1
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
2
|
Okhrimenko IS, Kovalev K, Petrovskaya LE, Ilyinsky NS, Alekseev AA, Marin E, Rokitskaya TI, Antonenko YN, Siletsky SA, Popov PA, Zagryadskaya YA, Soloviov DV, Chizhov IV, Zabelskii DV, Ryzhykau YL, Vlasov AV, Kuklin AI, Bogorodskiy AO, Mikhailov AE, Sidorov DV, Bukhalovich S, Tsybrov F, Bukhdruker S, Vlasova AD, Borshchevskiy VI, Dolgikh DA, Kirpichnikov MP, Bamberg E, Gordeliy VI. Mirror proteorhodopsins. Commun Chem 2023; 6:88. [PMID: 37130895 PMCID: PMC10154332 DOI: 10.1038/s42004-023-00884-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.
Collapse
Affiliation(s)
- Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Lada E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr A Popov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Igor V Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil V Sidorov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
3
|
García-Franco A, Godoy P, Duque E, Ramos JL. Insights into the susceptibility of Pseudomonas putida to industrially relevant aromatic hydrocarbons that it can synthesize from sugars. Microb Cell Fact 2023; 22:22. [PMID: 36732770 PMCID: PMC9893694 DOI: 10.1186/s12934-023-02028-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas putida DOT-T1E is a highly solvent tolerant strain for which many genetic tools have been developed. The strain represents a promising candidate host for the synthesis of aromatic compounds-opening a path towards a green alternative to petrol-derived chemicals. We have engineered this strain to produce phenylalanine, which can then be used as a raw material for the synthesis of styrene via trans-cinnamic acid. To understand the response of this strain to the bioproducts of interest, we have analyzed the in-depth physiological and genetic response of the strain to these compounds. We found that in response to the exposure to the toxic compounds that the strain can produce, the cell launches a multifactorial response to enhance membrane impermeabilization. This process occurs via the activation of a cis to trans isomerase that converts cis unsaturated fatty acids to their corresponding trans isomers. In addition, the bacterial cells initiate a stress response program that involves the synthesis of a number of chaperones and ROS removing enzymes, such as peroxidases and superoxide dismutases. The strain also responds by enhancing the metabolism of glucose through the specific induction of the glucose phosphorylative pathway, Entner-Doudoroff enzymes, Krebs cycle enzymes and Nuo. In step with these changes, the cells induce two efflux pumps to extrude the toxic chemicals. Through analyzing a wide collection of efflux pump mutants, we found that the most relevant pump is TtgGHI, which is controlled by the TtgV regulator.
Collapse
Affiliation(s)
- Ana García-Franco
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Patricia Godoy
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Estrella Duque
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Juan Luis Ramos
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain.
| |
Collapse
|
4
|
The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons. Microbiol Res 2022; 262:127087. [DOI: 10.1016/j.micres.2022.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
5
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
7
|
Puja H, Comment G, Chassagne S, Plésiat P, Jeannot K. Coordinate overexpression of two
RND
efflux systems,
ParXY
and
TtgABC
, is responsible for multidrug resistance in
Pseudomonas putida. Environ Microbiol 2020; 22:5222-5231. [DOI: 10.1111/1462-2920.15200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Hélène Puja
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Gwendoline Comment
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Sophie Chassagne
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Patrick Plésiat
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon Besançon France
| | - Katy Jeannot
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon Besançon France
| |
Collapse
|
8
|
Abstract
Pseudomonas putidais a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility ofP. putidamakes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.P. putidais able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number ofP. putidastrains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the speciesP. putidaand isolation and characterization ofP. putidastrains displaying potential for biotechnological applications. This review also discusses some major findings inP. putidaresearch encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Collapse
|
9
|
Xing C, Chen J, Zheng X, Chen L, Chen M, Wang L, Li X. Functional metagenomic exploration identifies novel prokaryotic copper resistance genes from the soil microbiome. Metallomics 2020; 12:387-395. [PMID: 31942889 DOI: 10.1039/c9mt00273a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Functional metagenomics is a premise-free approach for exploring metal resistance genes, enabling more profound effects on the development of bioremediation tools than pure culture based selection. Six soil metagenomic libraries were screened for copper (Cu) resistance genes in the current study through conventional functional genomics. Clones from the six metagenomic libraries were randomly selected from solid medium supplied with Cu, resulting in 411 Cu resistance clones. Thirty-five clones with the strongest Cu resistance were sequenced and 12 unique sequences harboring 25 putative open reading frames were obtained. It is inferred by bioinformatic analysis that putative genes carried by these recombinant plasmids probably function in the pathways of responding to Cu stress, including energy metabolism, integral components of membrane, ion transport/chelation, protein/amino acid metabolism, carbohydrate/fatty acid metabolism, signal transduction and DNA binding. The sequenced clones were re-transformed into Escherichia coli strain DH5α, and the host's biomass and the metal sorption under Cu stress were subsequently determined. The results showed that the biomass of eight of the clones was significantly increased, whereas four of them were significantly reduced. A negative correlation (R = 0.86) was found between the biomass and Cu sorption capacity. The 12 positive clones were further transferred into a Cu-sensitive E. coli strain (ΔCopA), among which nine restored the host's Cu resistance substantially. The Cu resistant genes explored in this study by functional metagenomics possess a potential capacity for developing novel bioremediation strategies, and the findings imply a vast diversity of microbial Cu resistance genetic factors in soil yet to be discovered.
