 26:1-11. [DOI: 10.1089/act.2019.29255.tob] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Tom O'Bryan
- Tom O'Bryan, DC, CCN, DACBN, holds teaching faculty positions with the Institute for Functional Medicine and the National University of Health Sciences
| | - Robert Rountree
- Robert Rountree, MD, practices family medicine in Boulder, Colorado
| |
Collapse
|
32
|
Thumann TA, Pferschy-Wenzig EM, Moissl-Eichinger C, Bauer R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112153. [PMID: 31408679 DOI: 10.1016/j.jep.2019.112153] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many medicinal plants have been traditionally used for the treatment of gastrointestinal disorders. According to the monographs published by the Committee on Herbal Medicinal Products (HMPC) at the European Medicines Agency, currently 44 medicinal plants are recommended in the European Union for the treatment of gastrointestinal disorders based on traditional use. The main indications are functional and chronic gastrointestinal disorders, such as functional dyspepsia and irritable bowel syndrome (IBS), and typical effects of these plants are stimulation of gastric secretion, spasmolytic and carminative effects, soothing effects on the gastrointestinal mucosa, laxative effects, adstringent or antidiarrheal activities, and anti-inflammatory effects. A possible interaction with human gut microbiota has hardly been considered so far, although it is quite likely. AIM OF THE STUDY In this review, we aimed to identify and evaluate published studies which have investigated interactions of these plants with the gut microbiome. RESULTS According to this survey, only a minor portion of the 44 medicinal plants considered in EMA monographs for the treatment of gastrointestinal diseases has been studied so far with regard to potential interactions with gut microbiota. We could identify eight relevant in vitro studies that have been performed with six of these medicinal plants, 17 in vivo studies performed in experimental animals involving seven of the medicinal plants, and three trials in humans performed with two of the plants. The most robust evidence exists for the use of inulin as a prebiotic, and in this context also the prebiotic activity of chicory root has been investigated quite intensively. Flaxseed dietary fibers are also known to be fermented by gut microbiota to short chain fatty acids, leading to prebiotic effects. This could cause a health-beneficial modulation of gut microbiota by flaxseed supplementation. In flaxseed, also other compound classes like lignans and polyunsaturated fatty acids are present, that also have been shown to interact with gut microbiota. Drugs rich in tannins and anthocyanins also interact intensively with gut microbiota, since these compounds reach the colon at high levels in unchanged form. Tannins and anthocyanins are intensively metabolized by certain gut bacteria, leading to the generation of small, bioavailable and potentially bioactive metabolites. Moreover, interaction with these compounds may exert a prebiotic-like effect on gut microbiota. Gut microbial metabolization has also been shown for certain licorice constituents, but their potential effects on gut microbiota still need to be investigated in detail. Only a limited amount of studies investigated the interactions of essential oil- and secoiridoid-containing drugs with human gut microbiota. However, other constituents present in some of these drugs, like curcumin (curcuma), shogaol (ginger), and rosmarinic acid have been shown to be metabolized by human gut microbiota, and preliminary data also indicate potential gut microbiome modulatory effects. To conclude, the interaction with gut microbiota is still not fully investigated for many herbal drugs traditionally used for gastrointestinal disorders, which offers a vast field for future research.
