1
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
2
|
Milutinov J, Pavlović N, Ćirin D, Atanacković Krstonošić M, Krstonošić V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024; 29:5409. [PMID: 39598798 PMCID: PMC11597743 DOI: 10.3390/molecules29225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Overexposure to ultraviolet radiation mainly leads to skin disorders (erythema, burns, immunosuppression), skin aging, and skin cancer as the most serious side effect. It has been widely accepted that using sunscreen products is an important way to protect against the harmful effects of UV rays. Although commercial sunscreens have constantly changed and improved over time, there are emerging concerns about the safety of conventional, organic, UV filters due to adverse effects on humans (such as photoallergic dermatitis, contact sensitivity, endocrine-disrupting effects, etc.) as well as accumulation in the environment and aquatic organisms. This is why natural compounds are increasingly being investigated and used in cosmetic and pharmaceutical sunscreens. Some of these compounds are widely available, non-toxic, safer for use, and have considerable UV protective properties and less side effects. Plant-based compounds such as flavonoids can absorb UVA and UVB rays and possess antioxidant, anticarcinogenic, and anti-inflammatory effects that contribute to photoprotection. Apart from flavonoids, other natural products such as certain vegetable oils, carotenoids, stilbenes, and ferulic acid also have UV-absorbing properties. Some vitamins might also be beneficial for skin protection due to their antioxidant activity. Therefore, the aim of this research was to gain insight into the potential of natural compounds to replace or reduce the amount of conventional UV filters, based on recent research.
Collapse
Affiliation(s)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.M.); (D.Ć.); (M.A.K.); (V.K.)
| | | | | | | |
Collapse
|
3
|
Belounis Y, Moualek I, Sebbane H, Dekir A, Bendif H, Garzoli S, Houali K. Phytochemical Characterization and Antibacterial Activity of Carthamus Caeruleus L. Aqueous Extracts: In Vitro and In Silico Molecular Docking Studies. Chem Biodivers 2024:e202402662. [PMID: 39535731 DOI: 10.1002/cbdv.202402662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
In order to valorize natural resources and the traditional use of medicinal plants in Algeria, this study exploits the antibacterial effect of Carthamus caeruleus L. Since there are few studies on this plant despite its notable therapeutic potential, this work aims to characterize the chemical composition of Carthamus caeruleus L. leaf and root aqueous extracts and to evaluate their antibacterial activity through an in vitro and in silico studies. Spectrophotometric assays and HPLC results revealed 22 components in the roots and 16 in the leaves. Disc diffusion and microdilution methods were used to study the antibacterial properties against nine standard bacterial strains. The results showed that roots exhibited the best activity on most tested strains. Both extracts were also able to inhibit the growth of Staphylococcus aureus ATCC 25923 and Escherichia coli ATSC 25922. Furthermore, no nucleic acid leakage or membrane damage was detected. However, molecular docking of the molecules indicates that some constituents have significant affinity and stability for DNA gyrase. Gallic acid, luteolin, myricetin, and orientin were found to have the highest score. The molecular docking data suggest, for the first time, that the antibacterial activity may be caused by the inhibition of DNA gyrase.
Collapse
Affiliation(s)
- Yousra Belounis
- Laboratory of Analytical Biochemistry & Biotechnology Research, Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, 15000, Tizi-Ouzou, Algeria
| | - Idir Moualek
- Laboratory of Analytical Biochemistry & Biotechnology Research, Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, 15000, Tizi-Ouzou, Algeria
| | - Hillal Sebbane
- Laboratory of Analytical Biochemistry & Biotechnology Research, Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, 15000, Tizi-Ouzou, Algeria
| | - Ali Dekir
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Sciences Faculty, Chemistry Department, Badji-Mokhtar Annaba University, Box 12, 23000, Annaba, Algeria
| | - Hamdi Bendif
- Department of Natural and Life Sciences, Faculty of Sciences, University of M'sila, University Pole, Laboratory of Ethnobotany and Natural Substances, ENS Algers, Road Bordj Bou Arreiridj, 28000, M'sila, Algeria
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185, Rome, Italy
| | - Karim Houali
- Laboratory of Analytical Biochemistry & Biotechnology Research, Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, 15000, Tizi-Ouzou, Algeria
| |
Collapse
|
4
|
Majed M, Galala AA, Amer MM, Selmar D, Abouzeid S. Oilseed Cakes: A Promising Source of Antioxidant, and Anti-Inflammatory Agents-Insights from Lactuca sativa. Int J Mol Sci 2024; 25:11077. [PMID: 39456857 PMCID: PMC11507441 DOI: 10.3390/ijms252011077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated the antioxidant and antibacterial properties of methanolic extracts derived from oilseed cakes of Lactuca sativa (lettuce), Nigella sativa (black seed), Eruca sativa (rocket), and Linum usitatissimum (linseed). Lettuce methanolic extract showed the highest potential, so it was selected for further investigation. High-performance liquid chromatography (HPLC-DAD) analysis and bioassay-guided fractionation of lettuce seed cake extract led to the isolation of five compounds: 1,3-propanediol-2-amino-1-(3',4'-methylenedioxyphenyl) (1), luteolin (2), luteolin-7-O-β-D-glucoside (3), apigenin-7-O-β-D-glucoside (4), and β-sitosterol 3-O-β-D-glucoside (5). Compound (1) was identified from Lactuca species for the first time, with high yield. The cytotoxic effects of the isolated compounds were tested on liver (HepG2) and breast (MCF-7) cancer cell lines, compared to normal cells (WI-38). Compounds (2), (3), and (4) exhibited strong activity in all assays, while compound (1) showed weak antioxidant, antimicrobial, and cytotoxic effects. The anti-inflammatory activity of lettuce seed cake extract and compound (1) was evaluated in vivo using a carrageenan-induced paw oedema model. Compound (1) and its combination with ibuprofen significantly reduced paw oedema, lowered inflammatory mediators (IL-1β, TNF-α, PGE2), and restored antioxidant enzyme activity. Additionally, compound (1) showed promising COX-1 and COX-2 inhibition in an in vitro enzymatic anti-inflammatory assay, with IC50 values of 17.31 ± 0.65 and 4.814 ± 0.24, respectively. Molecular docking revealed unique interactions of compound (1) with COX-1 and COX-2, suggesting the potential for targeted inhibition. These findings underscore the value of oilseed cakes as a source of bioactive compounds that merit further investigation.
Collapse
Affiliation(s)
- Mayye Majed
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
| | - Amal A. Galala
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
- Pharmacognosy Department, Faculty of Pharmacy, Horus University in Egypt (HUE), New Damietta 34517, Egypt
| | - Mohamed M. Amer
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
| | - Dirk Selmar
- Institute for Plant Biology, Technical University of Braunschweig, Mendelssohnsstr. 4, 38106 Braunschweig, Germany
| | - Sara Abouzeid
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
- Institute for Plant Biology, Technical University of Braunschweig, Mendelssohnsstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
6
|
Ajiati D, Sumiarsa D, Amin MF, Kurnia D. Potential antioxidant and antiradical agents from Allium ascalonicum: Superoxide dismutase and density functional theory in silico studies. J Adv Pharm Technol Res 2024; 15:171-176. [PMID: 39290541 PMCID: PMC11404429 DOI: 10.4103/japtr.japtr_525_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
Antioxidants are compounds that can inhibit excessive free radical reactions in the body. Excessive free radicals can cause system imbalances in the body which can trigger oxidative stress and cause serious illness. The limitations of antioxidants in the body can be overcome by consuming safe natural additional antioxidants that can be obtained from natural products. Isolating compounds of Allium ascalonicum leaves as antioxidant and antiradical agents in inhibiting excessive free radicals by in vitro and in silico. The extracted compounds were purified by column chromatography. The compounds obtained were then characterized using ultraviolet, infrared, NMR, and mass spectrometry. Determination of antioxidant activity was carried out by in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the non-enzymatic superoxide dismutase (SOD) methods. The in silico study used the density functional theory (DFT) calculation method with global descriptive parameters (GDP), donor acceptor map (DAM), and frontier molecular orbitals (FMO) analysis. Three compounds have been isolated, of which compound 1 is a new compound. In the DPPH method, compound 1 has more strong antioxidant activity than others, as well as in the non-enzymatic SOD method. Whereas, in the DFT calculation shows that compound 1 has the best reactivity and stability between other compounds and was categorized as the best antiradical. Compound 1 has the highest antioxidant activity compared to the other compounds by in vitro both the DPPH and non-enzymatic SOD methods. In silico, compound 1 has the potential as the best antiradical.
