1
|
Sikora M, Wąsik S, Semaniak J, Drulis-Kawa Z, Wiśniewska-Wrona M, Arabski M. Chitosan-based matrix as a carrier for bacteriophages. Appl Microbiol Biotechnol 2024; 108:6. [PMID: 38165478 PMCID: PMC10761466 DOI: 10.1007/s00253-023-12838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Wound healing is a dynamic and complex process where infection prevention is essential. Chitosan, thanks to its bactericidal activity against gram-positive and gram-negative bacteria, as well as anti-inflammatory and hemostatic properties, is an excellent candidate to design dressings for difficult-to-heal wound treatment. The great advantage of this biopolymer is its capacity to be chemically modified, which allows for the production of various functional forms, depending on the needs and subsequent use. Moreover, chitosan can be an excellent polymer matrix for bacteriophage (phage) packing as a novel alternative/supportive antibacterial therapy approach. This study is focused on the preparation and characteristics of chitosan-based material in the form of a film with the addition of Pseudomonas lytic phages (KTN4, KT28, and LUZ19), which would exhibit antibacterial activity as a potential dressing that accelerates the wound healing. We investigated the method of producing a polymer based on microcrystalline chitosan (MKCh) to serve as the matrix for phage deposition. We described some important parameters such as average molar mass, swelling capacity, surface morphology, phage release profile, and antibacterial activity tested in the Pseudomonas aeruginosa bacterial model. The chitosan polysaccharide turned out to interact with phage particles immobilizing them within a material matrix. Nevertheless, with the high hydrophilicity and swelling features of the prepared material, the external solution of bacterial culture was absorbed and phages went in direct contact with bacteria causing their lysis in the polymer matrix. KEY POINTS: • A novel chitosan-based matrix with the addition of active phages was prepared • Phage interactions with the chitosan matrix were determined as electrostatic • Phages in the matrix work through direct contact with the bacterial cells.
Collapse
Affiliation(s)
- Monika Sikora
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
- Lukasiewicz Research Network-Lodz Institute of Technology, Lodz, Poland
| | - Sławomir Wąsik
- Institute of Physics, Jan Kochanowski University in Kielce, Kielce, Poland
- Central Office of Measures, Warsaw, Poland
| | - Jacek Semaniak
- Institute of Physics, Jan Kochanowski University in Kielce, Kielce, Poland
- Central Office of Measures, Warsaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | | | - Michał Arabski
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland.
- Central Office of Measures, Warsaw, Poland.
| |
Collapse
|
2
|
Shanmugasundaram S, Nayak N, Puzhankara L, Kedlaya MN, Rajagopal A, Karmakar S. Bacteriophages: the dawn of a new era in periodontal microbiology? Crit Rev Microbiol 2024; 50:212-223. [PMID: 36883683 DOI: 10.1080/1040841x.2023.2182667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The oral microbiome, populated by a diverse range of species, plays a critical role in the initiation and progression of periodontal disease. The most dominant yet little-discussed players in the microbiome, the bacteriophages, influence the health and disease of the host in various ways. They, not only contribute to periodontal health by preventing the colonization of pathogens and disrupting biofilms but also play a role in periodontal disease by upregulating the virulence of periodontal pathogens through the transfer of antibiotic resistance and virulence factors. Since bacteriophages selectively infect only bacterial cells, they have an enormous scope to be used as a therapeutic strategy; recently, phage therapy has been successfully used to treat antibiotic-resistant systemic infections. Their ability to disrupt biofilms widens the scope against periodontal pathogens and dental plaque biofilms in periodontitis. Future research focussing on the oral phageome and phage therapy's effectiveness and safety could pave way for new avenues in periodontal therapy. This review explores our current understanding of bacteriophages, their interactions in the oral microbiome, and their therapeutic potential in periodontal disease.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Wiebe KG, Cook BWM, Lightly TJ, Court DA, Theriault SS. Investigation into scalable and efficient enterotoxigenic Escherichia coli bacteriophage production. Sci Rep 2024; 14:3618. [PMID: 38351153 PMCID: PMC10864315 DOI: 10.1038/s41598-024-53276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
As the demand for bacteriophage (phage) therapy increases due to antibiotic resistance in microbial pathogens, strategies and methods for increased efficiency, large-scale phage production need to be determined. To date, very little has been published on how to establish scalable production for phages, while achieving and maintaining a high titer in an economical manner. The present work outlines a phage production strategy using an enterotoxigenic Escherichia coli-targeting phage, 'Phage75', and accounts for the following variables: infection load, multiplicity of infection, temperature, media composition, harvest time, and host bacteria. To streamline this process, variables impacting phage propagation were screened through a high-throughput assay monitoring optical density at 600 nm (OD600) to indirectly infer phage production from host cell lysis. Following screening, propagation conditions were translated in a scalable fashion in shake flasks at 0.01 L, 0.1 L, and 1 L. A final, proof-of-concept production was then carried out in a CellMaker bioreactor to represent practical application at an industrial level. Phage titers were obtained in the range of 9.5-10.1 log10 PFU/mL with no significant difference between yields from shake flasks and CellMaker. Overall, this suggests that the methodology for scalable processing is reliable for translating into large-scale phage production.
Collapse
Affiliation(s)
- Katie G Wiebe
- Cytophage Technologies Inc., Winnipeg, MB, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Deborah A Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Steven S Theriault
- Cytophage Technologies Inc., Winnipeg, MB, Canada.
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Parmar K, Komarow L, Ellison DW, Filippov AA, Nikolich MP, Fackler JR, Lee M, Nair A, Agrawal P, Tamma PD, Souli M, Evans SR, Greenwood-Quaintance KE, Cunningham SA, Patel R. Interlaboratory comparison of Pseudomonas aeruginosa phage susceptibility testing. J Clin Microbiol 2023; 61:e0061423. [PMID: 37962552 PMCID: PMC10729752 DOI: 10.1128/jcm.00614-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Standardized approaches to phage susceptibility testing (PST) are essential to inform selection of phages for study in patients with bacterial infections. There is no reference standard for assessing bacterial susceptibility to phage. We compared agreement between PST performed at three centers: two centers using a liquid assay standardized between the sites with the third, a plaque assay. Four Pseudomonas aeruginosa phages: PaWRA01ø11 (EPa11), PaWRA01ø39 (EPa39), PaWRA02ø83 (EPa83), PaWRA02ø87 (EPa87), and a cocktail of all four phages were tested against 145 P. aeruginosa isolates. Comparisons were made within measurements at the two sites performing the liquid assay and between these two sites. Agreement was assessed based on coverage probability (CP8), total deviation index, concordance correlation coefficient (CCC), measurement accuracy, and precision. For the liquid assay, there was satisfactory agreement among triplicate measurements made on different days at site 1, and high agreement based on accuracy and precision between duplicate measurements made on the same run at site 2. There was fair accuracy between measurements of the two sites performing the liquid assay, with CCCs below 0.6 for all phages tested. When compared to the plaque assay (performed once at site 3), there was less agreement between results of the liquid and plaque assays than between the two sites performing the liquid assay. Similar findings to the larger group were noted in the subset of 46 P. aeruginosa isolates from cystic fibrosis. Results of this study suggest that reproducibility of PST methods needs further development.
