1
|
Hou Y, Liu X, Li Y, Hou J, Liu H, Wu Q, Liu J. Aptamers for nanobodies: A nontoxic alternative to toxic ochratoxin A in immunoassays. Biosens Bioelectron 2024; 248:115995. [PMID: 38176255 DOI: 10.1016/j.bios.2023.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
To measure toxins using immunoassays, hazardous toxin standards need to be added for quantification. To solve this problem, we propose to use aptamers as competitors to replace toxin standards. In this work, aptamers specific for ochratoxin A (OTA) nanobodies were selected using a DNA library containing a 36 nucleotide random region. The obtained sequences were highly aligned and the best competitor was identified to be a sequence named apt2-OT based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). The Kd of apt2-OT was measured to be 2.86 μM using local surface plasmon resonance spectroscopy. The optimal apt2-OT was identified to substitute the OTA standard with a concentration needed for 50% inhibition of binding (IC50) of 3.26 μM based on a nontoxic direct competitive ELISA. The equivalence relationship between the aptamer and OTA was established in a flour sample, and a recovery experiment was performed. The detection limit for this method was 0.23 ng/mL, with a linear range from 0.25 to 10.50 ng/mL. The recovery rate was 97.5%-115.5%. This study provides a low-cost, rapid and environmentally friendly alternative to the development of immunoassays for toxins.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.
| | - Yongshu Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
2
|
Ben Miri Y, Nouasri A, Benabdallah A, Benslama A, Tacer-Caba Z, Laassami A, Djenane D, Simal-Gandara J. Antifungal effects of selected menthol and eugenol in vapors on green coffee beans during long-term storage. Heliyon 2023; 9:e18138. [PMID: 37496903 PMCID: PMC10366420 DOI: 10.1016/j.heliyon.2023.e18138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
Nowadays, coffee (Coffea Arabica L.) is among the most significant agricultural products of the world and drinking coffee has become one of the most popular habits in the world. The main contamination of stored coffee beans is related with the mycotoxin produced by the toxigenic fungi belonging the genus Aspergillus. Fungal infection followed by mycotoxin biosynthesis in coffee results in notable financial losses. subsequent mycotoxin biosynthesis in coffee leads to major economic losses. Complications ranging from mild to severe can be caused by the mycotoxins produced by this genus. The aim of this investigation was to determine the effect of menthol and eugenol on Aspergillus parasiticus (CBS 100926T) growth, spore germination, and their potential use as green coffee beans preservative during long-term storage (12 months). The minimum inhibitory concentrations (MICs) values of the menthol and eugenol were recorded to completely inhibit the growth of A. parasiticus in 400 μg/ml and 300 μg/ml, respectively. Both reduced spore germination by 9.33% and 5.66% at 300 μg/ml and 200 μg/ml, respectively. They showed efficacy in fumigated green coffee beans sample during the storage for up to 12 months providing an increase in the protection level of 62.5% for menthol and 73.21% for eugenol against the A. parasiticus contamination. This suggests that menthol and eugenol could be used as good alternatives for decreasing the deteriorations due to the fungal infections in green coffee beans during long-term storage.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Mohamed Boudiaf University, BP 166 M'sila 28000, M'sila, Algeria
- Food Quality and Safety Research Laboratory, Department of Food Sciences. Mouloud Mammeri University; BP, 17. 15000, Tizi-Ouzou, Algeria
| | - Ahmed Nouasri
- Laboratory of Bioactive Products and Biomass Valorization Research. ENS Kouba, BP92, Kouba, Algiers, Algeria
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences. University Chadli Bendjedid, El-Tarf, 36000, Algeria
| | - Abderrahim Benslama
- Department of Biochemistry and Microbiology, Mohamed Boudiaf University, BP 166 M'sila 28000, M'sila, Algeria
| | - Zeynep Tacer-Caba
- Department of Molecular Biology and Genetics, Bahcesehir University, Besiktas, Istanbul, Turkey
| | - Affaf Laassami
- Microbial Systems Biology Laboratory (LBSM); ENS Kouba, BP92, Kouba, Algiers, Algeria
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences. Mouloud Mammeri University; BP, 17. 15000, Tizi-Ouzou, Algeria
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, E32004 Ourense, Spain
| |
Collapse
|