Collapse
Affiliation(s)
- Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Meiny Faudah Amin
- Department of Dental Conservation, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
7
|
Qin L, Zhong Y, Li Y, Yang Y. TCM targets ferroptosis: potential treatments for cancer. Front Pharmacol 2024; 15:1360030. [PMID: 38738174 PMCID: PMC11082647 DOI: 10.3389/fphar.2024.1360030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Ferroptosis is caused by the accumulation of cellular reactive oxygen species that exceed the antioxidant load that glutathione (GSH) and phospholipid hydroperoxidases with GSH-based substrates can carry When the antioxidant capacity of cells is reduced, lipid reactive oxygen species accumulate, which can cause oxidative death. Ferroptosis, an iron-dependent regulatory necrosis pathway, has emerged as a new modality of cell death that is strongly associated with cancer. Surgery, chemotherapy and radiotherapy are the main methods of cancer treatment. However, resistance to these mainstream anticancer drugs and strong toxic side effects have forced the development of alternative treatments with high efficiency and low toxicity. In recent years, an increasing number of studies have shown that traditional Chinese medicines (TCMs), especially herbs or herbal extracts, can inhibit tumor cell growth and metastasis by inducing ferroptosis, suggesting that they could be promising agents for cancer treatment. This article reviews the current research progress on the antitumor effects of TCMs through the induction of ferroptosis. The aim of these studies was to elucidate the potential mechanisms of targeting ferroptosis in cancer, and the findings could lead to new directions and reference values for developing better cancer treatment strategies.
Collapse
Affiliation(s)
- Liwen Qin
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
9
|
Jin T, Liu X, Wang Y, Qi Y, Li X, Wang L, He X. Network pharmacology prediction, molecular docking and in vitro experiment explored the potential mechanism of Gaoyuan'an capsule in improving hypoxia tolerance. THE PHARMACOGENOMICS JOURNAL 2024; 24:8. [PMID: 38485921 DOI: 10.1038/s41397-024-00327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Tibetan medicine Gaoyuan'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism has not been explored. In this study, we analyzed the mechanism of GYAC in hypoxia tolerance, and provided a new idea for the prevention and treatment of altitude disease. METHODS The effective components and corresponding targets of GYAC were screened out by the Chinese herbal medicine network database, and the key targets of hypoxia tolerance were retrieved by Genecards, OMIM and PubMed database. Cytoscape 3.7.2 was used to construct GYAC ingredient-target-hypoxia tolerance-related target network. GO function annotation and KEGG enrichment analysis were performed to predict the pathways in which target genes may be involved, and molecular docking was used to verify the binding ability of the compound to target genes. In vitro, the above results were further verified by molecular experiment. RESULTS We found that GYAC can improve hypoxia tolerance by regulating various target genes, including IL6, IFNG, etc. The main regulatory pathways were HIF-1 signaling pathway. Molecular docking showed that the affinity between luteolin and target genes (IL6, IFNG) were better. In vitro, we observed that hypoxia can inhibit cell viability and promote apoptosis of H9C2 cell. And hypoxia can promote the expression of LDH. After the addition of luteolin, the decrease of cell viability, the increase of cell apoptosis, LDH release and the decrease of mitochondrial membrane potential were inhibited. Besides, inflammatory related factors (IL-6, IL-10, IL-2, IFNG and VEGFA) expression were also inhibited hypoxic cell models. CONCLUSIONS The results of network pharmacology and molecular docking showed that luteolin, a monomeric component of GYAC, played a role in hypoxia tolerance through a variety of target genes, such as IL6, IFNG. What's more, we have discovered that luteolin can reduce the inflammatory response in cardiac myocytes, thereby alleviating mitochondrial damage, and ultimately enhancing the hypoxia tolerance of H9C2 cardiomyocytes.
Collapse
Affiliation(s)
- Tianbo Jin
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Xiaoli Liu
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Yuhe Wang
- Department of Clinical Laboratory, the Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Yijin Qi
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Xuemei Li
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Li Wang
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, China
| | - Xue He
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, Shaanxi, 712082, China.
| |
Collapse
|
10
|
Biswas P, Pandey DK, Shekhawat MS, Dey A, Malik T. Tissue-specific variations of piperine in ten populations of Piper longum L.: bioactivities and toxicological profile. Sci Rep 2024; 14:5062. [PMID: 38424458 PMCID: PMC10904381 DOI: 10.1038/s41598-024-52297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
P. longum L., one of the most significant species of the genus Piperaceae, is most frequently employed in Indian-Ayurvedic and other traditional medicinal-systems for treating a variety of illnesses. The alkaloid piperine, is the key phytoconstituent of the plant, primarily responsible for its' pharmacological-impacts. The aim of the study is to analyse the intra-specific variation in piperine content among different chemotypes (PL1 to PL 30) and identify high piperine yielding chemotype (elite-chemotype) collected from 10 different geographical regions of West Bengal by validated HPTLC chromatography method. The study also focused on the pharmacological-screening to better understand the antioxidant activity of the methanol extracts of P. longum by DPPH and ABTS radical-scavenging activity and genotoxic activity by Allium cepa root tip assay. It was found that the P. longum fruit chemotypes contain high amount piperine (highest 16.362 mg/g in chemotype PL9) than the stem and leaf chemotypes. Both DPPH and ABTS antioxidant assays revealed that P. longum showed moderate radical-scavenging activity and the highest activity was found in PL9 (fruit) chemotype with IC50 values of 124.2 ± 0.97 and 104 ± 0.78 µg/ml respectively. The A. cepa root tip assay showed no such significant genotoxic-effect and change in mitotic-index. The quick, reproducible, and validated HPTLC approach offers a useful tool for determining quantitative variations of piperine among P. longum chemotypes from different geographical-regions and also according to the different tissues and choose elite genotypes with high piperine production for continued propagation and commercialization for the pharmaceutical sector. Additionally, the plant's in-vitro antioxidant property and lack of genotoxicity directly supports its' widespread and long history of use as a medicinal and culinary plant.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| |
Collapse
|
11
|
Wu X, Chen HW, Zhao ZY, Li L, Song C, Xiong J, Yang GX, Zhu Q, Hu JF. Carbopol 940-based hydrogels loading synergistic combination of quercetin and luteolin from the herb Euphorbia humifusa to promote Staphylococcus aureus infected wound healing. RSC Med Chem 2024; 15:553-560. [PMID: 38389873 PMCID: PMC10880921 DOI: 10.1039/d3md00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
With the increasing prevalence of Staphylococcus aureus infections, rapid emergence of drug resistance and the slow healing of infected wounds, developing an efficient antibiotic-free multifunctional wound dressing for inhibiting S. aureus and simultaneously facilitating wound healing have become a huge challenge. Due to their excellent biocompatibility and biodegradability, some carbopol hydrogels based on plant extracts or purified compounds have already been applied in wound healing treatment. In China, Euphorbia humifusa Willd. (EuH) has been traditionally used as a medicine and food homologous medicine for the treatment of furuncles and carbuncles mainly caused by S. aureus infection. In an earlier study, EuH-originated flavonoids quercetin (QU) and luteolin (LU) could serve as a potential source for anti-S. aureus drug discovery when used in synergy. However, the in vivo effects of QU and LU on S. aureus-infected wound healing are still unknown. In this study, we found a series of Carbopol 940-based hydrogels loading QU and LU in combination could disinfect S. aureus and also could promote wound healing. In the full-thickness skin defect mouse model infected with S. aureus, the wound contraction ratio, bacterial burden, skin hyperplasia and inflammation score, as well as collagen deposition and blood vessels were then investigated. The results indicate that the optimized QL2 [QU (32 μg mL-1)-LU (8 μg mL-1)] hydrogel with biocompatibility significantly promoted S. aureus-infected wound healing through anti-infection, anti-inflammation, collagen deposition, and angiogenesis, revealing it as a promising alternative for infected wound repair.
Collapse
Affiliation(s)
- Xiying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Lisha Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Chi Song
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| |
Collapse
|
12
|
Guo Z, Ye G, Tang C, Xiong H. Exploring effect of herbal monomers in treating gouty arthritis based on nuclear factor-kappa B signaling: A review. Medicine (Baltimore) 2024; 103:e37089. [PMID: 38306549 PMCID: PMC10843426 DOI: 10.1097/md.0000000000037089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by disorders of the purine metabolism. Although increasing number of drugs have been used to treat GA with the deepening of relevant research, GA still cannot be cured by simple drug therapy. The nuclear factor-kappa B (NF-κB) signaling pathway plays a key role in the pathogenesis of GA. A considerable number of Chinese herbal medicines have emerged as new drugs for the treatment of GA. This article collected relevant research on traditional Chinese medicine monomers in the treatment of GA using NF-κB, GA, etc. as keywords; and conducted a systematic search of relevant published articles using the PubMed database. In this study, we analyzed the therapeutic effects of traditional Chinese medicine monomers on GA in the existing literature through in vivo and in vitro experiments using animal and cell models. Based on this review, we believe that traditional Chinese medicine monomers that can treat GA through the NF-κB signaling pathway are potential new drug development targets. This study provides research ideas for the development and application of new drugs for GA.