Collapse
Affiliation(s)
- Timo A Thumann
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| | - Christine Moissl-Eichinger
- BioTechMed, Mozartgasse 12, 8010, Graz, Austria; Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| |
Collapse
|
33
|
Xia Y, Kuda T, Toyama A, Goto M, Fukunaga M, Takahashi H, Kimura B. Detection and isolation of bacteria affected by dietary cumin, coriander, turmeric, and red chili pepper in the caecum of ICR mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Scott KP, Grimaldi R, Cunningham M, Sarbini SR, Wijeyesekera A, Tang MLK, Lee JCY, Yau YF, Ansell J, Theis S, Yang K, Menon R, Arfsten J, Manurung S, Gourineni V, Gibson GR. Developments in understanding and applying prebiotics in research and practice-an ISAPP conference paper. J Appl Microbiol 2019; 128:934-949. [PMID: 31446668 DOI: 10.1111/jam.14424] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
AIMS The concept of using specific dietary components to selectively modulate the gut microbiota to confer a health benefit, defined as prebiotics, originated in 1995. In 2018, a group of scientists met at the International Scientific Association for Probiotics and Prebiotics annual meeting in Singapore to discuss advances in the prebiotic field, focussing on issues affecting functionality, research methodology and geographical differences. METHODS AND RESULTS The discussion ranged from examining scientific literature supporting the efficacy of established prebiotics, to the prospects for establishing health benefits associated with novel compounds, isolated from different sources. CONCLUSIONS While many promising candidate prebiotics from across the globe have been highlighted in preliminary research, there are a limited number with both demonstrated mechanism of action and defined health benefits as required to meet the prebiotic definition. Prebiotics are part of a food industry with increasing market sales, yet there are great disparities in regulations in different countries. Identification and commercialization of new prebiotics with unique health benefits means that regulation must improve and remain up-to-date so as not to risk stifling research with potential health benefits for humans and other animals. SIGNIFICANCE AND IMPACT OF STUDY This summary of the workshop discussions indicates potential avenues for expanding the range of prebiotic substrates, delivery methods to enhance health benefits for the end consumer and guidance to better elucidate their activities in human studies.
Collapse
Affiliation(s)
- K P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - R Grimaldi
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | - M Cunningham
- Metagenics (Aust) Pty Ltd., Virginia, Queensland, Australia
| | - S R Sarbini
- Department of Crop Science, Universiti Putra Malaysia, Bintulu Campus, Malaysia
| | - A Wijeyesekera
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | - M L K Tang
- Department of Allergy and Immunology, The Royal Children's Hospital, Parkville, Melbourne, VIC, Australia
| | - J C-Y Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Y F Yau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - J Ansell
- Zespri International Ltd, Mt Maunganui, New Zealand
| | - S Theis
- Beneo-Institute, Obrigheim, Germany
| | - K Yang
- Departments of Obstetrics and Gynaecology and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - R Menon
- The Bell Institute of Health and Nutrition, General Mills Inc., Minneapolis, MN, USA
| | - J Arfsten
- Nestlé Product and Technology Center Dairy, Konolfingen, Switzerland
| | - S Manurung
- Reckitt Benckiser, Nijmegen, The Netherlands
| | - V Gourineni
- Ingredion Incorporated, Bridgewater, NJ, USA
| | - G R Gibson
- Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
35
|
Ghaffarzadegan T, Zanzer YC, Östman E, Hållenius F, Essén S, Sandahl M, Nyman M. Postprandial Responses of Serum Bile Acids in Healthy Humans after Ingestion of Turmeric before Medium/High-Fat Breakfasts. Mol Nutr Food Res 2019; 63:e1900672. [PMID: 31411373 DOI: 10.1002/mnfr.201900672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Bile acids (BAs) are known to regulate a number of metabolic activities in the body. However, very little is known about how BAs are affected by diet. This study aims to investigate whether a single dose of turmeric-based beverage (TUR) before ingestion of medium- (MF) or high-fat (HF) breakfasts would improve the BA profile in healthy subjects. METHODS AND RESULTS Twelve healthy subjects are assigned to a randomized crossover single-blind study. The subjects receive isocaloric MF or HF breakfasts after a drink containing flavored water with or without an extract of turmeric with at least 1-week wash-out period between the treatments. Postprandial BAs are measured using protein precipitation followed by ultra-high-performance liquid chromatography-mass spectrometry analysis. The concentration of BAs is generally higher after HF than MF breakfasts. Ingestion of TUR before MF breakfast increases the serum concentrations of free and conjugated forms of cholic (CA) and ursodeoxycholic acids (UDCA), as well as the concentrations of chenodeoxycholic acid (CDCA) and its taurine-conjugated forms. However, the concentration of conjugated forms of deoxycholic acid (DCA) decreases when TUR is taken before HF breakfast. CONCLUSION TUR ingestion before MF and HF breakfasts improve BA profiles and may therefore have potential health-promoting effects on BA metabolism.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Yoghatama Cindya Zanzer