Collapse
Affiliation(s)
- Krupa Parmar
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lauren Komarow
- Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Damon W. Ellison
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P. Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Martin Lee
- Adaptive Phage Therapeutics Inc., Gaithersburg, Maryland, USA
| | - Anjna Nair
- Adaptive Phage Therapeutics Inc., Gaithersburg, Maryland, USA
| | - Priyesh Agrawal
- Adaptive Phage Therapeutics Inc., Gaithersburg, Maryland, USA
| | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maria Souli
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Scott R. Evans
- Biostatistics Center, George Washington University, Rockville, Maryland, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., USA
| | - Kerryl E. Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott A. Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - for the Antibacterial Resistance Leadership Group
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Biostatistics Center, George Washington University, Rockville, Maryland, USA
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Adaptive Phage Therapeutics Inc., Gaithersburg, Maryland, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, D.C., USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Yerushalmy O, Braunstein R, Alkalay-Oren S, Rimon A, Coppenhagn-Glazer S, Onallah H, Nir-Paz R, Hazan R. Towards Standardization of Phage Susceptibility Testing: The Israeli Phage Therapy Center "Clinical Phage Microbiology"-A Pipeline Proposal. Clin Infect Dis 2023; 77:S337-S351. [PMID: 37932122 DOI: 10.1093/cid/ciad514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Using phages as salvage therapy for nonhealing infections is gaining recognition as a viable solution for patients with such infections. The escalating issue of antibiotic resistance further emphasizes the significance of using phages in treating bacterial infections, encompassing compassionate-use scenarios and clinical trials. Given the high specificity of phages, selecting the suitable phage(s) targeting the causative bacteria becomes critical for achieving treatment success. However, in contrast to conventional antibiotics, where susceptibility-testing procedures were well established for phage therapy, there is a lack of standard frameworks for matching phages from a panel to target bacterial strains and assessing their interactions with antibiotics or other agents. This review discusses and compares published methods for clinical phage microbiology, also known as phage susceptibility testing, and proposes guidelines for establishing a standard pipeline based on our findings over the past 5 years of phage therapy at the Israeli Phage Therapy Center.
Collapse
Affiliation(s)
- Ortal Yerushalmy
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Braunstein
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alkalay-Oren
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Rimon
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagn-Glazer
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadil Onallah
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ran Nir-Paz
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Hazan
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther 2023; 8:386. [PMID: 37806986 PMCID: PMC10560686 DOI: 10.1038/s41392-023-01619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, PR China.
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, PR China.
- Central Laboratory of Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, 410013, PR China.
| |
Collapse
|
7
|
Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, Vila MMDC, Balcão VM, Attama AA. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023; 15:2416. [PMID: 37896176 PMCID: PMC10609668 DOI: 10.3390/pharmaceutics15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health. However, it is imperative to understand these interactions as they open up possible applicable techniques to control gut-implicated bacterial diseases. Thus, this review aims to explore the interactions of bacteriophages with bacterial communities in the gut and their current and potential impacts on human health.
Collapse
Affiliation(s)
- Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Chinasa V. Olovo
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria;
| | - Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Chisom F. Kalu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Ebele B. Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Anthony A. Attama
- Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
8
|
Kim JI, Hasnain MA, Moon GS. Expression of a recombinant endolysin from bacteriophage CAP 10-3 with lytic activity against Cutibacterium acnes. Sci Rep 2023; 13:16430. [PMID: 37777575 PMCID: PMC10542754 DOI: 10.1038/s41598-023-43559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
The bacteriophage CAP 10-3 forming plaques against Cutibacterium acnes which causes skin acne was previously isolated from human skin acne lesion. Incomplete whole genome sequence (WGS) of the bacteriophage CAP 10-3 was obtained and it had 29,643 bp long nucleotide with 53.86% GC content. The sequence was similar to C. acnes phage PAP 1-1 with a nucleotide sequence identity of 89.63% and the bacteriophage belonged to Pahexavirus. Bioinformatic analysis of the WGS predicted 147 ORFs and functions of 40 CDSs were identified. The predicted endolysin gene of bacteriophage CAP 10-3 was 858 bp long which was deduced as 285 amino acids (~ 31 kDa). The protein had the highest similarity with amino acid sequence of the endolysin from Propionibacterium phage PHL071N05 with 97.20% identity. The CAP 10-3 endolysin gene was amplified by PCR with primer pairs based on the gene sequence, cloned into an expression vector pET-15b and transformed into Escherichia coli BL21(DE3) strain. The predicted protein band (~ 33 kDa) for the recombinant endolysin was detected in an SDS-PAGE gel and western blot assay. The concentrated supernatant of cell lysate from E. coli BL21(DE3) (pET-15b_CAP10-3 end) and a partially purified recombinant CAP 10-3 endolysin showed antibacterial activity against C. acnes KCTC 3314 in a dose-dependent manner. In conclusion, the recombinant CAP 10-3 endolysin was successfully produced in E. coli strain and it can be considered as a therapeutic agent candidate for treatment of human skin acne.
Collapse
Affiliation(s)
- Ja-I Kim
- Major of Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909, Korea
| | - Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469, Korea
| | - Gi-Seong Moon
- Major of Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909, Korea.
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469, Korea.
| |
Collapse
|
9
|
Osman AH, Kotey FCN, Odoom A, Darkwah S, Yeboah RK, Dayie NTKD, Donkor ES. The Potential of Bacteriophage-Antibiotic Combination Therapy in Treating Infections with Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:1329. [PMID: 37627749 PMCID: PMC10451467 DOI: 10.3390/antibiotics12081329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The growing threat of antibiotic resistance is a significant global health challenge that has intensified in recent years. The burden of antibiotic resistance on public health is augmented due to its multifaceted nature, as well as the slow-paced and limited development of new antibiotics. The threat posed by resistance is now existential in phage therapy, which had long been touted as a promising replacement for antibiotics. Consequently, it is imperative to explore the potential of combination therapies involving antibiotics and phages as a feasible alternative for treating infections with multidrug-resistant bacteria. Although either bacteriophage or antibiotics can potentially treat bacterial infections, they are each fraught with resistance. Combination therapies, however, yielded positive outcomes in most cases; nonetheless, a few combinations did not show any benefit. Combination therapies comprising the synergistic activity of phages and antibiotics and combinations of phages with other treatments such as probiotics hold promise in the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (A.-H.O.); (F.C.N.K.); (A.O.); (S.D.); (R.K.Y.); (N.T.K.D.D.)