Collapse
Affiliation(s)
- Zhanghao Guo
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Guisheng Ye
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Chengjian Tang
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
13
|
Bittar VP, Silva Borges AL, Justino AB, Carrillo MSP, Mateus Duarte RF, Silva NBS, Gonçalves DS, Prado DG, Araújo IAC, Martins MM, Gomes Martins CH, Botelho FV, Silva NM, de Oliveira A, Espíndola FS. Bioactive compounds from the leaves of Maytenus ilicifolia Mart. ex Reissek: Inhibition of LDL oxidation, glycation, lipid peroxidation, target enzymes, and microbial growth. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117315. [PMID: 37852339 DOI: 10.1016/j.jep.2023.117315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maytenus ilicifolia Mart. ex Reissek, a medicinal plant used for treating gastritis, ulcers, and gastric disorders, possesses therapeutic properties attributed to diverse leaf compounds-terpenoids, alkaloids, flavonoids, phenols, and tannins, reflecting the ethnopharmacological knowledge of traditional users. AIMS OF THE STUDY We aimed to assess the antioxidant and antiglycant capacities of Maytenus ilicifolia's ethanolic extract and organic fractions, identify bioactive compounds through HPLC-MS/MS analysis, and conduct phytochemical assessments. We also assessed their potential to inhibit digestive and cholinesterase enzymes, mitigate oxidation of human LDL and rat hepatic tissue, and examine their antimicrobial and cytotoxic properties. MATERIALS AND METHODS Organic fractions (hexane - HF-Mi, dichloromethane - DMF-Mi, ethyl acetate - EAF-Mi, n-butanol - BF-Mi, and hydromethanolic - HMF-Mi) were obtained via liquid-liquid partitioning. Antioxidant (DPPH, FRAP, ORAC) and antiglycant (BSA/FRU, BSA/MGO, ARG/MGO/LDL/MGO models) capacities were tested. Phytochemical analysis employed HPLC-MS/MS. We also studied the inhibitory effects on α-amylase, acetylcholinesterase, butyrylcholinesterase, human LDL and rat hepatic tissue oxidation, antimicrobial activity, and cytotoxicity against RAW 264.7 macrophages. RESULTS HPLC-ESI-MS/MS identified antioxidant compounds such as catechin, quercetin, and kaempferol derivatives. Ethanolic extract (EE-Mi) and organic fractions demonstrated robust antioxidant and antiglycant activity. EAF-Mi and BF-Mi inhibited α-amylase (2.42 μg/mL and 7.95 μg/mL) compared to acarbose (0.144 μg/mL). Most organic fractions exhibited ∼50% inhibition of acetylcholinesterase and butyrylcholinesterase, rivaling galantamine and rivastigmine. EAF-Mi, BF-Mi, and EE-Mi excelled in inhibiting lipid peroxidation. All fractions, except HMF-Mi, effectively countered LDL oxidation, evidenced by the area under the curve. These fractions protected LDL against lipid peroxidation. CONCLUSION This study unveils Maytenus ilicifolia's ethanolic extract and organic fractions properties. Through rigorous analysis, we identify bioactive compounds and highlight their antioxidant, antiglycant, enzyme inhibition, and protective properties against oxidative damage. These findings underline its significance in modern pharmacology and its potential applications in healthcare.
Collapse
Affiliation(s)
- Vinicius Prado Bittar
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Ana Luiza Silva Borges
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Allisson Benatti Justino
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Maria Sol Peña Carrillo
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Rener Francisco Mateus Duarte
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Daniela Silva Gonçalves
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Diego Godina Prado
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Iasmin Aparecida Cunha Araújo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, 38400-902, Brazil
| | - Mário Machado Martins
- Laboratory of Nanobiotechnology "Dr. Luiz Ricardo Goulart Filho", Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38405-320, Brazil
| | - Françoise Vasconcelos Botelho
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, 38400-902, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Foued Salmen Espíndola
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
14
|
Omran S, Elnaggar YSR, Abdallah OY. Controlled release, chitosan-tethered luteolin phytocubosomes; Formulation optimization to in-vivo antiglaucoma and anti-inflammatory ocular evaluation. Int J Biol Macromol 2024; 254:127930. [PMID: 37944733 DOI: 10.1016/j.ijbiomac.2023.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
A chitosan-coated luteolin-loaded phytocubosomal system was prepared to improve the pharmacodynamic performance of luteolin in the treatment of glaucoma and ocular inflammation after topical ocular administration. Luteolin, a potent anti-oxidant herbal drug with poor aqueous solubility, was complexed with phospholipid. The prepared phytocubosomes were coated with chitosan, producing homogenously distributed nanosized particles (258 ± 9.05 nm) with a positive charge (+49 ± 6.09 mV), improved EE% (96 %), and increased concentration of encapsulated drug to 288 μg/ml. Polarized light microscopy revealed a cubic phase. Chitosan-coated phytocubosomes showed a sustained drug release profile (38 % over 24 h) and improved anti-oxidant activity (IC50 of 32 μg/ml). Ex vivo transcorneal permeation was higher by 3.60 folds compared to luteolin suspension. Irritancy tests confirmed their safety in ocular tissues after single and multiple administrations. The pharmacodynamic studies on glaucomatous rabbit eyes demonstrated 6.46-, 3.88-, and 1.89-fold reductions in IOP of chitosan-coated phytocubosomes compared to luteolin suspension, cubosomes, and phytocubosomes, respectively. Pharmacodynamic anti-inflammatory studies revealed faster recovery capabilities of chitosan-coated phytocubosomes over other formulations. Thus, chitosan-coated phytocubosomes could be a promising ocular hybrid system for delivering herbal lipophilic drugs such as luteolin.
Collapse
Affiliation(s)
- Sarah Omran
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication & Nanotechnology Consultation Center (INCC), Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
15
|
Pradhan G, Kulkarni YA. Diabetes and its Complications: Role of Luteolin, A Wonder Chemical from the Natural Source. Curr Diabetes Rev 2024; 21:e290224227537. [PMID: 38425118 DOI: 10.2174/0115733998285798240217084632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Flavonoids have been reported to be vital in treating various chronic disorders. Luteolin (3',4',5,7-tetrahydroxyflavone) is a flavonoid present in a variety of plant sources such as celery, green pepper, olive oil, peppermint, thyme, rosemary, oregano, etc. It has been reported to have various pharmacological activities such as antioxidant, anti-inflammatory, anticancer, antidiabetic, anti-Alzheimer, antimicrobial, etc. Many scientific studies have been carried out on luteolin for its possible effects on diabetes and its associated complications. The present review focuses on the role of luteolin in diabetes mellitus and the associated complications. The antidiabetic impact of luteolin is linked with the increased expression of PPARγ and GLUT. Various in vitro and in vivo studies have been performed to explore the effects of luteolin on diabetic complications, and it has shown a significant impact in the management of the same.
Collapse
Affiliation(s)
- Gandhar Pradhan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
16
|
Colombo R, Moretto G, Barberis M, Frosi I, Papetti A. Rice Byproduct Compounds: From Green Extraction to Antioxidant Properties. Antioxidants (Basel) 2023; 13:35. [PMID: 38247461 PMCID: PMC10812773 DOI: 10.3390/antiox13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, rice (Oryza sativa L.) production and consumption is increasing worldwide, and many efforts to decrease the substantial impact of its byproducts are needed. In recent years, the interest in utilizing rice kernels, husk, bran, and germ for the recovery of different molecules, from catalysts (to produce biodiesel) to bioactive compounds, has grown. In fact, rice byproducts are rich in secondary metabolites (phenolic compounds, flavonoids, and tocopherols) with different types of bioactivity, mainly antioxidant, antimicrobial, antidiabetic, and anti-inflammatory, which make them useful as functional ingredients. In this review, we focus our attention on the recovery of antioxidant compounds from rice byproducts by using innovative green techniques that can overcome the limitations of traditional extraction processes, such as their environmental and economic impact. In addition, traditional assays and more innovative methodologies to evaluate the antioxidant activity are discussed. Finally, the possible molecular mechanisms of action of the rice byproduct antioxidant compounds (phenolic acids, flavonoids, γ-oryzanol, and vitamin E) are discussed as well. In the future, it is expected that rice byproduct antioxidants will be important food ingredients that reduce the risk of the development of several human disorders involving oxidative stress, such as metabolic diseases, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Marta Barberis
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Ilaria Frosi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
- Center for Colloid and Surface Science (C.S.G.I.), Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
17
|
Mokhtar A, Souhila T, Nacéra B, Amina B, Alghonaim MI, Öztürk M, Alsalamah SA, Miara MD, Boufahja F, Bendif H. In Vitro Antibacterial, Antioxidant, Anticholinesterase, and Antidiabetic Activities and Chemical Composition of Salvia balansae. Molecules 2023; 28:7801. [PMID: 38067531 PMCID: PMC10708212 DOI: 10.3390/molecules28237801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
CONTEXT Salvia balansae de Noé (S. balansae) (Lamiaceae) is known to be an important plant used in folk medicine as an herbal remedy in Algeria. OBJECTIVE The purpose of the present study was to demonstrate the phytochemical composition, antioxidant activities, enzyme inhibitory activities, and antimicrobial activities of S. balansae extracts. MATERIALS AND METHODS A methanolic extract and a petroleum ether extract from the aerial parts of the plant were assessed for their chemical composition. HPLC-MS and HPLC-DAD assessed the content of phenols, GC-MS the fatty acid composition, and ICP-MS the mineral profiles of the plant. Additionally, we evaluated the bioactivities of S. balansae extracts by the DPPH, ABTS, and CUPRAC assays, including the antioxidant potential against AChE, BChE, α-amylase, and α-glucosidase for enzyme inhibition. The antibacterial and antifungal activities of the methanolic extract were determined by the disc diffusion test against several strains of bacteria and yeasts. RESULTS Our findings revealed that the aerial parts of S. balansae were rich in phytochemical components and contained large amounts of minerals. Quantitative analysis of phenolic compounds by HPLC-DAD revealed the presence of 12 compounds in three major classes, flavonoids, hydroxycinnamic acid, and phenolic acid derivatives, with 0.61, 0.45, and 0.29 mg/g of extract, respectively. Nine phenolic constituents were quantified by HPLC-MS analysis; catechin (72.5%) was the main compound, followed by myricetin (21.7%). The fatty acid composition of the S. balansae petroleum ether extract by GC-MS analysis was quantified. Seventeen compounds, including palmitic acid, were identified as the major fatty acids. The antioxidant activity of the S. balansae extracts was measured by three different methods: the methanol extract provided better results than the petroleum ether extract, and interesting values were noted for the DPPH, ABTS, and CUPRAC assays of 242.7 ± 7.44, 124.1 ± 9.70, and 222.9 ± 6.05 µg/mL, respectively. The enzyme inhibition activity of the plant could not be determined. The antimicrobial results of the methanolic extract obtained from the disc diffusion method, followed by measurements of MIC, MBC, and MFC against several bacteria and yeasts, indicated that S. balansae exhibited noticeable antimicrobial and antifungal activities. CONCLUSIONS These results provided new data about the main phenolic compounds and biological activities of extracts of the aerial parts of S. balansae, which might be an alternative source for synthetic bioactive compounds.
