1
|
Tjallinks G, Mattevi A, Fraaije MW. Biosynthetic Strategies of Berberine Bridge Enzyme-like Flavoprotein Oxidases toward Structural Diversification in Natural Product Biosynthesis. Biochemistry 2024; 63:2089-2110. [PMID: 39133819 PMCID: PMC11375781 DOI: 10.1021/acs.biochem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Marco W. Fraaije
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Duan C, Wang S, Yao Y, Pan Y, Liu G. MFS Transporter as the Molecular Switch Unlocking the Production of Cage-Like Acresorbicillinol C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19061-19070. [PMID: 39148224 DOI: 10.1021/acs.jafc.4c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sorbicillinoids are a class of fungal polyketides with diverse structures and distinguished bioactivities. Although remarkable progress has been achieved in their chemistry and biosynthesis, the efflux of sorbicillinoids is poorly understood. Here, we found MFS transporter AcsorT was responsible for the biosynthesis of sorbicillinoids in Acremonium chrysogenum. Combinatorial knockout and subcellular location demonstrated that the plasma membrane-associated AcsorT was responsible for the transportation of sorbicillinol and subsequent formation of oxosorbicillinol and acresorbicillinol C via the berberine bridge enzyme-like oxidase AcsorD in the periplasm. Homology modeling and site-directed mutation revealed that Tyr303 and Arg436 were the key residues of AcsorT, which was further explained by molecular dynamics simulation. Based on our study, it was suggested that AcsorT modulates sorbicillinoid production by coordinating its biosynthesis and export, and a transport model of sorbicillinoids was proposed in A. chrysogenum.
Collapse
Affiliation(s)
- Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang K, Liu J, Jiang Y, Sun S, Wang R, Sun J, Ma C, Chen Y, Wang W, Hou X, Zhu T, Zhang G, Che Q, Keyzers RA, Liu M, Li D. Sorbremnoids A and B: NLRP3 Inflammasome Inhibitors Discovered from Spatially Restricted Crosstalk of Biosynthetic Pathways. J Am Chem Soc 2024; 146:18172-18183. [PMID: 38888159 DOI: 10.1021/jacs.4c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1β by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.
Collapse
Affiliation(s)
- Kaijin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingxian Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuewen Hou
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Robert A Keyzers
- School of Chemical and Physical Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Zhang Y, Zhang J, Du Q, Wu XM, Chen Y, Tan RX. Citrisorbicillinol, an undescribed hybrid sorbicillinoid with osteogenic activity from Penicillium citrinum ZY-2. Fitoterapia 2024; 173:105836. [PMID: 38286315 DOI: 10.1016/j.fitote.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Citrisorbicillinol (1), along with six other known compounds (2-7), was isolated from an endphyte Penicillium citrinum ZY-2 of Plantago asiatica L. Citrisorbicillinol (1) was characterized as a skeletally unprecedented hybrid sorbicillinoid, and its unique framework is likely formed by intermolecular [4 + 2] cycloaddition between intermediates derived from citrinin and sorbicillinoid biosynthetic gene clusters. Compounds 1 and 2 demonstrated to promote osteoblastic differentiation in MC3T3-E1 cells, and to be osteogenic in the prednisolone induced osteoporotic zebrafish. Compounds 3-7 exhibited moderate cytotoxicity against four human cancer cell lines.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Du
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Gil-Durán C, Palma D, Marcano Y, Palacios JL, Martínez C, Rojas-Aedo JF, Levicán G, Vaca I, Chávez R. CRISPR/Cas9-Mediated Disruption of the pcz1 Gene and Its Impact on Growth, Development, and Penicillin Production in Penicillium rubens. J Fungi (Basel) 2023; 9:1010. [PMID: 37888266 PMCID: PMC10607824 DOI: 10.3390/jof9101010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Penicillium rubens is a filamentous fungus of great biotechnological importance due to its role as an industrial producer of the antibiotic penicillin. However, despite its significance, our understanding of the regulatory mechanisms governing biological processes in this fungus is still limited. In fungi, zinc finger proteins containing a Zn(II)2Cys6 domain are particularly interesting regulators. Although the P. rubens genome harbors many genes encoding proteins with this domain, only two of them have been investigated thus far. In this study, we employed CRISPR-Cas9 technology to disrupt the pcz1 gene, which encodes a Zn(II)2Cys6 protein in P. rubens. The disruption of pcz1 resulted in a decrease in the production of penicillin in P. rubens. This decrease in penicillin production was accompanied by the downregulation of the expression of pcbAB, pcbC and penDE genes, which form the biosynthetic gene cluster responsible for penicillin production. Moreover, the disruption of pcz1 also impacts on asexual development, leading to decreased growth and conidiation, as well as enhanced conidial germination. Collectively, our results indicate that pcz1 acts as a positive regulator of penicillin production, growth, and conidiation, while functioning as a negative regulator of conidial germination in P. rubens. To the best of our knowledge, this is the first report involving a gene encoding a Zn(II)2Cys6 protein in the regulation of penicillin biosynthesis in P. rubens.
Collapse
Affiliation(s)
- Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Diego Palma
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Yudethzi Marcano
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - José-Luis Palacios
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (J.-L.P.); (C.M.)
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de los Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (J.-L.P.); (C.M.)
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Juan F. Rojas-Aedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (C.G.-D.); (Y.M.); (J.F.R.-A.); (G.L.)
| |
Collapse
|
6
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
7
|
Zhang X, Hou X, Xu D, Xue M, Zhang J, Wang J, Yang Y, Lai D, Zhou L. Effects of Carbon, Nitrogen, Ambient pH and Light on Mycelial Growth, Sporulation, Sorbicillinoid Biosynthesis and Related Gene Expression in Ustilaginoidea virens. J Fungi (Basel) 2023; 9:jof9040390. [PMID: 37108845 PMCID: PMC10142091 DOI: 10.3390/jof9040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Sorbicillinoids are a class of hexaketide metabolites produced by Ustilaginoidea virens (teleomorph: Villosiclava virens), an important fungal pathogen that causes a devastating rice disease. In this study, we investigated the effects of environmental factors, including carbon and nitrogen sources, ambient pH and light exposure, on mycelial growth, sporulation, as well as the accumulation of sorbicillinoids, and the expression of related genes involved in sorbicillinoid biosynthesis. It was found that the environmental factors had great influences on mycelial growth and sporulation of U. virens. Fructose and glucose, complex nitrogen sources, acidic conditions and light exposure were favorable for sorbicillinoid production. The relative transcript levels of sorbicillinoid biosynthesis genes were up-regulated when U. virens was separately treated with those environmental factors that favored sorbicillinoid production, indicating that sorbicillinoid biosynthesis was mainly regulated at the transcriptional level by different environmental factors. Two pathway-specific transcription factor genes, UvSorR1 and UvSorR2, were found to participate in the regulation of sorbicillinoid biosynthesis. These results will provide useful information to better understand the regulation mechanisms of sorbicillinoid biosynthesis, and be conducive to develop effective means for controlling sorbicillinoid production in U. virens.
