1
|
Boro N, Alexandrino Fernandes P, Mukherjee AK. Computational analysis to comprehend the structure-function properties of fibrinolytic enzymes from Bacillus spp for their efficient integration into industrial applications. Heliyon 2024; 10:e33895. [PMID: 39055840 PMCID: PMC11269858 DOI: 10.1016/j.heliyon.2024.e33895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background The fibrinolytic enzymes from Bacillus sp. are proposed as therapeutics in preventing thrombosis. Computational-based analyses of these enzymes' amino acid composition, basic physiological properties, presence of functional domain and motifs, and secondary and tertiary structure analyses can lead to developing a specific enzyme with improved catalytic activity and other properties that may increase their therapeutic potential. Methods The nucleotide sequences of fibrinolytic enzymes produced by the genus Bacillus and its corresponding protein sequences were retrieved from the NCBI database and aligned using the PRALINE programme. The varied physiochemical parameters and structural and functional analysis of the enzyme sequences were carried out with the ExPASy-ProtParam tool, MEME server, SOPMA, PDBsum tool, CYS-REC tool, SWISS-MODEL, SAVES servers, TMHMM program, GlobPlot, and peptide cutter software. The assessed in-silico data were compared with the published experimental results for validation. Results The alignment of sixty fibrinolytic serine protease enzymes (molecular mass 12-86 kDa) sequences showed 49 enzymes possess a conserved domain with a catalytic triad of Asp196, His242, and Ser569. The predicted instability and aliphatic indexes were 1.94-37.77, and 68.9-93.41, respectively, indicating high thermostability. The random coil means value suggested the predominance of this secondary structure in these proteases. A set of 50 amino acid residues representing motif 3 signifies the Peptidase S8/S53 domain that was invariably observed in 56 sequences. Additionally, 28 sequences have transmembrane helices, with two having the most disordered areas, and they pose 25 enzyme cleavage sites. A comparative analysis of the experimental work with the results of in-silico study put forward the characteristics of the enzyme sequences JF739176.1 and MF677779.1 to be considered when creating a potential mutant enzyme as these sequences are stable at high pH with thermostability and to exhibit αβ-fibrinogenase activity in both experimental and in-silico studies.
Collapse
Affiliation(s)
- Nitisha Boro
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
2
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
4
|
Jamali N, Vahedi F, Soltani Fard E, Taheri-Anganeh M, Taghvimi S, Khatami SH, Ghasemi H, Movahedpour A. Nattokinase: Structure, applications and sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Yao M, Yang Y, Fan J, Ma C, Liu X, Wang Y, Wang B, Sun Z, McClements DJ, Zhang J, Liu L, Xia G, Zhang N, Sun Q. Production, purification, and functional properties of microbial fibrinolytic enzymes produced by microorganism obtained from soy-based fermented foods: developments and challenges. Crit Rev Food Sci Nutr 2022; 64:3725-3750. [PMID: 36315047 DOI: 10.1080/10408398.2022.2134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
According to the World Health Organization, cardiovascular disease (CVD) has become a major cause of chronic illness around the globe. It has been reported that soy-based fermented food (SFF) is very effective in preventing thrombus (one of the most important contributing factors to CVD), which are mainly attributed to the bioactive substances, especially the fibrinolytic enzymes (FE) generated by microorganisms during the fermentation process of soybean food. This paper therefore mainly reviewed the microbial fibrinolytic enzymes (MFE) from SFF. We first discuss the use of microbial fermentation to produce FE, with an emphasis on the strains involved. The production, purification, physicochemical properties, structure-functional attributes, functional properties and possible application of MFE from SFF are then discussed. Finally, current limitations and future perspectives for the production, purification, and the practical application of MFE are discussed. MFE from SFF pose multiple health benefits, including thrombolysis, antihypertension, anti-inflammatory, anti-hyperlipidemia, anticancer, neuroprotective, antiviral and other activities. Therefore, they exhibit great potential for functional foods and nutraceutical applications, especially foods with CVDs prevention potential.