Collapse
Affiliation(s)
- Amırat Mokhtar
- Institute of Veterinary Sciences, University Ibn-Khaldoun of Tiaret, Tiaret 14000, Algeria;
| | - Tabak Souhila
- Department of Nature and Life Sciences, Faculty of Life and Nature Sciences, University of Tiaret, Tiaret 14000, Algeria; (T.S.); (B.N.); (M.D.M.)
| | - Bouriah Nacéra
- Department of Nature and Life Sciences, Faculty of Life and Nature Sciences, University of Tiaret, Tiaret 14000, Algeria; (T.S.); (B.N.); (M.D.M.)
| | - Benabdallah Amina
- Department of Agronomy, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Mohammed I. Alghonaim
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.I.A.); (S.A.A.)
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla 48121, Türkiye;
| | - Sulaiman A. Alsalamah
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.I.A.); (S.A.A.)
| | - Mohamed Djamel Miara
- Department of Nature and Life Sciences, Faculty of Life and Nature Sciences, University of Tiaret, Tiaret 14000, Algeria; (T.S.); (B.N.); (M.D.M.)
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.I.A.); (S.A.A.)
| | - Hamdi Bendif
- Laboratory of Ethnobotany and Natural Substances, ENS de Kouba, Algiers 16308, Algeria;
- Faculty of Sciences, University of M’sila, P.O. Box 166, M’Sila 28000, Algeria
| |
Collapse
|
18
|
Di Giacomo S, Percaccio E, Vitalone A, Ingallina C, Mannina L, Macone A, Di Sotto A. Characterization of the Chemopreventive Properties of Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:3814. [PMID: 38005711 PMCID: PMC10675481 DOI: 10.3390/plants12223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Hemp bioproducts hold great promise as valuable materials for nutraceutical and pharmaceutical applications due to their diverse bioactive compounds and potential health benefits. In line with this interest and in an attempt to valorize the Lazio Region crops, this present study investigated chemically characterized hydroalcoholic and organic extracts, obtained from the inflorescences of locally cultivated Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties. In order to highlight the possible chemopreventive power of the tested samples, a bioactivity screening was performed, which included studying the antimutagenic activity, radical scavenging power, cytotoxicity in human hepatoma HepG2 cells, leakage of lactate dehydrogenase (LDH) and modulation of the oxidative stress parameters and glucose-6-phosphate dehydrogenase (G6PDH) involved in the regulation of the cell transformation and cancer proliferation. Tolerability studies in noncancerous H69 cholangiocytes were performed, too. The organic extracts showed moderate to strong antimutagenic activities and a marked cytotoxicity in the HepG2 cells, associated with an increased oxidative stress and LDH release, and to a G6PDH modulation. The hydroalcoholic extracts mainly exhibited radical scavenging properties with weak or null activities in the other assays. The extracts were usually well-tolerated in H69 cells, except for the highest concentrations which impaired cell viability, likely due to an increased oxidative stress. The obtained results suggest a possibility in the inflorescences from the Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties as source of bioactive compounds endowed with genoprotective and chemopreventive properties that could be harnessed as preventive or adjuvant healing strategies.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Annabella Vitalone
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Cinzia Ingallina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Luisa Mannina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| |
Collapse
|
19
|
Brüser L, Teichmann E, Hinz B. Effect of Flavonoids on MCP-1 Expression in Human Coronary Artery Endothelial Cells and Impact on MCP-1-Dependent Migration of Human Monocytes. Int J Mol Sci 2023; 24:16047. [PMID: 38003237 PMCID: PMC10671372 DOI: 10.3390/ijms242216047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
The monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (CC motif) ligand 2 (CCL2), is involved in the formation, progression, and destabilization of atheromatous plaques. Flavonoids, found in fruits and vegetables, have been associated with various health-promoting properties, including antioxidant, anti-inflammatory, and cardioprotective effects. In the present study, the flavonoids quercetin, kaempferol, and luteolin, but not cannflavin A, were shown to substantially inhibit interleukin (IL)-1β-induced MCP-1 mRNA and protein expression in human coronary artery endothelial cells (HCAEC). At the functional level, conditioned medium (CM) from IL-1β-stimulated HCAEC caused an increase in the migration of THP-1 monocytes compared with CM from unstimulated HCAEC. However, this induction was suppressed when IL-1β-treated HCAEC were coincubated with quercetin, kaempferol, or luteolin. The functional importance of MCP-1 in IL-1β-induced monocyte migration was supported by experiments showing that neutralization of MCP-1 in the CM of IL-1β-treated HCAEC led to a significant inhibition of migration. In addition, a concentration-dependent induction of monocyte migration in the presence of recombinant MCP-1 was demonstrated. Collectively, the flavonoids quercetin, kaempferol, and luteolin were found to exert potential antiatherogenic effects in HCAEC, challenging further studies with these compounds.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (L.B.); (E.T.)
| |
Collapse
|
20
|
Omran S, Elnaggar YSR, Abdallah OY. Carrageenan tethered ion sensitive smart nanogel containing oleophytocubosomes for improved ocular luteolin delivery. Int J Pharm 2023; 646:123482. [PMID: 37802260 DOI: 10.1016/j.ijpharm.2023.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Ophthalmic delivery of luteolin (LU) was studied after formulating a carrageenan-based novel ion-sensitive in situ gel (ISG) incorporating oleophytocubosomes for prolonged ocular residence time and improved ocular bioavailability of the poorly absorbed herbal drug luteolin. The prepared oleophytocubosomes and ISG were compared with LU suspension. Optimized oleophytocubosomes possessed small, homogenously distributed negatively charged particles with high entrapment efficiency. Polarized light microscope revealed a cubic phase. Optimized ISG matrix composed of 0.4% kappa carrageenan (KC), and 2% hydroxypropylmethylcellulose (HPMC) demonstrated rapid gelation, high resistance to dilution, increased viscosity after gelation, and strong mucoadhesive properties. oleophytocubosomes exerted improved drug release, while a more sustained release was observed for ISG oleophytocubosomes. The antioxidant activity of both formulations was significantly higher than that of LU suspension. Oleophytocubosome and ISG oleophytocubosome revealed significantly higher apparent permeability coefficients of 3.62 and 2.90 folds, respectively, compared to LU suspension. Irritation tests showed the safety of both formulations for single- and multiple-ocular administration. In-vivo studies demonstrated that the ISG system showed prolonged antiglaucoma effects and a faster anti-inflammatory effect, followed by oleophytocubosomes.