Collapse
Affiliation(s)
- Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mengyao Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiayin Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiacheng Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yonglin Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Kong X, Xu L, Ji X, Yang S, Zhang H. Investigation on bioactive metabolites produced by an endophytic fungus Trichoderma citrinoviride from the arils of Torreya grandis. Nat Prod Res 2022; 37:1-5. [PMID: 36239516 DOI: 10.1080/14786419.2022.2134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
An endophytic fungus Trichoderma citrinoviride capable of producing active substances was isolated from the arils of Torreya grandis. Seven compounds were separated from the ethyl acetate extract of fermentation broth and mycelium by chromatography, respectively identified as trichomerol (1), bisorbicillinolide (2), sohirnone A (3), emodin (4), stigmasterol (5), ergosterol (6), daidzein (7). This study is the first to report of the isolation of the endophytic fungus T. citrinoviride from the arils of T. grandis with complete assignments of 1-7. Compound 1 and 2 exhibited significant antioxidant activity of diphenyl picryl hydrazinyl with IC50 38.92 and 3.91 µg/mL, respectively. Compound 1, 2, 4 and 7 significantly inhibited the growth of Staphylococcus aureus with MIC 0.78; 0.39; 0.20 and 0.20 mg/mL, respectively. Current study indicated the presence of endophytic fungus in the arils of Torreya grandis that could be responsible for the bioactive metabolite synthesis.
Collapse
Affiliation(s)
- Xiaohui Kong
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lin Xu
- The Center for TCM Standardization, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaokang Ji
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Zhang X, Xu D, Hou X, Wei P, Fu J, Zhao Z, Jing M, Lai D, Yin W, Zhou L. UvSorA and UvSorB Involved in Sorbicillinoid Biosynthesis Contribute to Fungal Development, Stress Response and Phytotoxicity in Ustilaginoidea virens. Int J Mol Sci 2022; 23:ijms231911056. [PMID: 36232357 PMCID: PMC9570055 DOI: 10.3390/ijms231911056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Ustilaginoidea virens (teleomorph: Villosiclava virens) is an important fungal pathogen that causes a devastating rice disease. It can produce mycotoxins including sorbicillinoids. The biosynthesis and biological functions of sorbicillinoids have not been reported in U. virens. In this study, we identified a sorbicillinoid biosynthetic gene cluster in which two polyketide synthase genes UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens. In ∆UvSorA and ∆UvSorB mutants, the mycelial growth, sporulation and hyphal hydrophobicity were increased dramatically, while the resistances to osmotic pressure, metal cations, and fungicides were reduced. Both phytotoxic activity of rice germinated seeds and cell wall integrity were also reduced. Furthermore, mycelia and cell walls of ∆UvSorA and ∆UvSorB mutants showed alterations of microscopic and submicroscopic structures. In addition, feeding experiment showed that sorbicillinoids could restore mycelial growth, sporulation, and cell wall integrity in ∆UvSorA and ∆UvSorB mutants. The results demonstrated that both UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens, and contributed to development (mycelial growth, sporulation, and cell wall integrity), stress responses, and phytotoxicity through sorbicillinoid mediation. It provides an insight into further investigation of biological functions and biosynthesis of sorbicillinoids.
Collapse
Affiliation(s)
- Xuping Zhang
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Penglin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajin Fu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhitong Zhao
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingpeng Jing
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenbing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (W.Y.); (L.Z.)
| | - Ligang Zhou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (W.Y.); (L.Z.)
| |
Collapse
|
10
|
Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol 2022; 106:6413-6426. [DOI: 10.1007/s00253-022-12181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
|
11
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Li C, Gu R, Lin F, Xiao H. Sorbicillinoids hyperproduction without affecting the cellulosic enzyme production in Trichoderma reesei JNTR5. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:85. [PMID: 35996177 PMCID: PMC9394075 DOI: 10.1186/s13068-022-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Background Microbial production of bioactive secondary metabolites is challenging as most of the encoding genes are silent; and even if they are activated, the biosynthetic pathways are usually complex. Sorbicillinoids with multifunctional bioactivities are examples of these problems, which if solved can result in a more sustainable, simple supply of these important compounds to the pharmaceutical industry. As an excellent producer of cellulosic enzymes, Trichoderma reesei can secrete various sorbicillinoids. Results Here, we obtained a T. reesei mutant strain JNTR5 from the random mutation during overexpression of gene Tr69957 in T. reesei RUT-C30. JNTR5 exhibited a significant constitutive increase in sorbicillinoids production without affecting the cellulosic enzyme production. Confocal laser scanning microscope (CLSM) results indicated that sorbicillinoids were distributed in both mycelium and spores of JNTR5 with blue and green fluorescence. Compared with RUT-C30, JNTR5 displayed different cell morphology, reduced growth rate, and increased sporulation, but a similar biomass accumulation. Furthermore, transcriptome analysis revealed that all genes belonging to the sorbicillinoid gene cluster were upregulated, while most cellulase-encoding genes were downregulated. The cell wall integrity of JNTR5 was damaged, which might benefit the cellulase secretion and contribute to the almost unchanged cellulase and hemicellulase activity given that the damaged cell wall can enhance the secretion of the enzymes. Conclusions For the first time, we constructed a sorbicillinoids hyperproduction T. reesei platform with comparable cellulosic enzymes production. This outperformance of JNTR5, which is strain-specific, is proposed to be attributed to the overexpression of gene Tr69957, causing the chromosome remodeling and subsequently changing the cell morphology, structure, and the global gene expression as shown by phenotype and the transcriptome analysis of JNTR5. Overall, JNTR5 shows great potential for industrial microbial production of sorbicillinoids from cellulose and serves as an excellent model for investigating the distribution and secretion of yellow pigments in T. reesei. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02183-1.
Collapse
|
13
|
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022; 10:901037. [PMID: 35910033 PMCID: PMC9335490 DOI: 10.3389/fbioe.2022.901037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are highly productive cell factories, many of which are industrial producers of enzymes, organic acids, and secondary metabolites. The increasing number of sequenced fungal genomes revealed a vast and unexplored biosynthetic potential in the form of transcriptionally silent secondary metabolite biosynthetic gene clusters (BGCs). Various strategies have been carried out to explore and mine this untapped source of bioactive molecules, and with the advent of synthetic biology, novel applications, and tools have been developed for filamentous fungi. Here we summarize approaches aiming for the expression of endogenous or exogenous natural product BGCs, including synthetic transcription factors, assembly of artificial transcription units, gene cluster refactoring, fungal shuttle vectors, and platform strains.