Collapse
Affiliation(s)
- Chao Xing
- Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Heredia RM, Lucchesi GI. Pseudomonas putida Δ9-fatty acid desaturase: Gene cloning, expression, and function in the cationic surfactants stress. J Basic Microbiol 2019; 59:525-534. [PMID: 30779369 DOI: 10.1002/jobm.201800595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida counteract the fluidizing effect of cationic surfactants decreasing the content of membrane unsaturated fatty acid (UFA). A Δ9-fatty acid desaturase gene (desA) from P. putida was isolated, cloned, and successfully expressed in Escherichia coli, a Δ9 desaturase deficient organism. desA consists of 1185 bp and codes for 394 amino acids. The deduced amino acid sequence reveals three histidine clusters and a hydropathy profile, typical of membrane-bound desaturases. Validating desA expression in E. coli cells, the amount of palmitoleic acid increased from 2.05 to 7.36%, with the concomitant increase in membrane fluidity (fluorescence polarization value decrease from 0.13 ± 0.03 to 0.09 ± 0.02). Also, when DesA activity was assayed in vivo, the percentage of UFA obtained from exogenous palmitic acid [1-14 C] increased 10-fold. In contrast, when cells expressing desA were exposed 15 min at sublethal concentration of cationic surfactants, the amount of UFA was 82% lower than that detected in cells non-exposed. Thus, the decrease in UFA content to counteract the fluidizing effect of cationic surfactants can be correlated with reduction of DesA activity.
Collapse
Affiliation(s)
- Romina M Heredia
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gloria I Lucchesi
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
11
|
Nadeau MB, Laur J, Khasa DP. Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: II. Mine-Adapted Symbionts Alleviate Soil Element Imbalance for a Better Nutritional Status of White Spruce Seedlings. FRONTIERS IN PLANT SCIENCE 2018; 9:1268. [PMID: 30233615 PMCID: PMC6130232 DOI: 10.3389/fpls.2018.01268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
In the context of a phytorestoration project, the purpose of this study was to assess the respective contribution to the nutritional status of Picea glauca seedlings of ectomycorrhizae and rhizobacteria native or not to the Sigma-Lamaque gold mine wastes in northern Quebec, Canada. In a glasshouse experiment, inoculated plants were grown for 32 weeks on coarse waste rocks or fine tailings obtained from the mining site. The survival, health, growth, and nutritional status of plants were better on coarse waste rocks than on fine tailings. Fe and Ca were especially found at high levels in plant tissues but at much lower concentrations on waste rocks. Interestingly, inoculation of microsymbionts had only minimal effects on N, P, K, and Mg plant status that were indeed close or within the concentration range encountered in healthy seedlings. However, both fungal and bacterial treatments improved Fe and Ca concentrations in plant tissues. Fe concentration in the foliage of plants inoculated with the fungi Tricholoma scalpturatum Tri. scalp. MBN0213 GenBank #KC840613 and Cadophora finlandia Cad. fin. MBN0213 GenBank #KC840625 was reduced by >50%. Both fungi were isolated from the mining site. The rhizobacteria, Azotobacter chroococcum, also improved plant Fe level in some cases. Regarding Ca nutritional status, the native bacterial strain Pseudomonas putida MBN0213 GenBank #AY391278 was the only symbiont that reduced foliar content by up to 23%. Ca concentration was negatively correlated with the fungal mycorrhization rate of seedling roots. This relation was especially strong (r = -0.66, p-value ≤ 0.0001) in the case of C. finlandia. Also, a similar relationship existed with root Fe concentration (r = -0.44, p-value ≤ 0.0001). In fact, results showed that seedling performance was more correlated with elevated Ca and Fe concentration in planta than with nutrient deficiency. Also, native microsymbionts were capable of regulating seedling nutrition in the poor substrate of the Sigma-Lamaque gold mine tailings.