Collapse
Affiliation(s)
- Sarah Omran
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International-Publishing and Nanotechnology Consultation Center INCC, Pharos University in Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
21
|
Calvo MM, López-Caballero ME, Martínez-Alvarez O. Identification of Polyphenols in Sea Fennel ( Crithmum maritimum) and Seaside Arrowgrass ( Triglochin maritima) Extracts with Antioxidant, ACE-I, DPP-IV and PEP-Inhibitory Capacity. Foods 2023; 12:3886. [PMID: 37959005 PMCID: PMC10650209 DOI: 10.3390/foods12213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Sea fennel and seaside arrowgrass are two abundant but underutilized halophytes along the Atlantic and Mediterranean coasts. This study investigated the antioxidant capacity and the potential antihypertensive (Angiotensin Converting Enzyme I, ACE-I inhibition), hypoglycaemic (Dipeptidyl Peptidase IV, DPP-IV inhibition), and nootropic (Prolyl Endopeptidase, PEP inhibition) activity of their polyphenol extracts. They had a high phenol content (21-24 mEq GA/g), antioxidant capacity evaluated using the ABTS (17-2 mg ascorbic acid/g) and FRAP (170-270 mM Mohr's salt/g) assays, and effective ACE-inhibiting properties (80-90% inhibiting activity at final concentration of 0.5 mg/mL). Additionally, the sea fennel extract displayed high DPP-IV inhibitory capacity (73% at 1 mg/mL), while the seaside arrowgrass extract exhibited potent Prolyl endopeptidase inhibitory capacity (75% at 1 mg/mL). Fractionation by HPLC concentrated the bioactive molecules in two fractions, for which the composition was analyzed by LC-MS/MS. Different chlorogenic acids seemed to play an important role in the bioactivity of sea fennel extract, and different flavonoids, mainly apigenin, luteolin and chrysoeriol, in the bioactivity of the seaside arrowgrass extract. Given their potential health benefits, these extracts could serve as valuable bioactive ingredients and could potentially encourage the cultivation of these species in regions where traditional crops face challenges in growth.
Collapse
Affiliation(s)
| | | | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6th José Antonio Novais St., 28040 Madrid, Spain; (M.M.C.); (M.E.L.-C.)
| |
Collapse
|
22
|
Berga M, Logviss K, Lauberte L, Paulausks A, Mohylyuk V. Flavonoids in the Spotlight: Bridging the Gap between Physicochemical Properties and Formulation Strategies. Pharmaceuticals (Basel) 2023; 16:1407. [PMID: 37895878 PMCID: PMC10610233 DOI: 10.3390/ph16101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them "brick dust" candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
23
|
He X, Mao H, Wang S, Tian Z, Zhou T, Cai L. Fabrication of chitosan/phenylboronic acid/SiO 2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int J Biol Macromol 2023; 248:125926. [PMID: 37481188 DOI: 10.1016/j.ijbiomac.2023.125926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Due to the growing demand for self-health and safety, eco-friendly health textile products with natural colors and pharmacological functionalities have gained considerable popularity. Rapid adsorption and controlled release of active molecules are important issues for functional health textiles. In this study, a functionalized chitosan-based hydrogel composite silk fabric was prepared using chitosan, 3-carboxyphenylboronic acid, and 3-(2, 3-epoxypropyl oxygen) propyl silane by dip-pad and vacuum freeze-drying techniques. The results showed that the incorporation of chitosan/phenylboronic/SiO2 hydrogel into silk fibers improved the UV protection capacity, mechanical properties, and adsorption properties of silk fabrics. The effects of various parameters on the luteolin adsorption properties of silk fabrics were discussed, including metal salt types, salt dosage, pH value, dyeing temperature, initial luteolin concentration, and dyeing time. Under the dyeing temperature of 60 °C and pH of 6.8, the luteolin exhaustion of the composite silk was more than that of the untreated silk, and the adsorption process followed the quasi-second-order kinetic model and the Langmuir adsorption isotherm model. Furthermore, the luteolin-dyed composite silk materials exhibited strong antioxidant activity and controllable release behavior with various pH levels. The as-prepared chitosan-hydrogel composite silk could be a promising material for the sustained release of drugs in medical and healthcare textiles.
Collapse
Affiliation(s)
- Xuemei He
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Haiyan Mao
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Shuzhen Wang
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhongliang Tian
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianchi Zhou
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Lu Cai
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
24
|
Wang H, Li C, Xiong Z, Li T. Luteolin attenuates acute liver allograft rejection in rats by inhibiting T cell proliferation and regulating T cell subsets. Int Immunopharmacol 2023; 121:110407. [PMID: 37290328 DOI: 10.1016/j.intimp.2023.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
Allograft rejection continues to be a significant cause of morbidity and graft failure for liver transplant recipients. Existing immunosuppressive regimens have many drawbacks, thus safe and effective long-term immunosuppressive regimens are still required. Luteolin (LUT), a natural component found in many plants, has a variety of biological and pharmacological effects and shows good anti-inflammatory activity in inflammatory and autoimmune diseases. Nevertheless, it remains unclear how it affects acute organ rejection after allogeneic transplantation. In this study, a rat liver transplantation model was constructed to investigate the effect of LUT on acute rejection of organ allografts. We found that LUT significantly protected the structure and function of liver grafts, prolonged recipient rat survival, ameliorated T cell infiltration, and downregulated proinflammatory cytokines. Moreover, LUT inhibited the proliferation of CD4+ T cells and Th cell differentiation but increased the proportion of Tregs, which is the key to its immunosuppressive effect. In vitro, LUT also significantly inhibited CD4+ T cell proliferation and Th1 differentiation. There may be important implications for improving immunosuppressive regimens for organ transplantation as a result of this discovery.
Collapse
Affiliation(s)
- Hao Wang
- Department of Liver Transplantation, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China; The First Central Clinical School, Tianjin Medical University, Tianjin 300190, China
| | - Chenxuan Li
- Department of Liver Transplantation, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China; Transplant Medical Research Center, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiwei Xiong
- Department of Liver Transplantation, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China; Transplant Medical Research Center, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Transplantation, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China; Transplant Medical Research Center, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
25
|
Han M, Lu Y, Tao Y, Zhang X, Dai C, Zhang B, Xu H, Li J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals (Basel) 2023; 16:975. [PMID: 37513887 PMCID: PMC10385282 DOI: 10.3390/ph16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes, which is mainly characterized by increased apoptosis and dysfunction of beta (β) cells, is a metabolic disease caused by impairment of pancreatic islet function. Previous studies have demonstrated that death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2) is involved in regulating β cell survival. Since natural products have multiple targets and often are multifunctional, making them promising compounds for the treatment of diabetes, we identified Drak2 inhibitors from a natural product library. Among the identified products, luteolin, a flavonoid, was found to be the most effective compound. In vitro, luteolin effectively alleviated palmitate (PA)-induced apoptosis of β cells and PA-induced impairment of primary islet function. In vivo, luteolin showed a tendency to lower blood glucose levels. It also alleviated STZ-induced apoptosis of β cells and metabolic disruption in mice. This function of luteolin partially relied on Drak2 inhibition. Furthermore, luteolin was also found to effectively relieve oxidative stress and promote autophagy in β cells, possibly improving β cell function and slowing the progression of diabetes. In conclusion, our findings show the promising effect of Drak2 inhibitors in relieving diabetes and offer a potential therapeutic target for the protection of β cells. We also reveal some of the underlying mechanisms of luteolin's cytoprotective function.
Collapse
Affiliation(s)
- Ming Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chengqiu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Xu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
26
|
A method on acrylamide elimination: Comparing and tracing reaction pathways of acrylamide and catechin (catechin quinone) using UHPLC-Q-exactive orbitrap mass spectrometry. Food Chem 2023; 410:135391. [PMID: 36682285 DOI: 10.1016/j.foodchem.2023.135391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/03/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Acrylamide (AA) elimination is significant in thermal-processing foods that rich in carbohydrate and asparagine. Here, catechin (CAT) and its quinone were utilized to investigate and evaluate the reaction rate of AA's characteristics (electrophilicity, oxidizing ability, and nucleophilicity) and trace the reaction pathways to eliminate AA in model system at 25 °C and 150 °C. It is revealed that AA prefers nucleophilic additions with quinone (kAA-CATQ = 1.1E-2 min-1 > kAA-CAT = 3.1E-3 min-1). It is prone to react with the B ring of CAT (kAA-4MC = 1.4E-3 min-1) via the redox reaction, rather than the A ring (kAA-PHL = 1.0E-4 min-1) through the electrophilic reaction. For the investigation of unknown products resulting from the above reactions, a process incorporating mechanism and tentative product speculation was implemented. Thirteen products were partially detected based on the extracted ion chromatography and MS spectrum from UHPLC-Q-Exactive Orbitrap Mass Spectrometry. These results provide a new perspective to eliminate AA in thermal-processing foods.