Collapse
Affiliation(s)
- László Mózsik
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, Delft, Netherlands
- Department of Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Duan C, Wang S, Huo R, Li E, Wang M, Ren J, Pan Y, Liu L, Liu G. Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10. J Fungi (Basel) 2022; 8:jof8050530. [PMID: 35628785 PMCID: PMC9144096 DOI: 10.3390/jof8050530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
Sorbicillinoids are a class of structurally diverse hexaketide metabolites with good biological activities. To explore new structural sorbicillinoids and their bioactivities, the marine-derived fungus Acremonium chrysogenum C10 was studied. Three new sorbicillinoid derivatives, acresorbicillinols A–C (1–3), along with five known ones, trichotetronine (4), trichodimerol (5), demethyltrichodimerol (6), trichopyrone (7) and oxosorbicillinol (8), were isolated. The structures of new sorbicillinoids were elucidated by analysis of nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS). The absolute configurations of compounds 1–3 were determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. Compound 3 exhibited a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, with the IC50 value ranging from 11.53 ± 1.53 to 60.29 ± 6.28 μM in 24 h. Additionally, compounds 2 and 3 showed moderate activities against Staphylococcus aureus and Cryptococcus neoformans, with IC50 values of 86.93 ± 1.72 and 69.06 ± 10.50 μM, respectively. The boundary of sorbicillinoid biosynthetic gene cluster in A. chrysogenum was confirmed by transcriptional analysis, and the biosynthetic pathway of compounds 1–8 was also proposed. In summary, our results indicated that A. chrysogenum is an important reservoir of sorbicillinoid derivatives, and compound 3 has the potential for new natural agents in DPPH radical scavenging.
Collapse
Affiliation(s)
- Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyun Huo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erwei Li
- China Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
- Correspondence: (Y.P.); (L.L.); (G.L.); Tel.: +86-10-64806113 (Y.P.); +86-10-64807043 (L.L.); +86-10-64806017 (G.L.)
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.P.); (L.L.); (G.L.); Tel.: +86-10-64806113 (Y.P.); +86-10-64807043 (L.L.); +86-10-64806017 (G.L.)
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.D.); (S.W.); (R.H.); (J.R.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.P.); (L.L.); (G.L.); Tel.: +86-10-64806113 (Y.P.); +86-10-64807043 (L.L.); +86-10-64806017 (G.L.)
| |
Collapse
|
15
|
Metabolic Profiling and In Vitro Assessment of the Biological Activities of the Ethyl Acetate Extract of Penicillium chrysogenum “Endozoic of Cliona sp. Marine Sponge” from the Red Sea (Egypt). Mar Drugs 2022; 20:md20050326. [PMID: 35621977 PMCID: PMC9143181 DOI: 10.3390/md20050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Marine sponge-derived endozoic fungi have been gaining increasing importance as promising sources of numerous and unique bioactive compounds. This study investigates the phytochemical profile and biological activities of the ethyl acetate extract of Penicillium chrysogenum derived from Cliona sp. sponge. Thirty-six compounds were tentatively identified from P. chrysogenum ethyl acetate extract along with the kojic acid (KA) isolation. The UPLC-ESI-MS/MS positive ionization mode was used to analyze and identify the extract constituents while 1D and 2D NMR spectroscopy were used for kojic acid (KA) structure confirmation. The antimicrobial, antioxidant, and cytotoxic activities were assessed in vitro. Both the extract and kojic acid showed potent antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC 250 ± 0.82 µg/mL. Interestingly, the extract showed strong antifungal activity against Candida albicans and Cryptococcus neoformans with MIC 93.75 ± 0.55 and 19.53 ± 0.48 µg/mL, respectively. Furthermore, KA showed the same potency against Fusarium oxysporum and Cryptococcus neoformans with MIC 39.06 ± 0.85 and 39.06 ± 0.98 µg/mL, respectively. Ultimately, KA showed strong antioxidant activity with IC50 33.7 ± 0.8 µg/mL. Moreover, the extract and KA showed strong cytotoxic activity against colon carcinoma (with IC50 22.6 ± 0.8 and 23.4 ± 1.4 µg/mL, respectively) and human larynx carcinoma (with equal IC50 30.8 ± 1.3 and ± 2.1 µg/mL, respectively), respectively. The current study represents the first insights into the phytochemical profile and biological properties of P. chrysoenum ethyl acetate extract, which could be a promising source of valuable secondary metabolites with potent biological potentials.
Collapse
|
16
|
Liu L, Chen Z, Tian X, Chu J. Knockout and functional analysis of BSSS-related genes in Acremonium chrysogenum by novel episomal expression vector containing Cas9 and AMA1. Biotechnol Lett 2022; 44:755-766. [DOI: 10.1007/s10529-022-03255-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
|
17
|
Recent Advances in Sorbicillinoids from Fungi and Their Bioactivities (Covering 2016–2021). J Fungi (Basel) 2022; 8:jof8010062. [PMID: 35050002 PMCID: PMC8779745 DOI: 10.3390/jof8010062] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Sorbicillinoids are a family of hexaketide metabolites with a characteristic sorbyl side chain residue. Sixty-nine sorbicillinoids from fungi, newly identified from 2016 to 2021, are summarized in this review, including their structures and bioactivities. They are classified into monomeric, dimeric, trimeric, and hybrid sorbicillinoids according to their basic structural features, with the main groups comprising both monomeric and dimeric sorbicillinoids. Some of the identified sorbicillinoids have special structures such as ustilobisorbicillinol A, and sorbicillasins A and B. The majority of sorbicillinoids have been reported from fungi genera such as Acremonium, Penicillium, Trichoderma, and Ustilaginoidea, with some sorbicillinoids exhibiting cytotoxic, antimicrobial, anti-inflammatory, phytotoxic, and α-glucosidase inhibitory activities. In recent years, marine-derived, extremophilic, plant endophytic, and phytopathogenic fungi have emerged as important resources for diverse sorbicillinoids with unique skeletons. The recently revealed biological activities of sorbicillinoids discovered before 2016 are also described in this review.