| |
Collapse
|
10
|
Ali Y, Inusa I, Sanghvi G, Mandaliya V, Bishoyi AK. The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens. Microb Pathog 2023:106199. [PMID: 37336428 DOI: 10.1016/j.micpath.2023.106199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Phage therapy; a revived antimicrobial weapon, has great therapeutic advantages with the main ones being its ability to eradicate multidrug-resistant pathogens as well as selective toxicity, which ensures that beneficial microbiota is not harmed, unlike antibiotics. These therapeutic properties make phage therapy a novel approach for combating resistant pathogens. Since millions of people across the globe succumb to multidrug-resistant infections, the implementation of phage therapy as a standard antimicrobial could transform global medicine as it offers greater therapeutic advantages than conventional antibiotics. Although phage therapy has incomplete clinical data, such as a lack of standard dosage and the ideal mode of administration, the conducted clinical studies report its safety and efficacy in some case studies, and therefore, this could lessen the concerns of its skeptics. Since its discovery, the development of phage therapeutics has been in a smooth progression. Concerns about phage resistance in populations of pathogenic bacteria are raised when bacteria are exposed to phages. Bacteria can use restriction-modification, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) defense, or mutations in the phage receptors to prevent phage invasion. Phage resistance, however, is often costly for the bacteria and may lead to a reduction in its virulence. The ongoing competition between bacteria and phage, on the other hand, ensures the emergence of phage strains that have evolved to infect resistant bacteria. A phage can quickly adapt by altering one or more aspects of its mode of infection, evading a resistance mechanism through genetic modifications, or directly thwarting the CRISPR-Cas defense. Using phage-bacterium coevolution as a technique could be crucial in the development of phage therapy as well. Through its recent advancement, gene-editing tools such as CRISPR-Cas allow the bioengineering of phages to produce phage cocktails that have broad spectrum activities, which could maximize the treatment's efficacy. This review presents the current state of phage therapy and its progression toward establishing standard medicine for combating antibiotic resistance. Recent clinical trials of phage therapy, some important case studies, and other ongoing clinical studies of phage therapy are all presented in this review. Furthermore, the recent advancement in the development of phage therapeutics, its application in various sectors, and concerns regarding its implementation are also highlighted here. Phage therapy has great potential and could help the fight against drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Yussuf Ali
- Department of Microbiology, Marwadi University, Gujarat, India
| | - Ibrahim Inusa
- Department of Information Technology, Marwadi University, Gujarat, India
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Gujarat, India
| | | | | |
Collapse
|
11
|
Zünd M, Dunham SJB, Rothman JA, Whiteson KL. What Lies Beneath? Taking the Plunge into the Murky Waters of Phage Biology. mSystems 2023; 8:e0080722. [PMID: 36651762 PMCID: PMC9948730 DOI: 10.1128/msystems.00807-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence revolution revealed that bacteria-infecting viruses, known as phages, are Earth's most abundant biological entities. Phages have far-reaching impacts on the form and function of microbial communities and play a fundamental role in ecological processes. However, even well into the sequencing revolution, we have only just begun to explore the murky waters around the phage biology iceberg. Many viral reads cannot be assigned to a culturable isolate, and reference databases are biased toward more easily collectible samples, which likely distorts our conclusions. This minireview points out alternatives to mapping reads to reference databases and highlights innovative bioinformatic and experimental approaches that can help us overcome some of the challenges in phage research and better decipher the impact of phages on microbial communities. Moving beyond the identification of novel phages, we highlight phage metabolomics as an important influencer of bacterial host cell physiology and hope to inspire the reader to consider the effects of phages on host metabolism and ecosystems at large. We encourage researchers to report unassigned/unknown sequencing reads and contigs and to continue developing alternative methods to investigate phages within sequence data.
Collapse
Affiliation(s)
- Mirjam Zünd
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Sage J. B. Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
12
|
Stipniece L, Rezevska D, Kroica J, Racenis K. Effect of the Biopolymer Carrier on Staphylococcus aureus Bacteriophage Lytic Activity. Biomolecules 2022; 12:1875. [PMID: 36551303 PMCID: PMC9775117 DOI: 10.3390/biom12121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The use of implant materials is always associated with the risk of infection. Moreover, the effectiveness of antibiotics is reduced due to antibiotic-resistant pathogens. Thus, selecting the appropriate alternative antimicrobials for local delivery systems is correlated with successful infection management. We evaluated immobilization of the S. aureus specific bacteriophages in clinically recognized biopolymers, i.e., chitosan and alginate, to control the release profile of the antimicrobials. The high-titre S. aureus specific bacteriophages were prepared from commercial bacteriophage cocktails. The polymer mixtures with the propagated bacteriophages were then prepared. The stability of the S. aureus bacteriophages in the biopolymer solutions was assessed. In the case of chitosan, no plaques indicating the presence of the lytic bacteriophages were observed. The titre reduction of the S. aureus bacteriophages in the Na-alginate was below 1 log unit. Furthermore, the bacteriophages retained their lytic activity in the alginate after crosslinking with Ca2+ ions. The release of the lytic S. aureus bacteriophages from the Ca-alginate matrices in the TRIS-HCl buffer solution (pH 7.4 ± 0.2) was determined. After 72 h-0.292 ± 0.021% of bacteriophages from the Ca-alginate matrices were released. Thus, sustained release of the lytic S. aureus bacteriophages can be ensured.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048 Riga, Latvia
| | - Dace Rezevska
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
- Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
| | - Karlis Racenis
- Department of Biology and Microbiology, Riga Stradins University, LV-1048 Riga, Latvia
- Centre of Nephrology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| |
Collapse
|
13
|
Titécat M, Rousseaux C, Dubuquoy C, Foligné B, Rahmouni O, Mahieux S, Desreumaux P, Woolston J, Sulakvelidze A, Wannerberger K, Neut C. Safety and Efficacy of an AIEC-targeted Bacteriophage Cocktail in a Mice Colitis Model. J Crohns Colitis 2022; 16:1617-1627. [PMID: 35997152 DOI: 10.1093/ecco-jcc/jjac064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota. METHODS The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively. RESULTS The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation. CONCLUSIONS Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.
Collapse
Affiliation(s)
- Marie Titécat
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | | | | | - Benoît Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | - Oumaïra Rahmouni
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | - Séverine Mahieux
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| | - Pierre Desreumaux
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France.,Intestinal Biotech Development, 59045 Lille, France
| | | | | | | | - Christel Neut
- Univ. Lille, INSERM, CHU Lille, U1286 - Institute for Translational Research in Inflammation, Lille, France
| |
Collapse
|
14
|
El-Sayed D, Elsayed T, Amin N, Al-Shahaby A, Goda H. Evaluating the Phenotypic and Genomic Characterization of Some Egyptian Phages Infecting Shiga Toxin-Producing Escherichia coli O157:H7 for the Prospective Application in Food Bio-Preservation. BIOLOGY 2022; 11:biology11081180. [PMID: 36009807 PMCID: PMC9404725 DOI: 10.3390/biology11081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) represents a hazardous health problem because it causes various human gastrointestinal tract diseases, for example, bloody diarrhea and hemorrhagic colitis. The major concern of STEC O157:H7 resulted from its biological characteristics, including low infective dose, ability to express different virulence factors and multidrug resistance of some species. Principally, the human outbreaks of STEC O157:H7 are associated with consumption of undercooked or contaminated bovine dairy and meat products. Treatments of E. coli infections have been increasingly complicated as a result of the development of antibiotic resistance. For this reason, as well as the increasing consumer demand for safe food products, it has become important to apply alternative effective and eco-friendly approaches, such as using lytic phages, to control the growth of pathogenic bacteria in food. This study focused on evaluating the applicability of locally isolated lytic phages specific to Shiga toxin-producing Escherichia coli O157:H7 as prospective biocontrol agents in food. Our findings presented two phages with promising biological and genomic characteristics to be applied in food bio-preservation. Abstract Shiga toxin-producing E. coli (STEC) is considered a worldwide public health and food safety problem. Despite the implementation of various different approaches to control food safety, outbreaks persist. The aim of study is to evaluate the applicability of phages, isolated against STEC O157:H7, as prospective food bio-preservatives. Considering the relatively wide host range and greatest protein diversity, two phages (STEC P2 and P4) from four were furtherly characterized. Complete genome analysis confirmed the absence of toxins and virulence factors—encoding genes. The results confirmed the close relation of STEC P2 to phages of Myoviridae, and STEC P4 to the Podoviridae family. The phages retained higher lytic competence of 90.4 and 92.68% for STEC P2 and P4, respectively with the HTST pasteurization. The strong acidic (pH 1) and alkaline (pH 13) conditions had influential effect on the surviving counts of the two phages. The lowest survivability of 63.37 and 86.36% in STEC P2 and P4 lysate, respectively appeared in 2% bile salt solution after 3 h. The results confirmed the strong effect of simulated gastric fluid (SGF) on the survivability of the two phages comparing with simulated intestinal fluid (SIF). Therefore, the two phages could be applied as a natural alternative for food preservation.