Collapse
|
27
|
Caddeo C, Tuberoso CIG, Floris S, Masala V, Sanna C, Pintus F. A Nanotechnological Approach to Exploit and Enhance the Bioactivity of an Extract from Onopordum illyricum L. Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1453. [PMID: 37050078 PMCID: PMC10096861 DOI: 10.3390/plants12071453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Plant-derived products have been used for preventive and curative purposes from the ancient era to the present day. Several studies have demonstrated the efficacy of either multicomponent-based extracts, enriched fractions, or isolated bioactives. However, they often display low solubility and bioavailability, chemical instability, poor absorption, and even toxicity, which restrict application in therapy. The use of drug delivery systems, especially nanocarriers, can overcome these physicochemical and pharmacokinetic limitations. In this study, an extract from Onopordum illyricum leaves was produced by maceration in 80% ethanol, characterized by liquid chromatography coupled to mass spectrometry, and formulated in phospholipid vesicles with the aim of exploiting and possibly enhancing its bioactivity for skin delivery. The results showed that phenolic compounds were abundantly present in the extract, especially hydroxycinnamic acid and flavonol derivatives. The extract-loaded vesicles showed small size (<100 nm), high entrapment efficiency (even >90% for most phenolic compounds), and good long-term stability. Moreover, the extract-loaded vesicles exhibited remarkable antioxidant activity, as demonstrated by colorimetric assays and by enhanced reduction of intracellular reactive oxygen species (ROS) levels in cultured skin cells. Hence, our findings support the key role of nanotechnological approaches to promote the potential of plant extracts and strengthen their application in therapy.
Collapse
Affiliation(s)
- Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Valentina Masala
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
28
|
Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer's disease. Inflammopharmacology 2023; 31:717-730. [PMID: 36933175 DOI: 10.1007/s10787-023-01173-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting millions of people worldwide. Oxidative stress contributes towards induction of neurodegeneration. It is one of the reasons behind initiation and progression of Alzheimer's disease. Understanding of oxidative balance and restoration of oxidative stress has demonstrated its effectiveness in the management of AD. Various natural and synthetic molecules have been found to be effective in different models of AD. Some clinical studies also support the use of antioxidants for prevention of neurodegeneration in AD. In this review we are summarizing the development of antioxidants to restrict oxidative stress induced neurodegeneration in AD.
Collapse
|
29
|
Demonceaux M, Goux M, Hendrickx J, Solleux C, Cadet F, Lormeau É, Offmann B, André-Miral C. Regioselective glucosylation of (+)-catechin using a new variant of sucrose phosphorylase from Bifidobacterium adolescentis. Org Biomol Chem 2023; 21:2307-2311. [PMID: 36857722 DOI: 10.1039/d3ob00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Mutation Q345F in sucrose phosphorylase from Bifidobacterium adolescentis (BaSP) has shown to allow efficient (+)-catechin glucosylation yielding a regioisomeric mixture: (+)-catechin-3'-O-α-D-glucopyranoside, (+)-catechin-5-O-α-D-glucopyranoside and (+)-catechin-3',5-O-α-D-diglucopyranoside with a ratio of 51 : 25 : 24. Here, we efficiently increased the control of (+)-catechin glucosylation regioselectivity with a new variant Q345F/P134D. The same products were obtained with a ratio of 82 : 9 : 9. Thanks to bioinformatics models, we successfully explained the glucosylation favoured at the OH-3' position due to the mutation P134D.
Collapse
Affiliation(s)
| | - Marine Goux
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | | | - Claude Solleux
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | - Frédéric Cadet
- Laboratory of Excellence LABEX GR, DSIMB, Inserm UMR S1134, University of Paris City and University of Reunion, Paris 75014, France
| | - Émilie Lormeau
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | - Bernard Offmann
- US2B, CNRS UMR 6286, Nantes University, Nantes 44300, France.
| | | |
Collapse
|
30
|
Güzel A. Relationship Between Phenolic Content Determined by LC/MS/MS and Antioxidant Capacity and Enzyme Inhibition of Cyclotrichium niveum L. Chem Biodivers 2023; 20:e202300027. [PMID: 36891984 DOI: 10.1002/cbdv.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/10/2023]
Abstract
Cyclotrichium niveum (Boiss.) Manden & Scheng belonging to the Lamiaceae family, which is an endemic species in the eastern Anatolian region of Turkey, has an important place in terms of ethno-botany. The phytochemical composition of the plant, inhibition of acetylcholinesterase (AChE) (which hydrolyzes the neurotransmitter acetylcholine), inhibition of paraoxonase for antiatherosclerotic activity (hPON 1) (which detoxifies organophosphates), and antioxidant capacity of this plant. Phytochemical content was determined by LC/MS/MS, and enzyme inhibition and antioxidant capacity studies were determined by spectrophotometer. Antioxidant capacity of C. niveum extracts (methanol, hexane, and water) was determined by applying ABTS⋅+ , DPPH⋅, FRAP, and CUPRAC methods. Both the water and the methanol extracts of the C. niveum exhibited significant inhibition on the AChE (IC50 value for methanol and water extract 0.114±0.14 mg/mL (R2:0.997) and 0.178±0.12 mg/mL (R2 : 0.994), respectively). In contrast, the methanol and water extracts of the C. niveum did not exhibit the inhibition effect on hPON 1. The highest activity for ABTS⋅+ was 66.53 % in the water extract, and DPPH⋅ was 55.03 % in the methanol extract. In the metal-reducing power assay, the absorbance was 0.168±0.04 for FRAP water extract and 0.621±0.01 for CUPRAC methanol extract. According to LC/MS/MS analyses, hydroxybenzoic acid, salicylic acid, syringic acid, acetohydroxamic acid and luteolin determined in the plant extract. As a consequence, C. niveum which has antioxidant, anti-atherogenic and anti-neurodegenerative properties has the potential to be used as a natural medication instead of synthetic drugs used in Alzheimer's patients.
Collapse
Affiliation(s)
- Abdussamat Güzel
- Vocational School of Health Services, Inonu University, Malatya, 44000, Turkey
| |
Collapse
|
31
|
Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia-Antioxidant and Anti-Tyrosinase Properties. Int J Mol Sci 2023; 24:ijms24054935. [PMID: 36902364 PMCID: PMC10003135 DOI: 10.3390/ijms24054935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4'-O-β-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3'-O-β-d-glucoside, luteolin 3',4'-di-O-β-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies' roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard.
Collapse
|
32
|
Matvieieva N, Bessarabov V, Khainakova O, Duplij V, Bohdanovych T, Ratushnyak Y, Kuzmina G, Lisovyi V, Zderko N, Kobylinska N. Cichorium intybus L. “hairy” roots as a rich source of antioxidants and anti-inflammatory compounds. Heliyon 2023; 9:e14516. [PMID: 37101499 PMCID: PMC10123141 DOI: 10.1016/j.heliyon.2023.e14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The present study aimed to determine the bioactive profile of various extracts of Cichorium intybus L. "hairy" roots. In particular, the total content of flavonoids as well as the reducing power, antioxidant and anti-inflammatory activity of the aqueous and ethanolic (70%) extracts were evaluated. The total content of flavonoids the ethanolic extract of the dry "hairy" root reached up to 121.3 mg (RE)/g, which was twofold greater than in the aqueous one. A total of 33 diverse polyphenols were identified by the LC-HRMS method. The experimental results showed a high amount of gallic (6.103 ± 0.008 mg/g) and caffeic (7.001 ± 0.068 mg/g) acids. In the "hairy" roots, the presence of rutin, apigenin, kaempferol, quercetin, and its derivatives was found in concentrations of 0.201±0.003 - 6.710±0.052 mg/g. The broad spectrum of pharmacological activities (antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic, etc.) of the key flavonoids identified in the chicory "hairy" root extract was predicted by the General Unrestricted Structure-Activity Relationships algorithm based on in the substances detected in the extract. The evaluation of the antioxidant activity showed that the EC50 values of the ethanol and the aqueous extracts were 0.174 and 0.346 mg, respectively. Thus, the higher ability of the ethanol extract to scavenge the DPPH radical was observed. The calculated Michaelis and inhibition constants indicated that the ethanolic extract of C. intybus "hairy" roots is an efficient inhibitor of soybean 15-Lipoxygenase activity (IC50 = 84.13 ± 7.22 μM) in a mixed mechanism. Therefore, the obtained extracts could be the basis of herbal pharmaceuticals for the therapy of human diseases accompanied by oxidative stress and inflammation, including the pandemic coronavirus disease COVID-19.