Collapse
|
18
|
Vignolle GA, Schaffer D, Zehetner L, Mach RL, Mach-Aigner AR, Derntl C. FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution. PLoS Comput Biol 2021; 17:e1009372. [PMID: 34570757 PMCID: PMC8476034 DOI: 10.1371/journal.pcbi.1009372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Secondary metabolites (SMs) are a vast group of compounds with different structures and properties that have been utilized as drugs, food additives, dyes, and as monomers for novel plastics. In many cases, the biosynthesis of SMs is catalysed by enzymes whose corresponding genes are co-localized in the genome in biosynthetic gene clusters (BGCs). Notably, BGCs may contain so-called gap genes, that are not involved in the biosynthesis of the SM. Current genome mining tools can identify BGCs, but they have problems with distinguishing essential genes from gap genes. This can and must be done by expensive, laborious, and time-consuming comparative genomic approaches or transcriptome analyses. In this study, we developed a method that allows semi-automated identification of essential genes in a BGC based on co-evolution analysis. To this end, the protein sequences of a BGC are blasted against a suitable proteome database. For each protein, a phylogenetic tree is created. The trees are compared by treeKO to detect co-evolution. The results of this comparison are visualized in different output formats, which are compared visually. Our results suggest that co-evolution is commonly occurring within BGCs, albeit not all, and that especially those genes that encode for enzymes of the biosynthetic pathway are co-evolutionary linked and can be identified with FunOrder. In light of the growing number of genomic data available, this will contribute to the studies of BGCs in native hosts and facilitate heterologous expression in other organisms with the aim of the discovery of novel SMs. The discovery and description of novel fungal secondary metabolites promises novel antibiotics, pharmaceuticals, and other useful compounds. A way to identify novel secondary metabolites is to express the corresponding genes in a suitable expression host. Consequently, a detailed knowledge or an accurate prediction of these genes is necessary. In fungi, the genes are co-localized in so-called biosynthetic gene clusters. Notably, the clusters may also contain genes that are not necessary for the biosynthesis of the secondary metabolites, so-called gap genes. We developed a method to detect co-evolved genes within the clusters and demonstrated that essential genes are co-evolving and can thus be differentiated from the gap genes. This adds an additional layer of information, which can support researchers with their decisions on which genes to study and express for the discovery of novel secondary metabolites.
Collapse
Affiliation(s)
- Gabriel A. Vignolle
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Denise Schaffer
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Leopold Zehetner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- * E-mail:
| |
Collapse
|
19
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
20
|
El Hajj Assaf C, Zetina-Serrano C, Tahtah N, Khoury AE, Atoui A, Oswald IP, Puel O, Lorber S. Regulation of Secondary Metabolism in the Penicillium Genus. Int J Mol Sci 2020; 21:E9462. [PMID: 33322713 PMCID: PMC7763326 DOI: 10.3390/ijms21249462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Chrystian Zetina-Serrano
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Nadia Tahtah
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - André El Khoury
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut 1104, Lebanon;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| |
Collapse
|
21
|
Hinterdobler W, Beier S, Monroy AA, Berger H, Dattenböck C, Schmoll M. The G-protein Coupled Receptor GPR8 Regulates Secondary Metabolism in Trichoderma reesei. Front Bioeng Biotechnol 2020; 8:558996. [PMID: 33251193 PMCID: PMC7676458 DOI: 10.3389/fbioe.2020.558996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Changing environmental conditions are of utmost importance for regulation of secondary metabolism in fungi. Different environmental cues including the carbon source, light and the presence of a mating partner can lead to altered production of compounds. Thereby, the heterotrimeric G-protein pathway is of major importance for sensing and adjustment of gene regulation. Regulation of secondary metabolism is crucial in the biotechnological workhorse Trichoderma reesei for knowledge-based adjustment in industrial fermentations, but also with respect to the potential use as a host for heterologous compound production. We investigated the function of the class VII G-protein coupled receptor (GPCR) gene gpr8 that is localized in the vicinity of the SOR cluster, which is responsible for biosynthesis of sorbicillinoids. GPR8 positively impacts regulation of the genes in this cluster in darkness. Accordingly, abundance of trichodimerol and dihydrotrichotetronine as well as other secondary metabolites is decreased in the deletion mutant. Transcriptome analysis moreover showed the major role of GPR8 being exerted in darkness with a considerable influence on regulation of secondary metabolism. Genes regulated in Δgpr8 overlap with those regulated directly or indirectly by the transcription factor YPR2, especially concerning genes related to secondary metabolism. The predicted FAD/FMN containing dehydrogenase gene sor7, one of the positive targets of the cascade triggered by GPR8, has a positive effect on secondary metabolite production, but also cellulase gene expression. Hence SOR7 has some overlapping, but also additional functions compared to GPR8. The G-protein coupled receptor GPR8 exerts a light dependent impact on secondary metabolism, which is in part mediated by the transcription factor YPR2 and the function of SOR7. Hence, T. reesei may apply GPR8 to adjust production of secondary metabolites and hence chemical communication to signals from the environment.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Sabrina Beier
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Alberto Alonso Monroy
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Christoph Dattenböck
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Monika Schmoll
- Center for Health & Bioresources, Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
22
|
Pang G, Sun T, Yu Z, Yuan T, Liu W, Zhu H, Gao Q, Yang D, Kubicek CP, Zhang J, Shen Q. Azaphilones biosynthesis complements the defence mechanism of
Trichoderma guizhouense
against oxidative stress. Environ Microbiol 2020; 22:4808-4824. [DOI: 10.1111/1462-2920.15246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Guan Pang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Tingting Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Tao Yuan
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences Jiangxi Normal University Nanchang Jiang xi 330022 China
| | - Wei Liu
- Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region Yili Normal University Yining Xinjiang 835000 China
| | - Hong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Qi Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Dongqing Yang
- Department of Public Health Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Christian P. Kubicek
- Institute of Chemical Environmental and Bioscience Engineering TU Wien Vienna 1060 Austria
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
23
|
Kahlert L, Cox RJ, Skellam E. The same but different: multiple functions of the fungal flavin dependent monooxygenase SorD from Penicillium chrysogenum. Chem Commun (Camb) 2020; 56:10934-10937. [PMID: 32789380 DOI: 10.1039/d0cc03203d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sorbicillinoids are a large family of fungal secondary metabolites with a diverse range of structures and numerous bioactivites, some of which have pharmaceutical potential. The flavin-dependent monooxygenase SorD from Penicillium chrysogenum (PcSorD) utilizes sorbicillinol to catalyze a broad scope of reactions: formation of oxosorbicillinol and epoxysorbicillinol; intermolecular Diels-Alder and Michael-addition dimerization reactions; and dimerization of a sorbicillinol derivative with oxosorbicillinol. PcSorD shares only 18.3% sequence identity with SorD from Trichoderma reesei (TrSorD) and yet unexpectedly catalyzes many of the same reactions, however, the formation of oxosorbicillinol and bisvertinolone by PcSorD extends the range of reactions catalyzed by a single enzyme. Phylogenetic analysis indicates that PcSorD and TrSorD bind the flavin cofactor covalently but via different residues and point mutations confirm these residues are essential for activity.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ Leibniz University of Hannover Schneiderberg 38, 30167, Hannover, Germany.