Collapse
Affiliation(s)
- Mingjing Yao
- School of Food Engineering, Harbin University of Commerce, Harbin, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Yang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zhihui Sun
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | | | - Jiaxiang Zhang
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liping Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University, Hainan, China
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Xiao Z, Shen J, Li Y, Wang Z, Zhao Y, Chen Y, Zhao JY. High and Economical Nattokinase Production with Acetoin as a Useful Byproduct from Soybean Milk and Glucose. Probiotics Antimicrob Proteins 2022; 14:792-803. [PMID: 34387855 DOI: 10.1007/s12602-021-09831-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Nattokinase (NK) is a potent fibrinolytic enzyme with wide pharmaceutical and nutraceutical applications. Safe and high NK-yielding strains are urgently needed. In this study, the best strain NDF was isolated from one of the 11 natto samples and then identified as Bacillus subtilis. The effects of carbon and nitrogen sources on NK production were investigated, and glucose and soybean milk were finally selected as the optimal carbon and nitrogen sources, respectively. Acetoin, a valuable compound with versatile usages, was detected as the main byproduct of carbon overflow. In a 6-L fermenter, NK and acetoin reached their peak concentrations simultaneously (10,220 IU/mL and 25.9 g/L, respectively) at 25 h in a culture medium containing 180 g/L of soybean milk and 105 g/L of glucose. The NK product was verified by sequencing of the aprN gene and SDS-PAGE analysis. Only very limited kinds of proteins were found in the supernatant of the fermentation broth, and NK was one of the main bands. This study has developed an economical and high NK production method with acetoin as a useful byproduct.
Collapse
Affiliation(s)
- Zijun Xiao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jie Shen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yang Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhuo Wang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yanshuang Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yong Chen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing-Yi Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
7
|
Zou Y, Qiu L, Xie A, Han W, Zhang S, Li J, Zhao S, Li Y, Liang Y, Hu Y. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis. Microb Cell Fact 2022; 21:173. [PMID: 35999638 PMCID: PMC9400229 DOI: 10.1186/s12934-022-01896-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/14/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bacillus subtilis, an important industrial microorganism, is commonly used in the production of industrial enzymes. Genome modification is often necessary to improve the production performance of cell. The dual-plasmid CRISPR-Cas9 system suitable for iterative genome editing has been applied in Bacillus subtilis. However, it is limited by the selection of knockout genes, long editing cycle and instability. RESULTS To address these problems, we constructed an all-in-one plasmid CRISPR-Cas9 system, which was suitable for iterative genome editing of B. subtilis. The PEG4000-assisted monomer plasmid ligation (PAMPL) method greatly improved the transformation efficiency of B. subtilis SCK6. Self-targeting sgRNArep transcription was tightly controlled by rigorous promoter PacoR, which could induce the elimination of plasmids after genome editing and prepare for next round of genome editing. Our system achieved 100% efficiency for single gene deletions and point mutations, 96% efficiency for gene insertions, and at least 90% efficiency for plasmid curing. As a proof of concept, two extracellular protease genes epr and bpr were continuously knocked out using this system, and it only took 2.5 days to complete one round of genome editing. The engineering strain was used to express Douchi fibrinolytic enzyme DFE27, and its extracellular enzyme activity reached 159.5 FU/mL. CONCLUSIONS We developed and applied a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in B. subtilis, which required only one plasmid transformation and curing, and accelerated the cycle of genome editing. To the best of our knowledge, this is the rapidest iterative genome editing system for B. subtilis. We hope that the system can be used to reconstruct the B. subtilis cell factory for the production of various biological molecules.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aowen Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shangbo Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinshan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Bioengineering Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yongmei Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Analysis of cross-functionality within LanBTC synthetase complexes from different bacterial sources with respect to production of fully modified lanthipeptides. Appl Environ Microbiol 2021; 88:e0161821. [PMID: 34788067 DOI: 10.1128/aem.01618-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lanthipeptides belong to a family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) containing (methyl)lanthionine residues. Commonly, class I lanthipeptides are synthesized by a gene cluster encoding a precursor peptide (LanA), a biosynthetic machinery (LanBTC), a protease (LanP), a two-component regulatory system (LanRK), and an immunity system (LanI and LanFEG). Although nisin and subtilin are highly similar class I lanthipeptides, the cross-regulation by LanRK and the cross-immunity by LanI and LanFEG between the nisin and subtilin systems