Collapse
|
15
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
16
|
Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci 2022; 23:1494. [PMID: 35163417 PMCID: PMC8835947 DOI: 10.3390/ijms23031494] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Mãe de Deus Hospital, Porto Alegre 90110-270, RS, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Rafaela Pereira Ramires
- Department of Biology, Cellular, Molecular and Biomedical Science, Boise State University, 1910 W University Drive, Boise, ID 83725, USA;
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, SP, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, Tamil Nadu, India;
| | - Anna Vitória Lana
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil;
| | - Gabriel Azzini
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| | - Curtis Scott Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 83703, USA;
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil; (G.A.); (J.F.L.)
| |
Collapse
|
17
|
Characterization and genome analysis of a novel Vibrio parahaemolyticus phage vB_VpP_DE17. Virus Res 2022; 307:198580. [PMID: 34688784 DOI: 10.1016/j.virusres.2021.198580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
A novel phage vB_VpP_DE17, which infects Vibrio parahaemolyticus, was isolated from the sewer of the Huangsha aquatic market in Guangzhou. Transmission electron microscopy indicated that DE17 had an icosahedral head (47 ± 2 nm diameter) and a short, non-contractile tail (17 ± 2 nm). The genome of DE17 was a double-stranded linear DNA with a length of 43,397 bp and GC content of 49.23%. In total, 49 putative open reading frames (ORFs) were predicted and could be divided into six modules: DNA metabolism, lysis, packaging, structure, additional function, and hypothetical proteins. Taxonomic analysis revealed that the phage belonging to the genus of Maculvirus, Autographivirinae subfamily, Podoviridae family. DE17 had a short latent period of 5 min with burst size of 80 pfu/cell. Its optimum temperature and pH ranges were 4 °C-50 °C and 5-10, respectively; it was completely inactivated after 20 min of ultraviolet irradiation. No transfer RNA (tRNA), virulence associated, or antibiotic resistance genes were identified. Bacterial challenge test revealed that DE17 had a certain inhibitory effect on V. parahaemolyticus within 6 h. Characterization, genomic analysis and in vitro antibacterial assays of DE17 will further enhance our understanding of phage biology and diversity.
Collapse
|
18
|
Vieira-Baptista P, De Seta F, Verstraelen H, Ventolini G, Lonnee-Hoffmann R, Lev-Sagie A. The Vaginal Microbiome: V. Therapeutic Modalities of Vaginal Microbiome Engineering and Research Challenges. J Low Genit Tract Dis 2022; 26:99-104. [PMID: 34928260 PMCID: PMC8719494 DOI: 10.1097/lgt.0000000000000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This series of articles, titled The Vaginal Microbiome (VMB), written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the recent findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders. MATERIALS AND METHODS A search of PubMed database was performed, using the search terms "vaginal microbiome" with "treatment," "diagnosis," and "research." Full article texts were reviewed. Reference lists were screened for additional articles. RESULTS The currently available approaches for treating vaginitis or attempting to modulate the VMB are often insufficient. It has traditionally relied on the use of antibiotics, antiseptics, and antifungals. The fifth and last article of this series discusses the new and/or alternative therapeutic modalities. It addresses the role of probiotics, prebiotics and symbiotics, activated charcoal, biofilm disrupting agents, acidifying agents, phage therapy, and the concept of vaginal microbiome transplant. The challenges facing the research of VMB, including the clinical impact of microbiome manipulation, classification, and new diagnostic approaches are discussed. CONCLUSIONS Microbiome research has grown dramatically in recent years, motivated by innovations in technology and decrease in analysis costs. This research has yielded huge insight into the nature of microbial communities, their interactions, and effects with their hosts and other microbes. Further understanding of the bacterial, fungal, phage, and viral microbiomes in combination with host genetics, immunologic status, and environmental factors is needed to better understand and provide personalized medical diagnostics and interventions to improve women's health.
Collapse
Affiliation(s)
- Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Porto
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto
- LAP, a Unilabs Company, Porto, Portugal
| | - Francesco De Seta
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health “IRCCS Burlo Garofolo”, Trieste
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Hans Verstraelen
- Department of Obstetrics & Gynaecology, Ghent University Hospital, Ghent
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gary Ventolini
- Professor of Obstetrics and Gynecology, Distinguish University Professor, School of Medicine, Texas Tech University Health Sciences Center, Permian Basin, Odessa, Texas, USA
| | - Risa Lonnee-Hoffmann
- Department of Obstetrics and Gynecology, St Olavs University Hospital, Trondheim
- Institute for Clinical and Molekular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
| | - Ahinoam Lev-Sagie
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
19
|
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S. Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 2021; 19:e3001406. [PMID: 34637438 PMCID: PMC8509860 DOI: 10.1371/journal.pbio.3001406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments. Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.
Collapse
Affiliation(s)
- Erin L. Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rory Claydon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Sean Meaden
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aidan T. Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Yan J, Yang R, Yu S, Zhao W. The strategy of biopreservation of meat product against MRSA using lytic domain of lysin from Staphylococcus aureus bacteriophage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Efficacy of Phage-Antibiotic Combinations Against Multidrug-Resistant Klebsiella pneumoniae Clinical Isolates. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.111926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Increasing antibiotic resistance warrants therapeutic alternatives to eradicate resistant bacteria. Combined phage-antibiotic therapy is a promising approach for eliminating bacterial infections and limiting the evolution of therapy-resistant diseases. Objectives: In the present study, we evaluated the effects of combinations of bacteriophages and antibiotics against multidrug-resistant (MDR) Klebsiella pneumoniae. Methods: Two MDR strains (GenBank no. MF953600 & MF953599) of K. pneumoniae were used. Bacteriophages were isolated from hospital sewage samples by employing a double agar overlay assay and identified by transmission electron microscopy. For further characterization of bacteriophages, the killing assay and host range test were performed. To assess therapeutic efficacy, phages (7.5 × 104 PFU/mL) were used in combination with various antibiotics. Results: The phage-cefepime and tetracycline combinations displayed promising therapeutic effects, restricting the growth of K. pneumoniae isolates, as evidenced by recording OD650nm values. Conclusions: The results of the current study showed that phage-antibiotic combination was a potential therapeutic approach to treat the infections caused by MDR K. pneumoniae.
Collapse
|
22
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
23
|
Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release 2021; 331:154-163. [DOI: 10.1016/j.jconrel.2021.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
24
|
Niu YD, Liu H, Du H, Meng R, Sayed Mahmoud E, Wang G, McAllister TA, Stanford K. Efficacy of Individual Bacteriophages Does Not Predict Efficacy of Bacteriophage Cocktails for Control of Escherichia coli O157. Front Microbiol 2021; 12:616712. [PMID: 33717006 PMCID: PMC7943454 DOI: 10.3389/fmicb.2021.616712] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 01/21/2023] Open
Abstract
Effectiveness of bacteriophages AKFV33 (Tequintavirus, T5) and AHP24 (Rogunavirus, T1), wV7 (Tequatrovirus, T4), and AHP24S (Vequintavirus, rV5), as well as 11 cocktails of combinations of the four phages, were evaluated in vitro for biocontrol of six common phage types of Escherichia coli O157 (human and bovine origins) at different multiplicities of infection (MOIs; 0.01–1,000), temperatures (37 or 22°C), and exposure times (10–22 h). Phage efficacy against O157 was highest at MOI 1,000 (P < 0.001) and after 14-18 h of exposure at 22°C (P < 0.001). The activity of individual phages against O157 did not predict the activity of a cocktail of these phages even at the same temperature and MOI. Combinations of phages were neutral (no better or worse than the most effective constituent phages acting alone), displayed facilitation (greater efficacy than the most effective constituent phages acting alone), or antagonistic (lower efficacy than the most effective constituent phages acting alone). Across MOIs, temperatures, exposure time, and O157 strains, a cocktail of T1, T4, and rV5 was most effective (P < 0.05) against O157, although T1 and rV5 were less effective (P < 0.001) than other individual phages. T5 was the most effective individual phages (P < 0.05), but was antagonistic to other phages, particularly rV5 and T4 + rV5. Interactions among phages were influenced by phage genera and phage combination, O157 strains, MOIs, incubation temperatures, and times. Based on this study, future development of phage cocktails should, as a minimum, include confirmation of a lack of antagonism among constituent phages and preferably confirmation of facilitation or synergistic effects.