| | | | | |
Collapse
|
24
|
Carreras M, Espeso EA, Gutierrez-Docio A, Moreno-Fernandez S, Prodanov M, Hernando MD, Melgarejo P, Larena I. Exploring the Extracellular Macromolecular Composition of Crude Extracts of Penicillium rubens Strain 212 for Elucidation Its Mode of Action as a Biocontrol Agent. J Fungi (Basel) 2020; 6:E131. [PMID: 32785198 PMCID: PMC7559091 DOI: 10.3390/jof6030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Penicillium rubens strain 212 (PO212) acts as an inducer of systemic resistance in tomato plants. The effect of crude extracellular extracts of PO212 on the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici has been evaluated. Evidence of the involvement of soluble, thermo-labile, and proteinase-inactivated macromolecules present in PO212 crude extracts in the control of Fusarium vascular disease in tomato plants was found. Proteomic techniques and the availability of the access to the PO212 genome database have allowed the identification of glycosyl hydrolases, oxidases, and peptidases in these extracellular extracts. Furthermore, a bioassay-guided fractionation of PO212 crude extracellular extracts using an integrated membrane/solid phase extraction process was set up. This method enabled the separation of a PO212 crude extracellular extract of seven days of growth into four fractions of different molecular sizes and polarities: high molecular mass protein fraction >5 kDa, middle molecular mass protein fraction 5-1 kDa, low molecular mass metabolite fraction, and nutrients from culture medium (mainly glucose and minerals). The high and middle molecular mass protein fractions retained disease control activity in a way similar to that of the control extracts. Proteomic techniques have allowed the identification of nine putatively secreted proteins in the high molecular mass protein fraction matching those identified in the total crude extracts. Therefore, these enzymes are considered to be potentially responsible of the crude extracellular extract-induced resistance in tomato plants against F. oxysporum f. sp. lycopersici. Further studies are required to establish which of the identified proteins participate in the PO212's action mode as a biocontrol agent.
Collapse
Affiliation(s)
- Maria Carreras
- Departamento de Protección Vegetal, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain; (M.C.); (P.M.)
| | - Eduardo A. Espeso
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Alba Gutierrez-Docio
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (A.G.-D.); (S.M.-F.); (M.P.)
| | - Silvia Moreno-Fernandez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (A.G.-D.); (S.M.-F.); (M.P.)
| | - Marin Prodanov
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (A.G.-D.); (S.M.-F.); (M.P.)
| | - Maria Dolores Hernando
- Departamento de Medio Ambiente y Agronomía, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain;
| | - Paloma Melgarejo
- Departamento de Protección Vegetal, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain; (M.C.); (P.M.)
| | - Inmaculada Larena
- Departamento de Protección Vegetal, SGIT-INIA, Carretera de La Coruña 7, 28040 Madrid, Spain; (M.C.); (P.M.)
| |
Collapse
|
25
|
Demissie ZA, Witte T, Robinson KA, Sproule A, Foote SJ, Johnston A, Harris LJ, Overy DP, Loewen MC. Transcriptomic and Exometabolomic Profiling Reveals Antagonistic and Defensive Modes of Clonostachys rosea Action Against Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:842-858. [PMID: 32116115 DOI: 10.1094/mpmi-11-19-0310-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mycoparasite Clonostachys rosea ACM941 is under development as a biocontrol organism against Fusarium graminearum, the causative agent of Fusarium head blight in cereals. To identify molecular factors associated with this interaction, the transcriptomic and exometabolomic profiles of C. rosea and F. graminearum GZ3639 were compared during coculture. Prior to physical contact, the antagonistic activity of C. rosea correlated with a response heavily dominated by upregulation of polyketide synthase gene clusters, consistent with the detected accumulation of corresponding secondary metabolite products. Similarly, prior to contact, trichothecene gene clusters were upregulated in F. graminearum, while those responsible for fusarielin and fusarin biosynthesis were downregulated, correlating with an accumulation of trichothecene products in the interaction zone over time. A concomitant increase in 15-acetyl deoxynivalenol-3-glucoside in the interaction zone was also detected, with C. rosea established as the source of this detoxified mycotoxin. After hyphal contact, C. rosea was found to predominantly transcribe genes encoding cell wall-degradation enzymes, major facilitator superfamily sugar transporters, anion:cation symporters, as well as alternative carbon source utilization pathways, together indicative of a transition to necrotropism at this stage. F. graminearum notably activated the transcription of phosphate starvation pathway signature genes at this time. Overall, a number of signature molecular mechanisms likely contributing to antagonistic activity by C. rosea against F. graminearum, as well as its mycotoxin tolerance, are identified in this report, yielding several new testable hypotheses toward understanding the basis of C. rosea as a biocontrol agent for continued agronomic development and application.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Thomas Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Kelly A Robinson
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Simon J Foote
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Anne Johnston
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - David P Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Michele C Loewen
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Beier S, Hinterdobler W, Monroy AA, Bazafkan H, Schmoll M. The Kinase USK1 Regulates Cellulase Gene Expression and Secondary Metabolite Biosynthesis in Trichoderma reesei. Front Microbiol 2020; 11:974. [PMID: 32508786 PMCID: PMC7251307 DOI: 10.3389/fmicb.2020.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
The complex environment of fungi requires a delicate balance between the efforts to acquire nutrition, to reproduce, and to fend off competitors. In Trichoderma reesei, an interrelationship between regulation of enzyme gene expression and secondary metabolism was shown. In this study, we investigated the physiological relevance of the unique YPK1-type kinase USK1 of T. reesei. Usk1 is located in the vicinity of the SOR cluster and is involved in regulation of several genes from this secondary metabolite cluster as well as dihydrotrichotetronine and other secondary metabolites. Moreover, USK1 is required for biosynthesis of normal levels of secondary metabolites in liquid culture. USK1 positively influences cellulase gene regulation, secreted cellulase activity, and biomass formation upon growth in constant darkness on cellulose. Positive effects of USK1 on transcript abundance of the regulator of secondary metabolism, vel1, and the carbon catabolite repressor gene cre1 are in agreement with these functions. In summary, we found that with USK1, T. reesei comprises a unique kinase that adds an additional layer of regulation to the connection of secondary metabolism and enzyme production in fungi.