Collapse
Affiliation(s)
- Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Volodymyr Bessarabov
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Olena Khainakova
- University of Oviedo, 8 Julián Claveria Av., Oviedo, 33006, Spain
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Taisa Bohdanovych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Yakiv Ratushnyak
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Galina Kuzmina
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Vadym Lisovyi
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Nazar Zderko
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine, 42 akad. Vernadskoho Blvd., Kyiv, 03142, Ukraine
- Corresponding author.
| |
Collapse
|
33
|
Punia Bangar S, Kajla P, Chaudhary V, Sharma N, Ozogul F. Luteolin: A flavone with myriads of bioactivities and food applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
35
|
Elmowafy M, Shalaby K, Elkomy MH, Awad Alsaidan O, Gomaa HAM, Abdelgawad MA, Massoud D, Salama A, El-Say KM. Development and assessment of phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. Int J Pharm 2022; 629:122375. [PMID: 36351506 DOI: 10.1016/j.ijpharm.2022.122375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Luteolin is an excellent flavone possessing several beneficial properties such as antioxidant and anti-inflammatory effects which are interesting for skin delivery. Development of an appropriate skin delivery system could be a promising strategy to improve luteolin cutaneous performance.So, the main aim of this work was to fabricate, characterize and evaluate phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. The influence of phospholipid/oil ratio, surfactant type and chitosan coating were investigated. The prepared formulations underwent in vitro assessment and the selected formulations were evaluated ex vivo and in vivo. The mean diameters of investigated formulations varied between 174 nm and 628 nm while zeta potential varied between -25.7 ± 4.8 mV and 6.8 ± 1.7 mV. Increasing in phospholipid/oil ratios resulted in decrease in particles size with little effect on zeta potential and drug encapsulation. Cremophor EL showed the lowest particle sizes and the highest drug encapsulation. Chitosan coating shifted zeta potential towards positive values. Structural analyses showed that luteolin is incorporated into lipid core of nanocapsules. Selected formulations (LNC4 and LNC13) exhibited sustained in vitro release and antioxidant activity. LNC13 (chitosan coated) showed higher flux (0.457 ± 0.113 µg/cm2/h), permeability (45.70 ± 11.66 *10-5 cm2/h) and skin retention (121.66 ± 7.6 µg/cm2 after 24 h) when compared to LNC4 and suspension. It also showed disordered the integrity of the stratum corneum, increased epidermal thickness and relieving most of inflammatory features in animal model. In conclusion, this study proves that lipid nanocapsules could effectively deliver luteolin into skin and then can be established as a potential system in the pharmaceutical and cosmeceutical horizons.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia.
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Self-Emulsifying Phospholipid Preconcentrates for the Enhanced Photoprotection of Luteolin. Pharmaceutics 2022; 14:pharmaceutics14091896. [PMID: 36145644 PMCID: PMC9506472 DOI: 10.3390/pharmaceutics14091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to ultraviolet B (UVB) leads to the overproduction of reactive oxygen species (ROS), causing higher risks of skin disorders. Luteolin (Lut) is a naturally occurring antioxidant that can absorb a broad range of ultraviolet light, but its water solubility and skin permeability are limited and insufficient. The aim of the current study was to develop a Lut-loaded self-emulsifying phospholipid preconcentrate (LSEPP) for enhancing the solubility, permeability, and photoprotective activity of Lut. The designed formulations were firstly examined for their droplet size, zeta potential, dispersity, and in vitro corneum permeability after dispensing the preconcentrate to form an emulsion; the optimized formulation was further characterized for its emulsified morphology, compatibility with excipients, stability in the preconcentrate form, and photoprotective activity by the HaCaT cell model under the emulsified status. The optimized LSEPP formulation attained a smaller droplet size (140.6 ± 24.2 nm) with the addition of 1,8-cineole and increased the permeability of Lut by 7-fold. As evidenced in the cell model studies, the optimized LSEPP formulation can efficiently deliver Lut into HaCaT cells after emulsification and result in a 115% better cell viability as well as a 203% stronger ROS scavenging capability, compared with those of unformulated Lut after UVB irradiation. To sum up, we have successfully developed an LSEPP formulation, which is a safe and promising topical delivery system for enhancing the photoprotective effects of Lut.
Collapse
|
37
|
Purification, composition and activity of bound polyphenols from mung bean coat dietary fiber. Food Res Int 2022; 162:111997. [DOI: 10.1016/j.foodres.2022.111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023]
|
38
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
39
|
Xie J, Sun N, Huang H, Xie J, Chen Y, Hu X, Hu X, Dong R, Yu Q. Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chem 2022; 396:133719. [PMID: 35868282 DOI: 10.1016/j.foodchem.2022.133719] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
Mung bean coat is a good source of dietary polyphenols. In this study,in vitro simulated digestion and colonic fermentation were performed to investigate the release of polyphenols from mung bean coat and their bioactivities. Polyphenols released by colonic fermentation were much higher than those released by digestion and reached a peak at 12 h, resulting in higher antioxidant capacities (DPPH, ORAC, FRAP assays). About 49 polyphenols and metabolites including quercetin, vanillin, catechin and p-hydroxybenzoic acid were identified, and possible biotransformation pathways were postulated. Moreover, the relative abundance of beneficial bacteria (such as Lactococcus and Bacteroides) was improved during colonic fermentation. Altogether, gut microbiota could release polyphenols, the released polyphenols and their catabolic metabolites, alongside dietary fiber in mung bean coat selectively regulated the composition of gut microbiota and promoted the synthesis of SCFAs. These findings indicated that polyphenols in mung bean coat potentially contributed to gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Nan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
40
|
Tan X, He Y, Ou Y, Xiong X, Deng Y. Exploring the Mechanisms and Molecular Targets of Taohong Siwu Decoction for the Treatment of Androgenetic Alopecia Based on Network Analysis and Molecular Docking. Clin Cosmet Investig Dermatol 2022; 15:1225-1236. [PMID: 35800455 PMCID: PMC9255905 DOI: 10.2147/ccid.s361820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Purpose Taohong Siwu decoction (THSWD) is traditionally used to treat androgenic alopecia (AGA) in clinical practice of traditional Chinese medicine. This study used a network pharmacology approach to elucidate the molecular mechanism governing the effect of THSWD on AGA. Materials and Methods The major active components and their corresponding targets of THSWD were screened. AGA-related targets were obtained by analyzing the differentially expressed genes between AGA patients and healthy individuals. The protein–protein interaction networks of putative targets of THSWD and AGA-related targets were visualized and merged to identify the candidate targets for THSWD against AGA. Gene ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for core targets were performed. Finally, the key effective components and core targets screened were verified by molecular docking. Results In this study, 69 compounds and 202 compound targets of THSWD, as well as 1158 disease targets, were screened. Forty-five interactive targets were identified for constructing the “ingredient-targets” network. The functional annotations of target genes were found to be related to oxidative stress, reactive oxygen species, and hydrogen peroxide. Pathways involved in the treatment of AGA included apoptosis and PI3K-AKT signaling pathways. The luteolin, quercetin, kaempferol, baicalein, and beta-carotene were identified as the vital active compounds, and AKT1, TP53, JUN, CASP3 and MYC were considered as the core targets. Assessment of molecular docking revealed that these active compounds and targets had good-binding interactions. Conclusion The results indicated that the effects of THSWD against AGA may be related to anti-inflammation and anti-oxidation properties of the compounds through the specific biological processes and the related pathways.
Collapse
Affiliation(s)
- Xiaoqi Tan
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuxin He
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongliang Ou
- Health Management Center, Luzhou People’s Hospital, Luzhou, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiong Deng
- Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Yongqiong Deng; Xia Xiong, Department of Dermatology STD, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, 646000, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
41
|
Phytochemical Characterization and Heavy Metal and Thermal Analyses of Saussurea hypoleuca Root and Evaluation of Its Anthelmintic and Antioxidant Activity In Vitro and In Silico. SEPARATIONS 2022. [DOI: 10.3390/separations9060138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phytochemical characterization of the ethyl acetate fraction of Saussurea hypoleuca root extract resulted in the isolation of oleic acid (1) and luteolin (2), which were isolated for the first time from Saussurea hypoleuca root. A heavy metal analysis of the root powder performed using atomic absorption spectroscopy showed that the contents of iron, cadmium, lead, zinc, nickel, and copper were within the certified limits according to the WHO guidelines. Differential scanning calorimetry (DSC) revealed its crystalline and amorphous nature; meanwhile, standardization of the root with UHPLC revealed the presence of 14.79 ± 0.015 µg/mL of luteolin. Both the total methanol extract and the ethyl acetate fraction of the plant root held significant anthelmintic activity. Oleic acid and luteolin exhibited potent antioxidant activity, evidenced by their IC50 values, which were equal to 47.0 and 119.8 µg/mL, respectively, in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. In silico studies showed that luteolin exerted the highest fitting within the binding sites of NADPH oxidase (Nox). For myeloperoxidase (MP), oleic acid revealed the best fitting in its active sites. The results of ADMET (absorption, distribution, metabolism, excretion, and toxicity) and TOPKAT (toxicity prediction) protocols revealed acceptable pharmacodynamic and pharmacokinetic characteristics, in addition to reasonable toxicity characteristics for both compounds. Thus, they can be incorporated into pharmaceutical dosage forms to combat oxidative stress.
Collapse
|
42
|
Basha NJ, Basavarajaiah SM. Anticancer Potential of Bioactive Molecule Luteolin and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S. M. Basavarajaiah
- P.G. Department of Chemistry, R.V. Road Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Kinetics and stoichiometry of gallic acid and methyl gallate in scavenging DPPH radical as affected by the reaction solvent. Sci Rep 2022; 12:8765. [PMID: 35610331 PMCID: PMC9130500 DOI: 10.1038/s41598-022-12803-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
The activity and capacity of gallic acid (GA) and methyl gallate (MG) in scavenging DPPH· were determined in different solvents. Based on the bimolecular rate constants k2, both antioxidants showed highest activities in EtOH, followed by in MeOH, t-BuOH, MeCN, 2-PrOH, acetone, THF, ethyl acetate, and 1,4-dioxane. GA indicated better activities (k2 value, M-1 s-1) than MG in the alcoholic solvents (51-1939 vs. 25-1530) and in MeCN (203 vs. 187) whereas MG was of higher activities in the polar aprotic solvents (1.7-41 vs. 1.6-13). The highest stoichiometries for GA vs. MG were in 2-PrOH (6.67 vs. 5.37), followed by EtOH (5.84 vs. 4.57), MeOH (5.34 vs. 3.8) ~ acetone (5.02 vs. 4.44), MeCN (3.68 vs. 3.05) ~ t-BuOH (3.14 vs. 2.99), THF (2.34 vs. 2.2), ethyl acetate (1.2 vs. 0.93), and 1,4-dioxane (0.34 vs. 0.35).