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Elin Östman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Frida Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
36
|
Grinevicius VMAS, Andrade KS, Mota NSRS, Bretanha LC, Felipe KB, Ferreira SRS, Pedrosa RC. CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract. Food Chem Toxicol 2019; 132:110644. [PMID: 31252023 DOI: 10.1016/j.fct.2019.110644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Supercritical fluid technologies offer an innovative method for food industry and drug discovery from natural sources. The aim of the study is to investigate the anti-tumor activity of piperine rich extract by supercritical fluid (SFE) from black pepper (Piper nigrum). In silico docking simulations predicted anti-tumor molecular mechanism and protein-piperine hydrophobic interactions, showing hydrogen bonds between piperine and residue Ser5 inside the ATP binding site in CDK2. Moreover, piperine interacts with peptide substrate residue Lys8 inside its binding site in Cyclin A molecule. Other predicted interaction showed piperine inside the hydrophobic groove of Bcl-xL. Confirming the docking simulation, in vitro assays with SFE (40 °C/30 MPa) showed cytotoxicity to MCF-7 cells (IC50 = 27.8 ± 6.8 μg/ml) correlated to increased apoptosis. Balb/c mice-bearing Ehrlich Ascites Carcinoma (EAC) group that received the SFE (100 mg/kg/day) showed tumor growth inhibition (60%) and increased mice survival (50%), probably related to cell cycle arrest (G2/M) and increased apoptosis. In vivo treatments with SFE increased the expression of pro-apoptotic proteins (p53 and Bax), inhibited cell cycle proteins (CDK2, Cyclin A) and anti-apoptotic protein (Bcl-xL). Thus, confirming in silico predicted inhibitory interactions. These results clearly showed promising performance of the piperine-rich fraction recovered from black pepper, drawing attention to its use as complementary therapy for cancer.
Collapse
Affiliation(s)
- Valdelúcia M A S Grinevicius
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Kátia S Andrade
- Laboratório de Termodinâmica e Extração Supercrítica, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Nádia S R S Mota
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lizandra C Bretanha
- Laboratório de Eletroforese Capilar, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karina B Felipe
- Laboratório de Fisiologia e Sinalização Celular, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Sandra R S Ferreira
- Laboratório de Termodinâmica e Extração Supercrítica, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rozangela C Pedrosa
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
37
|
Lu QY, Rasmussen AM, Yang J, Lee RP, Huang J, Shao P, Carpenter CL, Gilbuena I, Thames G, Henning SM, Heber D, Li Z. Mixed Spices at Culinary Doses Have Prebiotic Effects in Healthy Adults: A Pilot Study. Nutrients 2019; 11:nu11061425. [PMID: 31242596 PMCID: PMC6627368 DOI: 10.3390/nu11061425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Spices were used as food preservatives prior to the advent of refrigeration, suggesting the possibility of effects on microbiota. Previous studies have shown prebiotic activities in animals and in vitro, but there has not been a demonstration of prebiotic or postbiotic effects at culinary doses in humans. In this randomized placebo-controlled study, we determined in twenty-nine healthy adults the effects on the gut microbiota of the consumption daily of capsules containing 5 g of mixed spices at culinary doses by comparison to a matched control group consuming a maltodextrin placebo capsule. The 16S ribosomal RNA sequencing data were used for microbial characterization. Spice consumption resulted in a significant reduction in Firmicutes abundance (p < 0.033) and a trend of enrichment in Bacteroidetes (p < 0.097) compared to placebo group. Twenty-six operational taxonomic units (OTUs) were different between the spice and placebo groups after intervention. Furthermore, there was a significant negative correlation between fecal short-chain fatty acid propionate concentration and Firmicutes abundance in spice intervention group (p < 0.04). The production of individual fecal short-chain fatty acid was not significantly changed by spice consumption in this study. Mixed spices consumption significantly modified gut microbiota, suggesting a prebiotic effect of spice consumption at culinary doses.