Collapse
Affiliation(s)
- Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hui Liu
- Hohhot Bureau of Ecology and Environment, Hohhot, China.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hechao Du
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, China
| | - Ruiqiang Meng
- Inner Mongolia C. P. Livestock Husbandry Co., Ltd., Hohhot, China
| | - El Sayed Mahmoud
- School of Applied Computing, Faculty of Applied Science and Technology, Sheridan College, Oakville, ON, Canada
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kim Stanford
- Department of Biological Science, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
25
|
Jeon G, Ahn J. Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb Pathog 2021; 150:104726. [PMID: 33400986 DOI: 10.1016/j.micpath.2020.104726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/17/2022]
Abstract
This study was designed to evaluate the physicochemical properties of phage P22 in different pH and antibiotic levels as measured by growth kinetics, phage adsorption, and lytic activity. P22 was susceptible to acidic pHs and stable above pH 4. The latent period of P22 was 45 min and burst size was 34 phages/cell. The adsorption ability of phage to Salmonella Typhimurium was varied depending on the multiplicity of infections (MOIs). The latent period was reduced to 6.84, 4.02, and 1.72 h, respectively, on the levels of the host at 104, 106, and 108 CFU/ml. No significant differences in adsorption were observed between pH 4 and pH 7, but the lytic activities were significantly enhanced at the presence of ceftriaxone (CEA) and ciprofloxacin (CIP) at pH 7. Therefore, the phages combined with antibiotics can be a promising therapeutic tool to control antibiotic-resistant bacteria. This results provide a better understanding of host-phages interactions in different environmental conditions.
Collapse
Affiliation(s)
- Gibeom Jeon
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
26
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Suzhaeva LV, Egorova SA. Antimicrobial resistance of Escherichia coli, isolated from children's intestinal microbiota. Klin Lab Diagn 2020; 65:638-644. [PMID: 33245654 DOI: 10.18821/0869-2084-2020-65-10-638-644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that bacterial resistance existed long before antimicrobials were used in medicine, and not only pathogens are resistant to antibiotics. 511 strains of E. coli isolated from the intestinal microbiota of children aged 1 month to 17 years living in St. Petersburg were studied: the susceptibility to 15 antibiotics was determined by the disk diffusion method, as well as the susceptibility to 6 commercial bacteriophages produced by «Microgen» (Russia). The b-lactamase genes of molecular families TEM, SHV, OXA, and CTX-M were detected by multiplex PCR. 39,3% E. coli isolates were resistant to one or more antimicrobial classes. The proportion of multidrug resistant isolates (resistant to 3 or more classes) was 16,6%. Multidrug resistance to clinically significant antimicrobial classes (extended-spectrum cephalosporins (ESC) + fluoroquinolones + aminoglycosides) was detected in 0,8% isolates. Resistance to aminopenicillins was detected in 29,5%, ESC - 11,2%, fluoroquinolones - 13,3%, tetracycline - 20,0%, chloramphenicol - 9,8%, aminoglycosides - 2,5% isolates. b-lactam resistance was due to the beta-lactamase production: to ampicillin - the molecular family TEM (81,9%), ESC - the CTX-M molecular family (87,7%) CTX-M1 - (66%) and CTX-M9 groups (34%). 43,5% multidrug resistant E. coli isolates were susceptible to at least one of the six commercial bacteriophages produced by «Microgen». The study showed that the intestinal microbiota of children is an important reservoir of E. coli resistant (including multidrug resistance) to various classes of antibiotics, and bacteriophage therapy is an alternative method for eradication of antibiotic-resistant E. coli.
Collapse
|
28
|
|
29
|
Adesanya O, Oduselu T, Akin-Ajani O, Adewumi OM, Ademowo OG. An exegesis of bacteriophage therapy: An emerging player in the fight against anti-microbial resistance. AIMS Microbiol 2020; 6:204-230. [PMID: 33134741 PMCID: PMC7595837 DOI: 10.3934/microbiol.2020014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages (simply referred to as Phages) are a class of viruses with the ability to infect and kill prokaryotic cells (bacteria), but are unable to infect mammalian cells. This unique ability to achieve specific infectiousness by bacteriophages has been harnessed in antibacterial treatments dating back almost a decade before the antibiotic era began. Bacteriophages were used as therapeutic agents in treatment of dysentery caused by Shigella dysenteriae as far back as 1919 and in the experimental treatment of a wide variety of other bacterial infections caused by Vibriocholerae, Staphylococcussp., Pseudomonas sp. etc, with varying degrees of success. Phage therapy and its many prospects soon fell out of favour in western medicine after the Second World War, with the discovery of penicillin. The Soviet Union and other countries in Eastern Europe however mastered the craft of bacteriophage isolation, purification and cocktail preparation, with phage-based therapeutics becoming widely available over-the-counter. With the recent rise in cases of multi-drug resistant bacterial infections, the clamour for a return to phage therapy, as a potential solution to the anti-microbial resistance (AMR) crisis has grown louder. This review provides an extensive exposé on phage therapy, addressing its historical use, evidences of its safety and efficacy, its pros and cons when compared with antibiotics, cases of compassionate use for treating life-threatening antibiotic-resistant infections, the limitations to its acceptance and how these may be circumvented.
Collapse
Affiliation(s)
| | - Tolulope Oduselu
- Department of Medical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olubusuyi M Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Ademowo
- Department of Pharmacology & Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
30
|
Puccetti M, Xiroudaki S, Ricci M, Giovagnoli S. Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline? Pharmaceutics 2020; 12:E624. [PMID: 32635461 PMCID: PMC7408102 DOI: 10.3390/pharmaceutics12070624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mismanagement of bacterial infection therapies has undermined the reliability and efficacy of antibiotic treatments, producing a profound crisis of the antibiotic drug market. It is by now clear that tackling deadly infections demands novel strategies not only based on the mere toxicity of anti-infective compounds. Host-directed therapies have been the first example as novel treatments with alternate success. Nevertheless, recent advances in the human microbiome research have provided evidence that compounds produced by the microbial metabolism, namely postbiotics, can have significant impact on human health. Such compounds target the host-microbe-pathogen interface rescuing biotic and immune unbalances as well as inflammation, thus providing novel therapeutic opportunities. This work discusses critically, through literature review and personal contributions, these novel nonantibiotic treatment strategies for infectious disease management and resistance prevention, which could represent a paradigm change rocking the foundation of current antibiotic therapy tenets.
Collapse
Affiliation(s)
| | | | | | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy; (M.P.); (S.X.); (M.R.)