Collapse
Affiliation(s)
| | - Joan Laur
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Damase P. Khasa
- Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
12
|
Cloning and characterisation of four catA genes located on the chromosome and large plasmid of Pseudomonas putida ND6. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Liao HY, Chien CC, Tang P, Chen CC, Chen CY, Chen SC. The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2, 4, 6-trinitrotoluene by Citrobacter sp. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:79-90. [PMID: 29414755 DOI: 10.1016/j.jhazmat.2018.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
Citrobacter sp. has been shown to degrade 2,4,6-trinitrotoluene (TNT). However, the mechanism of its TNT biodegradation is poorly understood. An integrated proteome and transcriptome analysis was performed for investigating the differential genes and differential proteins in bacterial growth at the onset of experiments and after 12 h treatment with TNT. With the RNA sequencing, we found a total of 3792 transcripts and 569 differentially expressed genes (≥2 fold, P < 0.05) by. Genes for amino acid transport, cellular metabolism and stress-shock proteins were up-regulated, while carbohydrate transport and metabolism were down-regulated. A total of 42 protein spots (≥1.5 fold, P < 0.05) showed differential expression on two-dimensional gel electrophoresis and these proteins were identified by mass spectrometry. The most prominent proteins up-regulated were involved in energy production and conversion, amino acid transport and metabolism, posttranslational modification, protein turnover and chaperones. Proteins involved in carbohydrate transport and metabolism were down-regulated. Most notably, we observed that nemA encoding N-ethylmaleimide reductase was the most up-regulated gene involved in TNT degradation, and further proved that it can transform TNT to 4-amino-2,6-dinitrotoluene (4-ADNT) and 2-amino-4,6-dinitrotoluene (2-ADNT). This study highlights the molecular mechanisms of Citrobacter sp. for TNT removal.
Collapse
Affiliation(s)
- Hung-Yu Liao
- Department of Life Sciences, National Central University, No. 300, Jhing-da Rd., Jhongli City, Taoyuan, 32001, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, No. 135, Yuantung Rd., Jhongli City, Taoyuan, 32003, Taiwan
| | - Petrus Tang
- Department of Parasitology, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dis., Taoyuan City, 33302, Taiwan
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, No.116, Heping 1st Rd., Lingya District, Kaohsiung City, 80201, Taiwan
| | - Chin-Yu Chen
- Department of Life Sciences, National Central University, No. 300, Jhing-da Rd., Jhongli City, Taoyuan, 32001, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, No. 300, Jhing-da Rd., Jhongli City, Taoyuan, 32001, Taiwan.
| |
Collapse
|
14
|
Yaguchi A, Robinson A, Mihealsick E, Blenner M. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb Cell Fact 2017; 16:206. [PMID: 29149902 PMCID: PMC5693591 DOI: 10.1186/s12934-017-0820-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The oleaginous yeast, Trichosporon oleaginosus, has been extensively studied for its ability to metabolize non-conventional feedstocks. These include phenol-containing waste streams, such as distillery wastewater, or streams consisting of non-conventional sugars, such as hydrolyzed biomass and various bagasse. An initial BLAST search suggests this yeast has putative aromatic metabolizing genes. Given the desirability to valorize underutilized feedstocks such as lignin, we investigated the ability of T. oleaginosus to tolerate and metabolize lignin-derived aromatic compounds. RESULTS Trichosporon oleaginosus can tolerate and metabolize model lignin monoaromatics and associated intermediates within funneling pathways. Growth rates and biomass yield were similar to glucose when grown in 4-hydroxybenzoic acid (pHBA) and resorcinol, but had an increased lag phase when grown in phenol. Oleaginous behavior was observed using resorcinol as a sole carbon source. Fed-batch feeding resulted in lipid accumulation of 69.5% on a dry weight basis. CONCLUSIONS Though the exact pathway of aromatic metabolism remains to be determined for T. oleaginosus, the results presented in this work motivate use of this organism for lignin valorization and phenolic wastewater bioremediation. Trichosporon oleaginosus is the first yeast shown to be oleaginous while growing on aromatic substrates, and shows great promise as a model industrial microbe for biochemical and biofuel production from depolymerized lignin.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Alana Robinson