Collapse
Affiliation(s)
- Qing-Yi Lu
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Anna M Rasmussen
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jieping Yang
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ru-Po Lee
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jianjun Huang
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Paul Shao
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Catherine L Carpenter
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Irene Gilbuena
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Gail Thames
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Susanne M Henning
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David Heber
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Zhaoping Li
- Center for Human Nutrition, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Prebiotic Potential of Culinary Spices Used to Support Digestion and Bioabsorption. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8973704. [PMID: 31281405 PMCID: PMC6590564 DOI: 10.1155/2019/8973704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Although the impact of medicinal and culinary herbs on health and disease has been studied to varying extents, scarcely little is known about the impact of these herbs on gut microbiota and how such effects might contribute to their health benefits. We applied in vitro anaerobic cultivation of human fecal microbiota followed by 16S rRNA sequencing to study the modulatory effects of 4 culinary spices: Curcuma longa (turmeric), Zingiber officinale (ginger), Piper longum (pipli or long pepper), and Piper nigrum (black pepper). All herbs analyzed possessed substantial power to modulate fecal bacterial communities to include potential prebiotic and beneficial repressive effects. We additionally analyzed the sugar composition of each herb by mass spectrometry and conducted genome reconstruction of 11 relevant sugar utilization pathways, glycosyl hydrolase gene representation, and both butyrate and propionate biosynthesis potential to facilitate our ability to functionally interpret microbiota profiles. Results indicated that sugar composition is not predictive of the taxa responding to each herb; however, glycosyl hydrolase gene representation is strongly modulated by each herb, suggesting that polysaccharide substrates present in herbs provide selective potential on gut communities. Additionally, we conclude that catabolism of herbs by gut communities primarily involves sugar fermentation at the expense of amino acid metabolism. Among the herbs analyzed, only turmeric induced changes in community composition that are predicted to increase butyrate-producing taxa. Our data suggests that substrates present in culinary spices may drive beneficial alterations in gut communities thereby altering their collective metabolism to contribute to the salubrious effects on digestive efficiency and health. These results support the potential value of further investigations in human subjects to delineate whether the metabolism of these herbs contributes to documented and yet to be discovered health benefits.
Collapse
|
39
|
A Review of the Science of Colorful, Plant-Based Food and Practical Strategies for "Eating the Rainbow". J Nutr Metab 2019; 2019:2125070. [PMID: 33414957 PMCID: PMC7770496 DOI: 10.1155/2019/2125070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
Over the past decades, thousands of published studies have amassed supporting recommendations to consume fruits and vegetables for physiological and psychological health. Newer research has emerged to suggest that these plant-based foods contain a plethora of not only vitamins and minerals, but perhaps, most importantly, phytonutrients. These phytonutrients have known pleiotropic effects on cellular structure and function, ultimately resulting in the modulation of protein kinases and subsequent epigenetic modification in a manner that leads to improved outcomes. Even though eating fruits and vegetables is a well-known feature of a healthy dietary pattern, population intakes continue to be below federal recommendations. To encourage consumers to include fruits and vegetables into their diet, an “eat by color” approach is proposed in this review. Although each individual food may have numerous effects based on its constituents, the goal of this simplified approach was to identify general patterns of benefits based on the preponderance of scientific data and known mechanisms of food-based constituents. It is suggested that such a consumer-oriented categorization of these plant-based foods may lead to greater recognition of their importance in the daily diet throughout the lifespan. Other adjunctive strategies to heighten awareness of fruits and vegetables are discussed.