| |
Collapse
|
31
|
Xiong S, Liu X, Deng W, Zhou Z, Li Y, Tu Y, Chen L, Wang G, Fu B. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol 2020; 11:504. [PMID: 32425775 PMCID: PMC7203426 DOI: 10.3389/fphar.2020.00504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Prostatitis is a common urinary tract condition but bring innumerable trouble to clinicians in treatment, as well as great financial burden to patients and the society. Bacterial prostatitis (acute bacterial prostatitis plus chronic bacterial prostatitis) accounting for approximately 20% among all prostatitis have made the urological clinics complain about the genital and urinary systems all over the world. The international challenges of antibacterial treatment (emergence of multidrug-resistant bacteria, extended-spectrum beta-lactamase-producing bacteria, bacterial biofilms production and the shift in bacterial etiology) and the transformation of therapeutic strategy for classic therapy have attracted worldwide attention. To the best of our knowledge currently, there is not a single comprehensive review, which can completely elaborate these important topics and the corresponding treatment strategy in an effective way. This review summarizes the general treatment choices for bacterial prostatitis also provides the alternative pharmacological therapies for those patients resistant or intolerant to general treatment.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
32
|
Maronek M, Link R, Ambro L, Gardlik R. Phages and Their Role in Gastrointestinal Disease: Focus on Inflammatory Bowel Disease. Cells 2020; 9:E1013. [PMID: 32325706 PMCID: PMC7226564 DOI: 10.3390/cells9041013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic autoinflammatory diseases including Crohn's disease and ulcerative colitis. Although the molecular mechanisms governing the pathogenesis of gastrointestinal inflammation are not completely clear, the main factors are presumed to be genetic predisposition, environmental exposure, and the intestinal microbiome. Hitherto, most of the studies focusing on the role of the microbiome studied the action and effect of bacteria. However, the intestinal microbiome comprises other members of the microbial community as well, namely, fungi, protozoa, and viruses. We believe that bacteriophages are among the main orchestrators of the effect of microbiota on the gut mucosa. Therefore, this review aims to summarize the knowledge of the role of intestinal phageome in IBD and to discuss the concept of phage therapy and its future applications.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Rene Link
- Institute of Experimental Medicine, Faculty of Medicine, University of Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (R.L.); (L.A.)
| | - Lubos Ambro
- Institute of Experimental Medicine, Faculty of Medicine, University of Pavol Jozef Šafárik, 040 11 Košice, Slovakia; (R.L.); (L.A.)
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| |
Collapse
|
33
|
Rahbarnia L, Farajnia S, Naghili B, Ahmadzadeh V, Veisi K, Baghban R, Toraby S. Current trends in targeted therapy for drug-resistant infections. Appl Microbiol Biotechnol 2019; 103:8301-8314. [PMID: 31414162 PMCID: PMC7080082 DOI: 10.1007/s00253-019-10028-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Escalating antibiotic resistance is now a serious menace to global public health. It may be led to the emergence of "postantibiotic age" in which most of infections are untreatable. At present, there is an essential need to explore novel therapeutic strategies as a strong and sustainable pipeline to combat antibiotic-resistant infections. This review focuses on recent advances in this area including therapeutic antibodies, antimicrobial peptides, vaccines, gene therapy, genome editing, and phage therapy for tackling drug-resistant infections.
Collapse
Affiliation(s)
- Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran
| | - Kamal Veisi
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Baghban
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayna Toraby
- Immunology Research Center, Tabriz, University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Kaczorowska J, Casey E, Neve H, Franz CM, Noben JP, Lugli GA, Ventura M, van Sinderen D, Mahony J. A Quest of Great Importance-Developing a Broad Spectrum Escherichia coli Phage Collection. Viruses 2019; 11:E899. [PMID: 31561510 PMCID: PMC6832132 DOI: 10.3390/v11100899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/14/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Shigella ssp. and enterotoxigenic Escherichia coli are the most common etiological agents of diarrheal diseases in malnourished children under five years of age in developing countries. The ever-growing issue of antibiotic resistance and the potential negative impact of antibiotic use on infant commensal microbiota are significant challenges to current therapeutic approaches. Bacteriophages (or phages) represent an alternative treatment that can be used to treat specific bacterial infections. In the present study, we screened water samples from both environmental and industrial sources for phages capable of infecting E. coli laboratory strains within our collection. Nineteen phages were isolatedand tested for their ability to infect strains within the ECOR collection and E. coli O157:H7 Δstx. Furthermore, since coliphages have been reported to cross-infect certain Shigella spp., we also evaluated the ability of the nineteen phages to infect a representative Shigella sonnei strain from our collection. Based on having distinct (although overlapping in some cases) host ranges, ten phage isolates were selected for genome sequence and morphological characterization. Together, these ten selected phages were shown to infect most of the ECOR library, with 61 of the 72 strains infected by at least one phage from our collection. Genome analysis of the ten phages allowed classification into five previously described genetic subgroups plus one previously underrepresented subgroup.
Collapse
Affiliation(s)
- Joanna Kaczorowska
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (H.N.)
| | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany; (H.N.)
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium;
| | - Gabriele A. Lugli
- Laboratory of Probiogenomics, Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Marco Ventura
- Laboratory of Probiogenomics, Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Western Road, T12 YT20 Cork, Ireland; (J.K.); (E.C.)
| |
Collapse
|
35
|
Gargiullo L, Del Chierico F, D’Argenio P, Putignani L. Gut Microbiota Modulation for Multidrug-Resistant Organism Decolonization: Present and Future Perspectives. Front Microbiol 2019; 10:1704. [PMID: 31402904 PMCID: PMC6671974 DOI: 10.3389/fmicb.2019.01704] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is of great concern to global public health. Treatment of multi-drug resistant (MDR) infections is a major clinical challenge: the increase in antibiotic resistance leads to a greater risk of therapeutic failure, relapses, longer hospitalizations, and worse clinical outcomes. Currently, there are no validated treatments for many MDR or pandrug-resistant (PDR) infections, and preventing the spread of these pathogens through hospital infection control procedures and antimicrobial stewardship programs is often the only tool available to healthcare providers. Therefore, new solutions to control the colonization of MDR pathogens are urgently needed. In this narrative review, we discuss current knowledge of microbiota-mediated mechanisms of AMR and strategies for MDR colonization control. We focus particularly on fecal microbiota transplantation for MDR intestinal decolonization and report updated literature on its current clinical use.
Collapse
Affiliation(s)
- Livia Gargiullo
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | | | - Patrizia D’Argenio
- Division of Immunology and Infectious Diseases, University-Hospital Pediatric Department, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
36
|
Brüssow H. Hurdles for Phage Therapy to Become a Reality-An Editorial Comment. Viruses 2019; 11:v11060557. [PMID: 31212885 PMCID: PMC6631134 DOI: 10.3390/v11060557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Harald Brüssow
- KU Leuven, Group of Gene Technology, 3001 Leuven, Belgium.
| |
Collapse
|
37
|
Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One 2018; 13:e0206278. [PMID: 30356310 PMCID: PMC6200275 DOI: 10.1371/journal.pone.0206278] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Phage therapy is the use of lytic bacteriophages to cure infections caused by bacteria. The aim of this study is to isolate and to characterize the bacteriophages against Escherichia coli isolated from clinical samples. For isolation of bacteriophages, water samples were collected from the Ganges River, and phage enrichment method was followed for phage isolation. Microbiological, genomic and lyophilization experiments were carried out to characterize the bacteriophage. Galleria mellonella was used to study the potential of phages against E. coli infection. Escherichia phage myPSH1131 belonging to Podoviridae family and found to have broad host range infectivity (n = 31) to infect Enterohemorrhagic E. coli (n = 9), Enteropathogenic E. coli (n = 6), Enterotoxigenic E. coli (n = 3), Enteroaggregative E. coli (n = 3), Uropathogenic E. coli (n = 9) and one unknown E. coli. The genome size is 76,163 base pairs (97 coding regions) and their genes show high similarity to SU10 phage. Lyophilization studies showed that the use of 1M sucrose, 2% gelatin and the combination of both 0.5M sucrose plus 1% gelatin could restore phage viability up to 20 months at 4°C. For in vivo studies, it was observed that a single phage dose can reduce the E. coli infection but to achieve 100% survival rate the infected larvae should be treated with three phage doses (20 μL, 103 PFU/mL) at 6 hours interval. The characterized Escherichia phage myPSH1131 was found to have broad host range activity against E. coli pathogens and in vivo studies showed that multiple doses are required for effective treatment.