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Erin Mihealsick
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| |
Collapse
|
15
|
Molina-Santiago C, Udaondo Z, Cordero BF, Ramos JL. Interspecies cross-talk between co-cultured Pseudomonas putida and Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:441-448. [PMID: 28585781 DOI: 10.1111/1758-2229.12553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas putida and Escherichia coli are ubiquitous microorganisms that can be isolated from soil rhizosphere, the surface of vegetables, fresh waters and wastewaters - environments in which they likely co-exist. Despite this, the potential interactions between these microbes have not been studied in detail. To analyse these interactions, we carried out RNA-seq transcriptomic analysis of these microbes as monocultures and as co-cultures. Our results show that co-culture of these microbes significantly alters transcriptional profiles. The most dramatic transcriptional changes in both microorganisms were involved in central carbon metabolism, as well as adhesion to surfaces and the activation of drug efflux pumps. We also found that acetate production was one of the mechanisms used by E. coli K-12 MG1655 in response to the presence of P. putida DOT-T1E.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Baldo F Cordero
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
16
|
Molina L, Geoffroy VA, Segura A, Udaondo Z, Ramos JL. Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida. Front Microbiol 2016; 7:2100. [PMID: 28082966 PMCID: PMC5187384 DOI: 10.3389/fmicb.2016.02100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida strains are frequent inhabitants of soil and aquatic niches and they are occasionally isolated from hospital environments. As the available iron sources in human tissues, edaphic, and aquatic niches are different, we have analyzed iron-uptake related genes in different P. putida strains that were isolated from all these environments. We found that these isolates can be grouped into different clades according to the genetics of siderophore biosynthesis and recycling. The pyoverdine locus of the six P. putida clinical isolates that have so far been completely sequenced, are not closely related; three strains (P. putida HB13667, HB3267, and NBRC14164T) are grouped in Clade I and the other three in Clade II, suggesting possible different origins and evolution. In one clinical strain, P. putida HB4184, the production of siderophores is induced under high osmolarity conditions. The pyoverdine locus in this strain is closely related to that of strain P. putida HB001 which was isolated from sandy shore soil of the Yellow Sea in Korean marine sand, suggesting their possible origin, and evolution. The acquisition of two unique TonB-dependent transporters for xenosiderophore acquisition, similar to those existing in the opportunistic pathogen P. aeruginosa PAO, is an interesting adaptation trait of the clinical strain P. putida H8234 that may confer adaptive advantages under low iron availability conditions.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Valérie A Geoffroy
- Centre National de la Recherche Scientifique, UMR 7242, Université de Strasbourg, (ESBS) Illkirch, France
| | - Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Juan-Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
17
|
Leal AJ, Rodrigues EM, Leal PL, Júlio ADL, Fernandes RDCR, Borges AC, Tótola MR. Changes in the microbial community during bioremediation of gasoline-contaminated soil. Braz J Microbiol 2016; 48:342-351. [PMID: 28034596 PMCID: PMC5470457 DOI: 10.1016/j.bjm.2016.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 01/11/2023] Open
Abstract
We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.
Collapse
Affiliation(s)
- Aline Jaime Leal
- Instituto Federal Sul-rio-grandense, Bagé, Rio Grande do Sul, Brazil
| | - Edmo Montes Rodrigues
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil.