Collapse
|
40
|
Khorasani AC, Shojaosadati SA. Intestinal adsorption of glucose, cholesterol and bile salt by simultaneous incorporation of edible microbiosorbent and intestinal bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Quijia CR, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Piperine: A Review. Crit Rev Anal Chem 2019; 50:62-77. [DOI: 10.1080/10408347.2019.1573656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christian Rafael Quijia
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
42
|
Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN, Sivamani RK. Effects of Turmeric and Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-Controlled Pilot Study. J Evid Based Integr Med 2018; 23:2515690X18790725. [PMID: 30088420 PMCID: PMC6083746 DOI: 10.1177/2515690x18790725] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background. Curcuma longa (common name: turmeric) and one of its biologically
active constituents, curcumin, have received increased clinical attention. Insufficient
data exist on the effects of curcumin and turmeric on the gut microbiota and such
studies in humans are lacking. Methods. Turmeric tablets with extract of piperine (Bioperine) (n = 6), curcumin with Bioperine
tablets (n = 5), or placebo tablets (n = 3) were provided to healthy human subjects and
subsequent changes in the gut microbiota were determined by 16S rDNA sequencing. Results. The number of taxa detected ranged from 172 to 325 bacterial species. The placebo group
displayed an overall reduction in species by 15%, whereas turmeric-treated subjects
displayed a modest 7% increase in observed species posttreatment. Subjects taking
curcumin displayed an average increase of 69% in detected species. The gut microbiota
response to treatment was highly personalized, thus leading to responders and
nonresponders displaying response concordance. These “responsive” subjects defined a
signature involving uniform increases in most Clostridium spp.,
Bacteroides spp., Citrobacter spp.,
Cronobacter spp., Enterobacter spp.,
Enterococcus spp., Klebsiella spp.,
Parabacteroides spp., and Pseudomonas spp. Common to
these subjects was the reduced relative abundance of several Blautia
spp. and most Ruminococcus spp. Conclusions. All participants’ microbiota displayed significant variation over time and
individualized response to treatment. Among the responsive participants, both turmeric
and curcumin altered the gut microbiota in a highly similar manner, suggesting that
curcumin may drive the majority of observed changes observed in turmeric-treated
subjects.
Collapse
Affiliation(s)
| | - Alexandra R Vaughn
- 2 University of California Davis, Sacramento, CA, USA.,3 Drexel University, Philadelphia, PA, USA
| | - Vandana Sharma
- 4 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepak Chopra
- 1 University of California San Diego, La Jolla, CA, USA.,5 Chopra Foundation, Carlsbad, CA, USA
| | - Paul J Mills
- 1 University of California San Diego, La Jolla, CA, USA
| | - Scott N Peterson
- 4 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Raja K Sivamani
- 2 University of California Davis, Sacramento, CA, USA.,6 California State University, Sacramento, CA, USA.,7 Pacific Skin Institute, Sacramento, CA, USA
| |
Collapse
|
43
|
Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms 2018; 6:microorganisms6020035. [PMID: 29693607 PMCID: PMC6027349 DOI: 10.3390/microorganisms6020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
An extensive body of evidence documents the importance of the gut microbiome both in health and in a variety of human diseases. Cell and animal studies describing this relationship abound, whilst clinical studies exploring the associations between changes in gut microbiota and the corresponding metabolites with neurodegeneration in the human brain have only begun to emerge more recently. Further, the findings of such studies are often difficult to translate into simple clinical applications that result in measurable health outcomes. The purpose of this paper is to appraise the literature on a select set of faecal biomarkers from a clinician’s perspective. This practical review aims to examine key physiological processes that influence both gastrointestinal, as well as brain health, and to discuss how tools such as the characterisation of commensal bacteria, the identification of potential opportunistic, pathogenic and parasitic organisms and the quantification of gut microbiome biomarkers and metabolites can help inform clinical decisions of nutrition and lifestyle medicine practitioners.
Collapse
|