Collapse
Affiliation(s)
- Sabrina Beier
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Alberto Alonso Monroy
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
27
|
Kahlert L, Bassiony EF, Cox RJ, Skellam EJ. Diels–Alder Reactions During the Biosynthesis of Sorbicillinoids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Eman F. Bassiony
- Institute for Organic Chemistry and BMWZ Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
- Biochemistry Department Faculty of Science Zagazig University Zagazig Ash Sharqia Governorate 44519 Egypt
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZ Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
28
|
Kahlert L, Bassiony EF, Cox RJ, Skellam EJ. Diels-Alder Reactions During the Biosynthesis of Sorbicillinoids. Angew Chem Int Ed Engl 2020; 59:5816-5822. [PMID: 31943627 PMCID: PMC7154774 DOI: 10.1002/anie.201915486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 01/27/2023]
Abstract
The sorbicillinoids are a class of biologically active and structurally diverse fungal polyketides arising from sorbicillin. Through co‐expression of sorA, sorB, sorC, and sorD from Trichoderma reesei QM6a, the biosynthetic pathway to epoxysorbicillinol and dimeric sorbicillinoids, which resemble Diels–Alder‐like and Michael‐addition‐like products, was reconstituted in Aspergillus oryzae NSAR1. Expression and feeding experiments demonstrated the crucial requirement of the flavin‐dependent monooxygenase SorD for the formation of dimeric sorbicillinoids, hybrid sorbicillinoids, and epoxysorbicillinol in vivo. In contrast to prior reports, SorD catalyses neither the oxidation of 2′,3′‐dihydrosorbicillin to sorbicillin nor the oxidation of sorbicillinol to oxosorbicillinol. This is the first report that both the intermolecular Diels–Alder and Michael dimerization reactions, as well as the epoxidation of sorbicillinol are catalysed in vivo by SorD.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Eman F Bassiony
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany.,Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Elizabeth J Skellam
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
29
|
Chen C, Liu J, Duan C, Pan Y, Liu G. Improvement of the CRISPR-Cas9 mediated gene disruption and large DNA fragment deletion based on a chimeric promoter in Acremonium chrysogenum. Fungal Genet Biol 2020; 134:103279. [DOI: 10.1016/j.fgb.2019.103279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
|
30
|
Derntl C, Mach RL, Mach-Aigner AR. Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:231. [PMID: 31583017 PMCID: PMC6767844 DOI: 10.1186/s13068-019-1575-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/22/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The filamentous ascomycete T. reesei is industrially used to produce cellulases and xylanases. Cost-effective production of cellulases is a bottleneck for biofuel production. Previously, different strain and process optimizations were deployed to enhance enzyme production rates. One approach is the overexpression of the main activator Xyr1 and a second is the construction of synthetic transcription factors. Notably, these genetic manipulations were introduced into strains bearing the wild-type xyr1 gene and locus. RESULTS Here, we constructed a Xyr1-deficient strain expressing a non-functional truncated version of Xyr1. This strain was successfully used as platform strain for overexpression of Xyr1, which enhanced the cellulase and xylanase production rates under inducing conditions, with the exception of lactose-there the cellulase production was severely reduced. Further, we introduced fusion transcription factors consisting of the DNA-binding domain of Xyr1 and the transactivation domain of either Ypr1 or Ypr2 (regulators of the sorbicillinoid biosynthesis gene cluster). The fusion of Xyr1 and Ypr2 yielded a moderately transactivating transcription factor, whereas the fusion of Xyr1 and Ypr1 yielded a highly transactivating transcription factor that induced xylanases and cellulases nearly carbon source independently. Especially, high production levels of xylanases were achieved on glycerol. CONCLUSION During this study, we constructed a Xyr1-deficient strain that can be fully reconstituted, which makes it an ideal platform strain for Xyr1-related studies. The mere overexpression of Xyr1 turned out not to be a successful strategy for overall enhancement of the enzyme production rates. We gained new insights into the regulatory properties of transcription factors by constructing respective fusion proteins. The Xyr1-Ypr1-fusion transcription factor could induce xylanase production rates on glycerol to outstanding extents, and hence could be deployed in the future to utilize crude glycerol, the main co-product of the biodiesel production process.
Collapse
Affiliation(s)
- Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|
31
|
Zwahlen RD, Pohl C, Bovenberg RAL, Driessen AJM. Bacterial MbtH-like Proteins Stimulate Nonribosomal Peptide Synthetase-Derived Secondary Metabolism in Filamentous Fungi. ACS Synth Biol 2019; 8:1776-1787. [PMID: 31284717 PMCID: PMC6713467 DOI: 10.1021/acssynbio.9b00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Filamentous fungi are known producers of bioactive natural products, low molecular weight molecules that arise from secondary metabolism. MbtH-like proteins (MLPs) are small (∼10 kDa) proteins, which associate noncovalently with adenylation domains of some bacterial nonribosomal peptide synthetases (NRPS). MLPs promote the folding, stability, and activity of NRPS enzymes. MLPs are highly conserved among a wide range of bacteria; however, they are absent from all fungal species sequenced to date. We analyzed the interaction potential of bacterial MLPs with eukaryotic NRPS enzymes first using crystal structures, with results suggesting a conservation of the interaction surface. Subsequently, we transformed five MLPs into Penicillium chrysogenum strains and analyzed changes in NRPS-derived metabolite profiles. Three of the five transformed MLPs increased the rate of nonribosomal peptide formation and elevated the concentrations of intermediate and final products of the penicillin, roquefortine, chrysogine, and fungisporin biosynthetic pathways. Our results suggest that even though MLPs are not found in the fungal domain of life, they can be used in fungal hosts as a tool for natural product discovery and biotechnological production.
Collapse
Affiliation(s)
- Reto D. Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Carsten Pohl
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
- DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
32
|
Chen G, Chu J. Characterization of Two Polyketide Synthases Involved in Sorbicillinoid Biosynthesis by Acremonium chrysogenum Using the CRISPR/Cas9 System. Appl Biochem Biotechnol 2019; 188:1134-1144. [PMID: 30809786 DOI: 10.1007/s12010-019-02960-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 01/12/2023]
Abstract
Acremonium chrysogenum is an important fungal strain used for cephalosporin C production. Many efforts have been made to develop versatile genome-editing tools to better understand the mechanism of A. chrysogenum. Here, we developed a feasible and efficient CRISPR/Cas9 system. Two genes responsible for the synthesis of yellow pigments (sorbicillinoids) were chosen as targets, and plasmids expressing both the Cas9 protein and single-guide RNAs were constructed. After introducing the plasmids into the protoplasts of A. chrysogenum, 83 to 93% albino mutants harboring the expected genomic alteration, on average, were obtained. We have generated two mutant strains that respectively disrupt sorA and sorB by flexible CRISPR/Cas9 system. We further confirmed that the sorbicillinoid biosynthetic gene cluster is regulated by an autoinduction mechanism. This work will lay a solid foundation for gene function research and regulation in the sorbicillinoid biosynthetic pathway.
Collapse
Affiliation(s)
- Guozhi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
33
|
Efficacy of Compounds Isolated from Streptomyces olivaceus against the Morphogenesis and Virulence of Candida albicans. Mar Drugs 2019; 17:md17080442. [PMID: 31357504 PMCID: PMC6723460 DOI: 10.3390/md17080442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a type of commensal fungi which causes serious infections in immunocompromised patients and contributes to high mortality. In the present study, we identified that the extract from Streptomyces olivaceus SCSIO T05 inhibited hypha and biofilm formation of C. albicans. Seven compounds were isolated and evaluated for their effects on the biological functions and virulence of C. albicans. Two leading compounds, compound 1 (sorbicillin) and compound 2 (3-methyl-N-(2′-phenethyl)-butyrylamide) were identified as exhibiting strong activity against C. albicans morphological transition, adhesion activity, cytotoxicity, and adhesion to human cells, in a dose-dependent manner. Notably, compound 2 inhibited C. albicans infection in mouse oral mucosal models. Transcriptomic analysis and real-time PCR results revealed that compound 2 most likely inhibited the biological functions of C. albicans cells by regulating the expression levels of HWP1, TEC1, ALS1, IFD6, and CSH1, which are associated with filament formation and cell adhesion. Our results suggest that the candidate compounds present excellent efficacy against C. albicans pathogenicity and that they can be developed as potential options for the clinical treatment of candidiasis.