| | - Patrícia Lopes Leal
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Aline Daniela Lopes Júlio
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Rocha Fernandes
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Arnaldo Chaer Borges
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Marcos Rogério Tótola
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Molina-Santiago C, Udaondo Z, Gómez-Lozano M, Molin S, Ramos JL. Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 2016; 19:645-658. [PMID: 27768818 DOI: 10.1111/1462-2920.13585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan-genome analysis has revealed that 30% of genes belong to the core-genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bioremediation and biocatalysis, it is critical to understand the mechanisms underlying these phenotypic differences. In this study, RNA-seq analysis compared the short- and long-term responses of the toluene-sensitive KT2440 strain and the highly tolerant DOT-T1E strain. The sensitive strain activates a larger number of genes in a higher magnitude than DOT-T1E. This is expected because KT2440 bears one toluene tolerant pump, while DOT-T1E encodes three of these pumps. Both strains activate membrane modifications to reduce toluene membrane permeability. The KT2440 strain activates the TCA cycle to generate energy, while avoiding energy-intensive processes such as flagellar biosynthesis. This suggests that KT2440 responds to toluene by focusing on survival mechanisms. The DOT-T1E strain activates toluene degradation pathways, using toluene as source of energy. Among the unique genes encoded by DOT-T1E is a 70 kb island composed of genes of unknown function induced in response to toluene.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - María Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Soren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Juan-Luis Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
19
|
Aparicio T, Jensen SI, Nielsen AT, de Lorenzo V, Martínez-García E. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol J 2016; 11:1309-1319. [PMID: 27367544 DOI: 10.1002/biot.201600317] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022]
Abstract
Some strains of the soil bacterium Pseudomonas putida have become in recent years platforms of choice for hosting biotransformations of industrial interest. Despite availability of many genetic tools for this microorganism, genomic editing of the cell factory P. putida EM42 (a derivative of reference strain KT2440) is still a time-consuming endeavor. In this work we have investigated the in vivo activity of the Ssr protein encoded by the open reading frame T1E_1405 from Pseudomonas putida DOT-T1E, a plausible functional homologue of the β protein of the Red recombination system of λ phage of Escherichia coli. A test based on the phenotypes of pyrF mutants of P. putida (the yeast's URA3 ortholog) was developed for quantifying the ability of Ssr to promote invasion of the genomic DNA replication fork by synthetic oligonucleotides. The efficiency of the process was measured by monitoring the inheritance of the changes entered into pyrF by oligonucleotides bearing mutated sequences. Ssr fostered short and long genomic deletions/insertions at considerable frequencies as well as single-base swaps not affected by mismatch repair. These results not only demonstrate the feasibility of recombineering in P. putida, but they also enable a suite of multiplexed genomic manipulations in this biotechnologically important bacterium.
Collapse
Affiliation(s)
- Tomás Aparicio
- Systems Biology Program, National Center of Biotechnology CSIC, Madrid, Spain
| | - Sheila I Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Alex T Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Victor de Lorenzo
- Systems Biology Program, National Center of Biotechnology CSIC, Madrid, Spain.
| | | |
Collapse
|
20
|
Molina-Santiago C, Cordero BF, Daddaoua A, Udaondo Z, Manzano J, Valdivia M, Segura A, Ramos JL, Duque E. Pseudomonas putida as a platform for the synthesis of aromatic compounds. MICROBIOLOGY-SGM 2016; 162:1535-1543. [PMID: 27417954 DOI: 10.1099/mic.0.000333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aromatic compounds such as l-phenylalanine, 2-phenylethanol and trans-cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by 'green' alternatives produced in microbial cell factories. The solvent-tolerant Pseudomonas putida DOT-T1E strain was genetically modified to produce up to 1 g l-1 of l-phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the pheAfbr gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase (kdc) and an alcohol dehydrogenase (adh) enabled the strain to produce up to 180 mg l-1 2-phenylethanol. When phenylalanine ammonia lyase (pal) was introduced, the resulting strain produced up to 200 mg l-1 of trans-cinnamate. These results demonstrate that P. putida can serve as a promising microbial cell factory for the production of l-phenylalanine and related compounds.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Baldo F Cordero
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Abdelali Daddaoua
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Zulema Udaondo
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Javier Manzano
- Biotechnology - Process Development Department, Abengoa Research, Babilafuente, Salamanca, Spain
| | - Miguel Valdivia
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Ana Segura
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Juan-Luis Ramos
- Biotechnology - Process Development Department, Abengoa Research, Babilafuente, Salamanca, Spain.,Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Estrella Duque
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| |
Collapse
|
21
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
22
|
Molina L, Udaondo Z, Duque E, Fernández M, Bernal P, Roca A, de la Torre J, Ramos JL. Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS One 2016; 11:e0147478. [PMID: 26820467 PMCID: PMC4731212 DOI: 10.1371/journal.pone.0147478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host’s immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- * E-mail:
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Estrella Duque
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Matilde Fernández
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Patricia Bernal
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Imperial College London, South Kensington Campus, London, United Kingdom
| | - Amalia Roca
- Bio-Iliberis R&D, C/ Capileira 7, 18210 Peligros, Granada, Spain
| | - Jesús de la Torre
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Juan Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| |
Collapse
|
23
|
Martín-Moldes Z, Zamarro MT, del Cerro C, Valencia A, Gómez MJ, Arcas A, Udaondo Z, García JL, Nogales J, Carmona M, Díaz E. Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 2015; 38:462-71. [DOI: 10.1016/j.syapm.2015.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
|
24
|
Udaondo Z, Molina L, Segura A, Duque E, Ramos JL. Analysis of the core genome and pangenome ofPseudomonas putida. Environ Microbiol 2015; 18:3268-3283. [DOI: 10.1111/1462-2920.13015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Zulema Udaondo
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| | - Lázaro Molina
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1 18008 Granada Spain
| | - Ana Segura
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| | - Estrella Duque
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| | - Juan L. Ramos
- Biotechnology Technological Area; Abengoa Research; Calle Energía Solar 1, Building E, Campus Palmas Altas 41014 Sevilla Spain
| |
Collapse
|
25
|
Fernández M, Porcel M, de la Torre J, Molina-Henares MA, Daddaoua A, Llamas MA, Roca A, Carriel V, Garzón I, Ramos JL, Alaminos M, Duque E. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front Microbiol 2015; 6:871. [PMID: 26379646 PMCID: PMC4548156 DOI: 10.3389/fmicb.2015.00871] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas putida strains are ubiquitous in soil and water but have also been reported as opportunistic human pathogens capable of causing nosocomial infections. In this study we describe the multilocus sequence typing of four P. putida strains (HB13667, HB8234, HB4184, and HB3267) isolated from in-patients at the Besançon Hospital (France). The four isolates (in particular HB3267) were resistant to a number of antibiotics. The pathogenicity and virulence potential of the strains was tested ex vivo and in vivo using different biological models: human tissue culture, mammalian tissues, and insect larvae. Our results showed a significant variability in the ability of the four strains to damage the host; HB13667 did not exhibit any pathogenic traits, HB4184 caused damage only ex vivo in human tissue cultures, and HB8234 had a deleterious effect in tissue culture and in vivo on rat skin, but not in insect larvae. Interestingly, strain HB3267 caused damage in all the model systems studied. The putative evolution of these strains in medical environments is discussed.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain ; Bio-Iliberis R&D Granada, Spain
| | - Mario Porcel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain ; Unit of Integrated Plant Protection, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, Sweden
| | - Jesús de la Torre
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - M A Molina-Henares
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain ; Abengoa Research Sevilla, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | | | - Victor Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria Ibs Granada, Spain
| | - Ingrid Garzón
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria Ibs Granada, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain ; Abengoa Research Sevilla, Spain
| | - Miguel Alaminos
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria Ibs Granada, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain ; Abengoa Research Sevilla, Spain
| |
Collapse
|
26
|
Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A. Mechanisms of solvent resistance mediated by interplay of cellular factors inPseudomonas putida. FEMS Microbiol Rev 2015; 39:555-66. [DOI: 10.1093/femsre/fuv006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 11/14/2022] Open
|
27
|
Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ Microbiol 2014; 16:1267-81. [PMID: 24373097 DOI: 10.1111/1462-2920.12368] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/14/2013] [Indexed: 12/13/2022]
Abstract
In Gram-negative bacteria, multidrug efflux pumps are responsible for the extrusion of chemicals that are deleterious for growth. Some of these efflux pumps are induced by endogenously produced effectors, while abiotic or biotic signals induce the expression of other efflux pumps. In Pseudomonas putida, the TtgABC efflux pump is the main antibiotic extrusion system that respond to exogenous antibiotics through the modulation of the expression of this operon mediated by TtgR. The plasmid-encoded TtgGHI efflux pump in P. putida plays a minor role in antibiotic resistance in the parental strain; however, its role is critical in isogenic backgrounds deficient in TtgABC. Expression of ttgGHI is repressed by the TtgV regulator that recognizes indole as an effector, although P. putida does not produce indole itself. Because indole is not produced by Pseudomonas, the indole-dependent antibiotic resistance seems to be part of an antibiotic resistance programme at the community level. Pseudomonas putida recognizes indole added to the medium or produced by Escherichia coli in mixed microbial communities. Transcriptomic analyses revealed that the indole-specific response involves activation of 43 genes and repression of 23 genes. Indole enhances not only the expression of the TtgGHI pump but also a set of genes involved in iron homeostasis, as well as genes for amino acid catabolism. In a ttgABC-deficient P. putida, background ampicillin and other bactericidal compounds lead to cell death. Co-culture of E. coli and P. putida ΔttgABC allowed growth of the P. putida mutant in the presence of ampicillin because of induction of the indole-dependent efflux pump.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, 18008, Granada, Spain
| | | | | | | | | |
Collapse
|