Collapse
Affiliation(s)
- Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ashok J. Tamhankar
- Global Health-Health Systems and Policy (HSP): Medicines, focusing antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Indian Initiative for Management of Antibiotic Resistance, Deonar, Mumbai, India
| | - Cecilia Stalsby Lundborg
- Global Health-Health Systems and Policy (HSP): Medicines, focusing antibiotics, Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
38
|
McCallin S, Sarker SA, Sultana S, Oechslin F, Brüssow H. Metagenome analysis of Russian and Georgian Pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environ Microbiol 2018; 20:3278-3293. [PMID: 30051571 DOI: 10.1111/1462-2920.14310] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 01/30/2023]
Abstract
Bacteriophage therapy is a commonly used treatment for Staphylococcus aureus infections in countries of the former Soviet Union, using both single phages and phage cocktails. The scarce data available on Eastern phage cocktails prompted an investigation into commercially-available Pyophage cocktails from two different manufacturers used to treat skin and wound infections. Comparison of the metagenomic composition of two Pyophage products from Georgia and Russia revealed substantial differences in phage-types targeting Escherichia, Enterococcus, Salmonella, Pseudomonas aeruginosa and Proteus, therefore indicating multiple strategies for composing phage cocktails against these bacterial pathogens. Closely-related Kayvirus-like Myoviruses were, however, a shared component against S. aureus within all products, except for the inclusion of a secondary S. aureus Podovirus in one Microgen cocktail. Metagenomic analysis also revealed the presence of several probable prophage sequences but detected no genetic safety risks in terms of virulence factors or antibiotic resistance genes. The safety of broad-spectrum cocktails was tested by comparing the effects of nasal and oral exposure to Eliava Pyophage, a monospecies counterpart and placebo in healthy human carriers of S. aureus. The lack of adverse effects in any treatment groups supports the clinical safety of S. aureus phages administered as a single phage or as phage cocktail.
Collapse
Affiliation(s)
- Shawna McCallin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Shafiqul A Sarker
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shamima Sultana
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Harald Brüssow
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Goes A, Fuhrmann G. Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infect Dis 2018; 4:881-892. [PMID: 29553240 DOI: 10.1021/acsinfecdis.8b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biogenic and biomimetic therapeutics are a relatively new class of systems that are of physiological origin and/or take advantage of natural pathways or aim at mimicking these to improve selective interaction with target tissue. The number of biogenic and bioengineered avenues for drug therapy and diagnostics has multiplied over the past years for many applications, indicating the high expectations associated with this biological route. Nevertheless, the use of "bio"-related approaches for treating or diagnosing infectious diseases is still rare. Given that infectious diseases, in particular bacterial resistances, are seriously on the rise, there is an urgent need to take advantage of biogenic and bioengineered systems to target these challenges. In this manuscript, we first give a definition of the various "bio" terms, including biogenic, biomimetic, bioinspired, and bioengineered and we highlight them using tangible applications in the field of infectious diseases. Our examples cover cell-derived systems, including bioengineered bacteria, virus-like particles, and different cell-mimetics. Moreover, we discuss natural and bioengineered particles such as extracellular vesicles from mammalian and bacterial sources and liposomes. A concluding section outlines the potential for biomaterial-related avenues to overcome challenges associated with difficult-to-treat infections. We critically discuss benefits and risks for these applications and give an outlook on the future of biogenic engineering.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
40
|
Xu Y, Yu X, Gu Y, Huang X, Liu G, Liu X. Characterization and Genomic Study of Phage vB_EcoS-B2 Infecting Multidrug-Resistant Escherichia coli. Front Microbiol 2018; 9:793. [PMID: 29780362 PMCID: PMC5945888 DOI: 10.3389/fmicb.2018.00793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
The potential of bacteriophage as an alternative antibacterial agent has been reconsidered for control of pathogenic bacteria due to the widespread occurrence of multi-drug resistance bacteria. More and more lytic phages have been isolated recently. In the present study, we isolated a lytic phage named vB_EcoS-B2 from waste water. VB_EcoS-B2 has an icosahedral symmetry head and a long tail without a contractile sheath, indicating that it belongs to the family Siphoviridae. The complete genome of vB_EcoS-B2 is composed of a circular double stranded DNA of 44,283 bp in length, with 54.77% GC content. vB_EcoS-B2 is homologous to 14 relative phages (such as Escherichia phage SSL-2009a, Escherichia phage JL1, and Shigella phage EP23), but most of these phages exhibit different gene arrangement. Our results serve to extend our understanding toward phage evolution of family Siphoviridae of coliphages. Sixty-five putative open reading frames were predicted in the complete genome of vB_EcoS-B2. Twenty-one of proteins encoded by vB_EcoS-B2 were determined in phage particles by Mass Spectrometry. Bacteriophage genome and proteome analysis confirmed the lytic nature of vB_EcoS-B2, namely, the absence of toxin-coding genes, islands of pathogenicity, or genes through lysogeny or transduction. Furthermore, vB_EcoS-B2 significantly reduced the growth of E. coli MG1655 and also inhibited the growth of several multi-drug resistant clinical stains of E. coli. Phage vB_EcoS-B2 can kill some of the MRD E. coli entirely, strongly indicating us that it could be one of the components of phage cocktails to treat multi-drug resistant E. coli. This phage could be used to interrupt or reduce the spread of multi-drug resistant E. coli.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Yu Gu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Xu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Sváb D, Falgenhauer L, Rohde M, Szabó J, Chakraborty T, Tóth I. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products. Front Microbiol 2018; 9:202. [PMID: 29487585 PMCID: PMC5816814 DOI: 10.3389/fmicb.2018.00202] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR) E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
42
|
Safwat Mohamed D, Farouk Ahmed E, Mohamed Mahmoud A, Abd El-Baky RM, John J. Isolation and evaluation of cocktail phages for the control of multidrug-resistant Escherichia coli serotype O104: H4 and E. coli O157: H7 isolates causing diarrhea. FEMS Microbiol Lett 2018; 365. [DOI: 10.1093/femsle/fnx275] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
43
|
Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8:162-173. [PMID: 28828194 PMCID: PMC5547374 DOI: 10.4292/wjgpt.v8.i3.162] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infection. Although much about phages and human health is still being discovered, the time to take phage therapy serious again seems to be rapidly approaching.
Collapse
|
44
|
Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep 2017; 7:7043. [PMID: 28765534 PMCID: PMC5539208 DOI: 10.1038/s41598-017-07278-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
Increased intestinal permeability and translocation of gut bacteria trigger various polyaetiological diseases associated with chronic inflammation and underlie a variety of poorly treatable pathologies. Previous studies have established a primary role of the microbiota composition and intestinal permeability in such pathologies. Using a rat model, we examined the effects of exposure to a bacteriophage cocktail on intestinal permeability and relative abundance of taxonomic units in the gut bacterial community. There was an increase in markers of impaired gut permeability, such as the lactulose/mannitol ratio, plasma endotoxin concentrations, and serum levels of inflammation-related cytokines, following the bacteriophage challenge. We observed significant differences in the alpha diversity of faecal bacterial species and found that richness and diversity index values increased following the bacteriophage challenge. There was a reduction in the abundance of Blautia, Catenibacterium, Lactobacillus, and Faecalibacterium species and an increase in Butyrivibrio, Oscillospira and Ruminococcus after bacteriophage administration. These findings provide novel insights into the role of bacteriophages as potentially pathogenic for mammals and their possible implication in the development of diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- George V Tetz
- Human Microbiology Institute, New York, NY, 10027, USA.