have been proven very low. Here, the possibility of the cross-functionality by LanBTC to modify and transport nisin precursor (NisA) and subtilin precursor (SpaS) was evaluated in Bacillus subtilis and Lactococcus lactis. Interestingly, we found that a promiscuous NisBC-SpaT complex is able to synthesize and export nisin precursor, as efficiently as the native nisin biosynthetic machinery NisBTC, in L. lactis, but not in B. subtilis. The assembly of the NisBC-SpaT complex at a single microdomain, close to the old cell pole, was observed by fluorescence microscopy in L. lactis. In contrast, such a complex was not formed in B. subtilis. Furthermore, the isolation of the NisBC-SpaT complex and its subcomplexes from the cytoplasmic membrane of L. lactis by pull-down assays was successfully conducted. Our work demonstrates that the association of LanBC with LanT is critical for the efficient biosynthesis and secretion of the lanthipeptide precursor with complete modifications, and suggests a cooperative mechanism between LanBC and LanT in the modification and transport processes. IMPORTANCE A multimeric synthetase LanBTC complex has been proposed for the in vivo production of class I lanthipeptides. However, it has been demonstrated that LanB, LanC, and LanT can perform their functionality in vivo and in vitro, independently of other Lan proteins. The role of protein-protein interactions, especially between the modification complex LanBC and the transport system LanT, in the biosynthesis process of lanthipeptides is still unclear. In this study, the importance of the presence of a well-installed LanBTC complex in the cell membrane for lanthipeptide biosynthesis and transport was reinforced. In L. lactis, the recruitment of SpaT from the peripheral cell membrane to the cell poles by the NisBC complex was observed, which may explain the mechanism by which secretion of premature peptide is prevented.
Collapse
|
9
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
10
|
Long J, Zhang X, Gao Z, Yang Y, Tian X, Lu M, He L, Li C, Zeng X. Isolation of Bacillus spp. with High Fibrinolytic Activity and Performance Evaluation in Fermented Douchi. J Food Prot 2021; 84:717-727. [PMID: 33232445 DOI: 10.4315/jfp-20-307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fibrinolytic enzymes are effective and highly safe in treating cardiovascular and cerebrovascular diseases. Therefore, screening fibrinolytic enzyme-producing microbial strains with excellent fermentation performance is of great value to industrial applications. The fibrin plate method was used in screening strains with high yields of fibrinolytic enzymes from different fermented food products, and the screened strains were preliminarily identified using molecular biology. Then, the strains were used for solid-state fermentation of soybeans. Moreover, the fermentation product douchi was subjected to fibrinolytic activity measurement, sensory evaluation, and biogenic amine content determination. The fermentation performance of each strain was comprehensively evaluated through principal component analysis. Finally, the target strain was identified based on strain morphology, physiological and biochemical characteristics, 16S rDNA sequence, and phylogenetic analysis results. A total of 15 Bacillus species with high fibrinolysin activity were selected. Their fibrinolytic enzyme-producing activity levels were higher than 5,500 IU/g. Through molecular biology analysis, we found 4 strains of Bacillus subtilis, 10 strains of Bacillus amyloliquefaciens, and 1 strain of Bacillus velezensis. The principal component analysis results showed that SN-14 had the best fermentation performance and reduced the accumulation of histamine and total amine, the fibrinolytic activity of fermented douchi reached 5,920.5 ± 107.7 IU/g, and the sensory score was 4.6 ± 0.3 (out of 5 points). Finally, the combined results of physiological and biochemical analyses showed SN-14 was Bacillus velezensis. The high-yield fibrinolytic and excellent fermentation performance strain Bacillus velezensis SN-14 has potential industrial application. HIGHLIGHTS
Collapse
Affiliation(s)
- Jia Long
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xin Zhang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China.,College of Artificial Intelligence and Electrical Engineering, GuiZhou Institute of Technology, Guiyang 550003, People's Republic of China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xueyi Tian
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
11
|
Sun W, Wu Y, Ding W, Wang L, Wu L, Lin L, Che Z, Zhu L, Liu Y, Chen X. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis. Bioprocess Biosyst Eng 2019; 43:701-710. [PMID: 31844973 DOI: 10.1007/s00449-019-02268-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over traditional methods. However, beefy meaty peptide (BMP), the focus of umami peptides, has neither been concerned in its safe expression nor its overproduction in fermenter. In this study, multi-copy BMP (8BMP) was successfully auto-inducibly expressed and efficiently produced in Bacillus subtilis 168. First, 8BMP was successfully auto-inducibly expressed with srfA promoter in B. subtilis 168. Further, the efficient production of 8BMP was researched in a 5-L fermenter: the fermentation optimized by Pontryagin's maximum principle obtained the highest 8BMP yield (3.16 g/L), which was 1.2 times and 1.8 times than that of two-stage feeding cultivation (2.67 g/L) and constant-rate feeding cultivation (1.75 g/L), respectively. Overall, the auto-inducible expression of 8BMP in B. subtilis and fermentation with Pontryagin's maximum principle are conductive for overproduction of BMP and other peptides.