Collapse
|
44
|
Genovese C, Garozzo A, D’Angeli F, Malfa GA, Bellia F, Tomasello B, Nicolosi D, Malaguarnera R, Ronsisvalle S, Guadagni F, Acquaviva R. Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells 2022; 11:1696. [PMID: 35626733 PMCID: PMC9139723 DOI: 10.3390/cells11101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and β-Coronavirus by the plaque reduction assay. RESULTS The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.
Collapse
Affiliation(s)
- Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography, National Research Council (CNR), 95126 Catania, Italy;
| | - Barbara Tomasello
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Daria Nicolosi
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Microbiology Section, University of Catania, 95125 Catania, Italy
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
| | - Simone Ronsisvalle
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Rosaria Acquaviva
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| |
Collapse
|
45
|
Design, synthesis and anti-breast cancer evaluation of biaryl pyridine analogues as potent RSK inhibitors. Bioorg Med Chem Lett 2022; 59:128565. [DOI: 10.1016/j.bmcl.2022.128565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
|
46
|
Jambwa P, Makhubu FN, Matope G, Fouche G, McGaw LJ. Bioassay Guided Fractionation of Senna singueana and Its Potential for Development of Poultry Phytogenic Feed Additives. Front Vet Sci 2022; 8:800272. [PMID: 35097048 PMCID: PMC8793064 DOI: 10.3389/fvets.2021.800272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
There has been burgeoning interest in plant-based feed additives following restrictions placed on the use of antibiotic feed additives in many countries. Phytogenic feed additives are recommended to have a range of useful properties to support the growth and development of poultry to a similar level as that obtained by supplementing feed with antibiotics. The aim of this study was to evaluate the antibacterial, anti-lipoxygenase and antioxidant activity, and in vitro safety of fractions and isolated compounds from leaves of Senna singueana. Antibacterial activities of the fractions and isolated compounds were determined against a panel of bacteria using a two-fold serial microdilution assay and qualitative bioautography assays. Anti-lipoxygenase activity was evaluated using the ferrous oxidation-xylenol orange (FOX) method. Antioxidant activity was assessed qualitatively and quantitatively using radical scavenging assays. Dichloromethane and ethyl acetate fractions from solvent-solvent partitioning had the best antibacterial activity with MIC values ranging from 156 to 313 μg/ml. Fractions obtained from column chromatography had significant to weak antibacterial activity with MIC values ranging from 50 to 1,250 μg/ml. Bioautography showed clear bands of bacterial inhibition, indicating the presence of a number of active compounds in several fractions. The ethyl acetate fraction and all the tested column fractions had potent anti-lipoxygenase activity with IC50 values of ≤2.5 μg/ml which were lower than that of quercetin (positive control), indicating anti-inflammatory potential. The ethyl acetate fraction and several column fractions had powerful antioxidant activity with IC50 values of ≤5 μg/ml in the ABTS assay. Cytotoxicity values against Vero kidney cells ranged from LC50 = 40.0–989.3 μg/ml. Bioassay-guided fractionation led to the isolation and identification of a known bioactive compound, luteolin. S. singueana is a promising candidate for the development of poultry phytogenic feed additives.
Collapse
Affiliation(s)
- Prosper Jambwa
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Department of Veterinary Biosciences, University of Zimbabwe, Harare, Zimbabwe
| | - Fikile N. Makhubu
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Gift Matope
- Department of Veterinary Pathobiology, University of Zimbabwe, Harare, Zimbabwe
| | - Gerda Fouche
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- *Correspondence: Lyndy J. McGaw
| |
Collapse
|
47
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
48
|
Ra Kasem N, A Mannaa F, G Abdel-Wahhab K, H Mourad H, F Gomaa H. Preventive Efficiency of Chelidonium majus Ethanolic Extract Against Aflatoxin B 1 Induced Neurochemical Deteriorations in Rats. Pak J Biol Sci 2022; 25:234-244. [PMID: 35234014 DOI: 10.3923/pjbs.2022.234.244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Aflatoxins affect many species including humans and animals, therefore the present study was designed to investigate the protective effect of <i>Chelidonium majus</i> Ethanolic Extract (CMEE) on neurotoxicity induced by Aflatoxin B<sub>1</sub> (AFB1) in rats. <b>Materials and Methods:</b> Four groups of male Albino rats were treated orally for 28 days as follows: (1) Control group was daily given DMSO-PBS buffer (1.0 mL per rat), (2) CMEE (300 mg kg<sup>1</sup>/day) dissolved in DMSO-PBS buffer, (3) AFB1 (80 μg kg<sup>1</sup>/day) dissolved in DMSO-PBS buffer and (4) Received daily AFB1 (300 mg kg<sup>1</sup>) in combination with CMEE (300 mg kg<sup>1</sup>). <b>Results:</b> CMEE exhibits antioxidant activity <i>in vitro</i> and neuroameliorative efficiency <i>in vivo</i> as its administration in combination with AFB1 succeeded significantly in down regulating the elevated levels of inflammatory and apoptotic markers and restoring the values of neurochemical markers (AChE-ase, dopamine and serotonin) that were deteriorated by AFB1 intake. <b>Conclusion:</b> In conclusion, the neuroprotective effect of CMEE may be mediated through its antioxidant and free radical scavenging activity that proved from the data<i> </i>of ferric-reducing power ability and DPPH radical scavenging activity.
Collapse
|
49
|
Kobylinska N. SIMULTANEOUS IDENTIFICATION, QUANTIFICATION, AND ANALYSIS OF MAIN COMPONENTS OF “HAIRY” ROOT EXTRACTS OF Artemisia annua AND Artemisia tilesii PLANTS. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. The profiles of polyphenolic phytochemicals in extracts of “hairy” roots of Artemisia tilesii Ledeb. and Artemisia annua L. were studied. Analytical separation and quantification of main components in extracts were evaluated. Methods. “hairy” roots were grown in vitro on Murashige and Skoog medium. High-performance chromatography coupled with different types of detection (photo diode array detection (DAD) and electrospray ionization with ultra-high resolution Qq-Time-of-Flight mass spectrometry) was used to identify and quantify the main biologically active components in ethanol extracts of “hairy” roots. Results. The amount of flavonoids was 94.71–144.33 mg RE/g DW and 33.52–78.00 mg RE/g DW in “hairy” roots of A. annua and A. tilesii, respectively. In most samples of “hairy” roots, the amount of flavonoids was higher than the content in the control plant roots. The presence of Apigenin (0.168 ± 0.003 mg/L and 0.178 ± 0.006 mg/L), Quercetin (0.282 ± 0.005 mg/L and 0.174 ± 0.005 mg/L) in the extracts of A. annua and A. tilesii was shown by reverse-phase HPLC-DAD method. Chlorogenic acid, Kaempferol, and other flavonoids were detected. Conclusions. The developed HPLC-DAD method demonstrated the high percentage of recovery, low limit of detection and quantification (9,11 ng/ml ≤ LOQ ≤16,51 ng/ml), accuracy and correctness. Thus, the method is suitable for the simultaneous quantification of phenolic acids and flavonoids in various plant extracts with short time and high efficiency.
Collapse
|
50
|
Chen YY, Liu K, Zha XQ, Li QM, Pan LH, Luo JP. Encapsulation of luteolin using oxidized lotus root starch nanoparticles prepared by anti-solvent precipitation. Carbohydr Polym 2021; 273:118552. [PMID: 34560964 DOI: 10.1016/j.carbpol.2021.118552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
In this study, luteolin-oxidized lotus root starch (OLRS) nanoparticles (NPs) were developed to improve the stability and antioxidant activity of luteolin. Results showed that a stable luteolin-OLRS NPs was formed using luteolin and OLRS (oxidation degree, 15%) in the weight ratio of 3:1, as well as anti-solvent and solvent in the volume ratio of 10:1. Under this condition, the particle size, polydispersity index and zeta-potential of luteolin-OLRS NPs was 305 nm, 0.173 and -20.8 mV, respectively. The analysis of transmission electron microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy demonstrated that the luteolin was successfully encapsulated in OLRS NPs, giving an encapsulation efficiency of 87.2%. The release characteristic and antioxidant activity of encapsulated luteolin were further investigated. Results exhibited that the OLRS NPs enabled luteolin to be stable in simulated gastric fluid and sustained release in simulated intestinal fluid, leading to the enhancement of antioxidant activity of luteolin.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|