Collapse
|
34
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
35
|
Meng J, Gu G, Dang P, Zhang X, Wang W, Dai J, Liu Y, Lai D, Zhou L. Sorbicillinoids From the Fungus Ustilaginoidea virens and Their Phytotoxic, Cytotoxic, and Antimicrobial Activities. Front Chem 2019; 7:435. [PMID: 31249829 PMCID: PMC6582230 DOI: 10.3389/fchem.2019.00435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Ustilaginoidea virens, the causal fungus of rice false smut, was found in previous studies to produce two types of metabolites, ustiloxins and ustilaginoidins. However, genome sequencing of U. virens revealed a plethora of secondary-metabolites-biosynthetic core genes that were capable to biosynthesize unreported metabolites. A large-scale fermentation of U. virens was thus performed, and the fungal extract was chemically re-investigated. After removing the known metabolites, we found a fraction containing unknown phytotoxic substances. Fractionation of this part has led to the isolation of six new sorbicillinoids, namely ustisorbicillinols A~F (1~6), and two new sorbicillinoid-related pyrones, named ustilopyrones A (7) and B (8), together with nine known cogeners (9~17). The structures of the new compounds were elucidated by analysis of their NMR, HRMS, and CD spectra, while ECD, 13C NMR and optical rotation calculations were additionally used for configurational assignments. Plausible biosynthetic pathways for the new compounds were proposed. Phytotoxicity assays revealed that the major sorbicillinoids (12~14, and 16) showed strong inhibition against the radicle and germ elongation of rice and lettuce seeds, with compound 12 displaying the strongest inhibition. The isolated compounds were also evaluated for their cytotoxic, antibacterial, and antifungal activities. Compounds 10, and 12~14 showed moderate cytotoxicities against the tested cell lines with IC50s of 8.83~74.7 μM. Compounds 2, and 10~13 were active against the tested bacteria (MICs 4~128 μg/mL), while compounds 11~13 displayed moderate antifungal activities.
Collapse
Affiliation(s)
- Jiajia Meng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Gan Gu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengqin Dang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Lai D, Meng J, Zhang X, Xu D, Dai J, Zhou L. Ustilobisorbicillinol A, a Cytotoxic Sorbyl-Containing Aromatic Polyketide from Ustilaginoidea virens. Org Lett 2019; 21:1311-1314. [PMID: 30785293 DOI: 10.1021/acs.orglett.8b04101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ustilobisorbicillinol A (1), which is a novel bisorbicillinoid featuring a unique cage structure that incorporates one sorbicillinol and one sorbyl-containing phenanthrenone unit, was isolated from the culture of Ustilaginoidea virens. Three biogenetically related new metabolites (2-4) were also isolated. Their structures were elucidated by extensive spectroscopic analyses, including the 13C NMR and electronic circular dichroism (ECD) calculations for the configurational assignment. The biosynthetic pathway for these sorbyl-containing polyketides was proposed. Compound 1 showed pronounced cytotoxicity, and it induced significant cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Daowan Lai
- Department of Plant Pathology, College of Plant Protection , China Agricultural University , Beijing 100193 , China
| | - Jiajia Meng
- Department of Plant Pathology, College of Plant Protection , China Agricultural University , Beijing 100193 , China
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection , China Agricultural University , Beijing 100193 , China
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection , China Agricultural University , Beijing 100193 , China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College , Beijing 100050 , China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
37
|
Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front Microbiol 2018; 9:2768. [PMID: 30524395 PMCID: PMC6262359 DOI: 10.3389/fmicb.2018.02768] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Penicillium chrysogenum (renamed P. rubens) is the most studied member of a family of more than 350 Penicillium species that constitute the genus. Since the discovery of penicillin by Alexander Fleming, this filamentous fungus is used as a commercial β-lactam antibiotic producer. For several decades, P. chrysogenum was subjected to a classical strain improvement (CSI) program to increase penicillin titers. This resulted in a massive increase in the penicillin production capacity, paralleled by the silencing of several other biosynthetic gene clusters (BGCs), causing a reduction in the production of a broad range of BGC encoded natural products (NPs). Several approaches have been used to restore the ability of the penicillin production strains to synthetize the NPs lost during the CSI. Here, we summarize various re-activation mechanisms of BGCs, and how interference with regulation can be used as a strategy to activate or silence BGCs in filamentous fungi. To further emphasize the versatility of P. chrysogenum as a fungal production platform for NPs with potential commercial value, protein engineering of biosynthetic enzymes is discussed as a tool to develop de novo BGC pathways for new NPs.