| | - Kelly V Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA.,Applied Bioinformatics Laboratories, New York University Medical Center, New York, NY, 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, New York University Medical Center, New York, NY, 10016, USA
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.,Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, 10016, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, New York University Medical Center, New York, NY, 10016, USA.,Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Victor Tetz
- Human Microbiology Institute, New York, NY, 10027, USA
| |
Collapse
|
45
|
Ewan V, Hellyer T, Newton J, Simpson J. New horizons in hospital acquired pneumonia in older people. Age Ageing 2017; 46:352-358. [PMID: 28338911 DOI: 10.1093/ageing/afx029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Approximately 1.5% of hospital patients develop hospital acquired pneumonia. Aspiration is the major risk factor for pneumonia and is associated with reduced ability to mechanically clear respiratory pathogens into the stomach. Currently non-invasive methods of diagnosing hospital acquired pneumonia are less robust than invasive methods, and lead to over-diagnosis. Accurate diagnosis is key to surveillance, prevention and treatment of HAP, and also to improving outcomes; newer imaging modalities such as phase contrast X-ray imaging and nanoparticle enhanced magnetic resonance imaging may help. Potential preventative strategies such as systematic swallowing assessment in non-stroke patients, and interventions such as improving oral hygiene need further, robust randomised controlled trials. Antibiotics are likely to continue to be the mainstay of treatment, and new antibiotics such as ceftobiprole are likely to have a role in treating hospital acquired pneumonia. Given the spread of antimicrobial resistance, alternative treatment strategies including bacteriophages, peptides and antibodies are under investigation. Reducing the incidence of hospital acquired pneumonia could decrease length of hospital stay, reduce inappropriate antibiotic use, and both improve functional outcomes and mortality in our increasingly aged population.
Collapse
Affiliation(s)
- Victoria Ewan
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| | - Thomas Hellyer
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| | - Julia Newton
- Newcastle University, Clinical Academic Office, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - John Simpson
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| |
Collapse
|
46
|
Phage therapy: an alternative or adjunct to antibiotics? Emerg Top Life Sci 2017; 1:105-116. [DOI: 10.1042/etls20170005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/21/2023]
Abstract
Phage therapy is currently discussed as an alternative or adjunct to antibiotics whose activity is increasingly compromised by the emergence of antibiotic-resistant bacterial pathogens. The idea to use lytic bacterial viruses as antimicrobial agents is nearly a century old and is common practice in Eastern Europe. However, safety concerns and lack of controlled clinical trials proving the efficacy of phage therapy have hampered its wider medical use in the West. The present review analyzes safety aspects and compares successful with unsuccessful phage therapy clinical trials to identify potential factors determining success and failure of this approach.
Collapse
|
47
|
Nikkhahi F, Soltan Dallal MM, Alimohammadi M, Rahimi Foroushani A, Rajabi Z, Fardsanei F, Imeni SM, Torabi Bonab P. Phage therapy: assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:131-136. [PMID: 28702137 PMCID: PMC5495901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM This work aims to isolate and perform comparative studies of a phages active against a Salmonella enteritidis strain from Iran. Also, suitable phage candidates for therapy of mice will be selected. BACKGROUND Bacteriophage is of particular interest as a biocontrol agent in the prevention of food-borne illnesses. In recent years tend to use bacteriophages to control pathogenic bacteria has increased. A bacteriophage is considered to be a potent antibiotic alternative for treating bacterial infections. METHODS the specific phages against Salmonella Enteritidis was isolated and candidates for therapy of mice will be selected. Mouses divided into the six specific groups. Groups of mice were as follows: A: Bacteri (control) B: Bacteri+ bacteriophage (Simultaneous), C: Bacteri + bacteriophage Four days later, D: Bacteriophage + bacteri four days later E: Bacteri+ Ciprofloxacin (Simultaneous) F: Bacteri+ ciprofloxacin+ bacteriophage (Simultaneous). RESULTS In this study, a lytic bacteriophage is isolated and it shows that phage has a head size of 46 nm and without a tail, by using an electron microscope. Oral administration of a single dose of 2 × 109 PFU/mouse bacteriophage enable to protect mouse against salmonellosis and it causes treatment of salmonellosis in mice. CONCLUSION The use of this phage compared to ciprofloxacin shows that in addition of the treatment of mouse, it also prevents weight loss.
Collapse
Affiliation(s)
- Farhad Nikkhahi
- Division of Medical Bacteriology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran.
| | - Mohammad Mehdi Soltan Dallal
- Division of Medical Bacteriology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mahmood Alimohammadi
- Environmental Health Engineering Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Rajabi
- Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Fatemeh Fardsanei
- Division of Medical Bacteriology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran.
| | - Seyed Mostafa Imeni
- Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,BETA Technology Centre: “U Science Tech”, University of Vic- Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - Parisa Torabi Bonab
- Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
48
|
Zelasko S, Gorski A, Dabrowska K. Delivering phage therapy per os: benefits and barriers. Expert Rev Anti Infect Ther 2016; 15:167-179. [DOI: 10.1080/14787210.2017.1265447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Susan Zelasko
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gorski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
49
|
Sarker SA, Berger B, Deng Y, Kieser S, Foata F, Moine D, Descombes P, Sultana S, Huq S, Bardhan PK, Vuillet V, Praplan F, Brüssow H. Oral application of
E
scherichia coli
bacteriophage: safety tests in healthy and diarrheal children from
B
angladesh. Environ Microbiol 2016; 19:237-250. [DOI: 10.1111/1462-2920.13574] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Shafiqul Alam Sarker
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b)Clinical Sciences Division, 68 Shaheed Tajuddin Ahmed SharaniMohakhali Dhaka1212 Bangladesh
| | - Bernard Berger
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| | - Ying Deng
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| | - Silas Kieser
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| | - Francis Foata
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| | - Deborah Moine
- Nestlé Institute of Health Sciences, EPFL Innovation Park Functional Genomics Group, CH‐1015 Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, EPFL Innovation Park Functional Genomics Group, CH‐1015 Lausanne, Switzerland
| | - Shamima Sultana
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b)Clinical Sciences Division, 68 Shaheed Tajuddin Ahmed SharaniMohakhali Dhaka1212 Bangladesh
| | - Sayeeda Huq
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b)Clinical Sciences Division, 68 Shaheed Tajuddin Ahmed SharaniMohakhali Dhaka1212 Bangladesh
| | - Pradip Kumar Bardhan
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b)Clinical Sciences Division, 68 Shaheed Tajuddin Ahmed SharaniMohakhali Dhaka1212 Bangladesh
| | - Valérie Vuillet
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| | - Fabienne Praplan
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| | - Harald Brüssow
- Nutrition Health Research, Nestlé Research Centre, Nestec LtdVers‐chez‐les‐BlancLausanne26 CH‐1000 Switzerland
| |
Collapse
|
50
|
Sarker SA, Brüssow H. From bench to bed and back again: phage therapy of childhood Escherichia coli diarrhea. Ann N Y Acad Sci 2016; 1372:42-52. [PMID: 27197768 DOI: 10.1111/nyas.13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, the Nestlé Research Center in Switzerland and the International Center for Diarrhoeal Diseases Research in Bangladesh have explored the efficacy of alternative biological agents for the treatment of diarrheal diseases. This paper reviews the work of this collaborative effort, particularly on Escherichia coli phage therapy (PT), and discusses the development of the project, starting with the isolation of T4-like coliphages from the stool of diarrhea patients, their pilot plant amplification and purification, and the constitution and testing of a cocktail of T4-like phages in mice. A series of phase I clinical trials has demonstrated the safety of PT. Oral phage given without protection survived gastric passage and was recovered in the feces. Oral T4 phage cocktail was then tested in parallel to a commercial phage product in a phase II randomized, placebo-controlled single-center trial in Bangladeshi children hospitalized with acute E. coli diarrhea. It was found that oral phage did not perform better than the current standard of care by oral rehydration/zinc treatment. Furthermore, fecal E. coli pathogen titers were low and mixed infections were found to be frequent. Microbiota analysis showed a correlation between diarrhea and increased levels of Streptococcus, which raises fundamental questions on the causative agent of diarrhea that may explain PT clinical failure.
Collapse
Affiliation(s)
- Shafiqul A Sarker
- International Center for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|