Collapse
Affiliation(s)
- Fernando Guzmán-Chávez
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Reto D Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,DSM Biotechnology Centre, Delft, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Li C, Lin F, Sun W, Yuan S, Zhou Z, Wu FG, Chen Z. Constitutive hyperproduction of sorbicillinoids in Trichoderma reesei ZC121. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:291. [PMID: 30386428 PMCID: PMC6202828 DOI: 10.1186/s13068-018-1296-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/16/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND In addition to its outstanding cellulase production ability, Trichoderma reesei produces a wide variety of valuable secondary metabolites, the production of which has not received much attention to date. Among them, sorbicillinoids, a large group of hexaketide secondary metabolites derived from polyketides, are drawing a growing interest from researchers because they exhibit a variety of important biological functions, including anticancer, antioxidant, antiviral, and antimicrobial properties. The development of fungi strains with constitutive, hyperproduction of sorbicillinoids is thus desired for future industry application but is not well-studied. Moreover, although T. reesei has been demonstrated to produce sorbicillinoids with the corresponding gene cluster and biosynthesis pathway proposed, the underlying molecular mechanism governing sorbicillinoid biosynthesis remains unknown. RESULTS Recombinant T. reesei ZC121 was constructed from strain RUT-C30 by the insertion of the gene 12121-knockout cassette at the telomere of T. reesei chromosome IV in consideration of the off-target mutagenesis encountered during the unsuccessful deletion of gene 121121. Strain ZC121, when grown on cellulose, showed a sharp reduction of cellulase production, but yet a remarkable enhancement of sorbicillinoids production as compared to strain RUT-C30. The hyperproduction of sorbicillinoids is a constitutive process, independent of culture conditions such as carbon source, light, pH, and temperature. To the best of our knowledge, strain ZC121 displays record sorbicillinoid production levels when grown on both glucose and cellulose. Sorbicillinol and bisvertinolone are the two major sorbicillinoid compounds produced. ZC121 displayed a different morphology and markedly reduced sporulation compared to RUT-C30 but had a similar growth rate and biomass. Transcriptome analysis showed that most genes involved in cellulase production were downregulated significantly in ZC121 grown on cellulose, whereas remarkably all genes in the sorbicillinoid gene cluster were upregulated on both cellulose and glucose. CONCLUSION A constitutive sorbicillinoid-hyperproduction strain T. reesei ZC121 was obtained by off-target mutagenesis, displaying an overwhelming shift from cellulase production to sorbicillinoid production on cellulose, leading to a record for sorbicillinoid production. For the first time, T. reesei degraded cellulose to produce platform chemical compounds other than protein in high yield. We propose that the off-target mutagenesis occurring at the telomere region might cause chromosome remodeling and subsequently alter the cell structure and the global gene expression pattern of strain ZC121, as shown by phenotype profiling and comparative transcriptome analysis of ZC121. Overall, T. reesei ZC121 holds great promise for the industrial production of sorbicillinoids and serves as a good model to explore the regulation mechanism of sorbicillinoids' biosynthesis.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
- Nanjing, China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Shaoxun Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
39
|
Fatema U, Broberg A, Jensen DF, Karlsson M, Dubey M. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Sci Rep 2018; 8:15009. [PMID: 30301915 PMCID: PMC6177402 DOI: 10.1038/s41598-018-33391-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Clonostachys rosea is a mycoparasitic fungus used for biological control of plant diseases. Its genome contains 31 genes putatively encoding for polyketide synthases (PKSs), 75% of which are arranged in biosynthetic gene clusters. Gene expression analysis during C. rosea interactions with the fungal plant pathogens Botrytis cinerea and Fusarium graminearum showed common and species-specific induction of PKS genes. Our data showed a culture media dependent correlation between PKS gene expression and degree of antagonism in C. rosea. The pks22 and pks29 genes were highly induced during fungal-fungal interactions but not during pigmentation, and gene deletion studies revealed that PKS29 was required for full antagonism against B. cinerea, and for biocontrol of fusarium foot rot on barley. Metabolite analysis revealed that Δpks29 strains has a 50% reduced production (P = 0.001) of an unknown polyketide with molecular formula C15H28O3, while Δpks22 strains lost the ability to produce four previously unknown polyketides named Clonorosein A-D. Clonorosein A and B were purified, their structures determined, and showed strong antifungal activity against B. cinerea and F. graminearum. These results show that PKS22 is required for production of antifungal polyketide Clonorosein A-D, and demonstrate the role of PKS29 in antagonism and biocontrol of fungal plant diseases.
Collapse
Affiliation(s)
- Umma Fatema
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.,Department of Plant and Soil Sciences, 412 Plant Science Building 1405 Veterans Drive, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007, Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden.
| |
Collapse
|
40
|
Guzman‐Chavez F, Salo O, Samol M, Ries M, Kuipers J, Bovenberg RAL, Vreeken RJ, Driessen AJM. Deregulation of secondary metabolism in a histone deacetylase mutant of Penicillium chrysogenum. Microbiologyopen 2018; 7:e00598. [PMID: 29575742 PMCID: PMC6182556 DOI: 10.1002/mbo3.598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
The Pc21 g14570 gene of Penicillium chrysogenum encodes an ortholog of a class 2 histone deacetylase termed HdaA which may play a role in epigenetic regulation of secondary metabolism. Deletion of the hdaA gene induces a significant pleiotropic effect on the expression of a set of polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS)-encoding genes. The deletion mutant exhibits a decreased conidial pigmentation that is related to a reduced expression of the PKS gene Pc21 g16000 (pks17) responsible for the production of the pigment precursor naphtha-γ-pyrone. Moreover, the hdaA deletion caused decreased levels of the yellow pigment chrysogine that is associated with the downregulation of the NRPS-encoding gene Pc21 g12630 and associated biosynthetic gene cluster. In contrast, transcriptional activation of the sorbicillinoids biosynthetic gene cluster occurred concomitantly with the overproduction of associated compounds . A new compound was detected in the deletion strain that was observed only under conditions of sorbicillinoids production, suggesting crosstalk between biosynthetic gene clusters. Our present results show that an epigenomic approach can be successfully applied for the activation of secondary metabolism in industrial strains of P. chrysogenum.
Collapse
Affiliation(s)
- Fernando Guzman‐Chavez
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| | - Oleksandr Salo
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| | - Marta Samol
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| | - Marco Ries
- Division of Analytical BiosciencesLeiden/Amsterdam Center for Drug ResearchLeidenThe Netherlands
- Netherlands Metabolomics CentreLeiden UniversityLeidenThe Netherlands
| | - Jeroen Kuipers
- Department of Cell biologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell EngineeringGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- DSM Biotechnology CenterDelftThe Netherlands
| | - Rob J. Vreeken
- Division of Analytical BiosciencesLeiden/Amsterdam Center for Drug ResearchLeidenThe Netherlands
- Netherlands Metabolomics CentreLeiden UniversityLeidenThe Netherlands
- Present address:
Rob J. Vreeken, Discovery SciencesJanssen R &DBeerseBelgium
| | - Arnold J. M. Driessen
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| |
Collapse
|
41
|
Guzmán-Chávez F, Salo O, Nygård Y, Lankhorst PP, Bovenberg RAL, Driessen AJM. Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microb Biotechnol 2017; 10:958-968. [PMID: 28618182 PMCID: PMC5481523 DOI: 10.1111/1751-7915.12736] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022] Open
Abstract
Penicillium chrysogenum is a filamentous fungus that is used to produce β-lactams at an industrial scale. At an early stage of classical strain improvement, the ability to produce the yellow-coloured sorbicillinoids was lost through mutation. Sorbicillinoids are highly bioactive of great pharmaceutical interest. By repair of a critical mutation in one of the two polyketide synthases in an industrial P. chrysogenum strain, sorbicillinoid production was restored at high levels. Using this strain, the sorbicillin biosynthesis pathway was elucidated through gene deletion, overexpression and metabolite profiling. The polyketide synthase enzymes SorA and SorB are required to generate the key intermediates sorbicillin and dihydrosorbicillin, which are subsequently converted to (dihydro)sorbillinol by the FAD-dependent monooxygenase SorC and into the final product oxosorbicillinol by the oxidoreductase SorD. Deletion of either of the two pks genes not only impacted the overall production but also strongly reduce the expression of the pathway genes. Expression is regulated through the interplay of two transcriptional regulators: SorR1 and SorR2. SorR1 acts as a transcriptional activator, while SorR2 controls the expression of sorR1. Furthermore, the sorbicillinoid pathway is regulated through a novel autoinduction mechanism where sorbicillinoids activate transcription.
Collapse
Affiliation(s)
- Fernando Guzmán-Chávez
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oleksandr Salo
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Yvonne Nygård
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Peter P Lankhorst
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|