Collapse
Affiliation(s)
- Weifeng Sun
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China.
| | - Yuanming Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Wenwu Ding
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Li Wang
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lunjie Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lu Lin
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Zhenming Che
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, Anhui, 241000, China
| | - Yi Liu
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| | - Xiaohua Chen
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| |
Collapse
|
12
|
Cai D, Zhang B, Rao Y, Li L, Zhu J, Li J, Ma X, Chen S. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA-deficient strain of Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 103:4789-4799. [PMID: 31025072 DOI: 10.1007/s00253-019-09804-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
Soybean meal is commonly applied as the raw material in the bio-fermentation industry, and bacitracin is a widely used feed additive in the feed industry. In this study, we investigated the influence of subtilisin enhancement on soybean meal utilization and bacitracin production in Bacillus licheniformis DW2, an industrial strain for bacitracin production. Firstly, blocking sRNA aprA expression benefited bacitracin synthesis, and the bacitracin yield produced by aprA-deficient strain DW2△PaprA reached 931.43 U/mL, 18.92% higher than that of DW2 (783.25 U/mL). The bacitracin yield was reduced by 14.27% in the aprA overexpression strain. Furthermore, our results showed that deficiency of aprA led to a 6.54-fold increase of the aprE transcriptional level and a 1.84-fold increase of subtilisin activity, respectively, which led to the increases of soybean meal utilization rate (28.86%) and precursor amino acid supplies for bacitracin synthesis. Additionally, strengthening the utilization rate of soybean meal also benefited heterologous protein production, and the α-amylase and nattokinase activities were respectively enhanced by 59.81% and 50.53% in aprA-deficient strains. Collectively, this research demonstrated that strengthening subtilisin production could improve the utilization rate of soybean meal and thereby enhance bacitracin and target protein production; also, this strategy would be useful for the improvement of protein/peptide production using soybean meal as the main nitrogen source in the fermentation process.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Lingfeng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Han L, Cui W, Suo F, Miao S, Hao W, Chen Q, Guo J, Liu Z, Zhou L, Zhou Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact 2019; 18:96. [PMID: 31142347 PMCID: PMC6540529 DOI: 10.1186/s12934-019-1148-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. Results The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between − 35 box and − 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the − 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the − 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as β-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. Conclusion Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology. Electronic supplementary material The online version of this article (10.1186/s12934-019-1148-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shengnan Miao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiaoqing Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
14
|
Liu X, Wang H, Wang B, Pan L. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Microb Cell Fact 2018; 17:163. [PMID: 30348150 PMCID: PMC6196424 DOI: 10.1186/s12934-018-1011-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Bacillus subtilis has been widely used as a host for heterologous protein expression in food industry. B. subtilis ATCC6051 is an alternative expression host for the production of industrial enzymes, and exhibits favorable growth properties compared to B. subtilis 168. Extracellular expression of pullulanase from recombinant B. subtilis is still limited due to the issues on promoters of B. subtilis expression system. This study was undertaken to develop a new, high-level expression system in B. subtilis ATCC6051. Results To further optimize B. subtilis ATCC6051 as a expression host, eight extracellular proteases (aprE, nprE, nprB, epr, mpr, bpr, vpr and wprA), the sigma factor F (spoIIAC) and a surfactin (srfAC) were deleted, yielding the mutant B. subtilis ATCC6051∆10. ATCC6051∆10 showed rapid growth and produced much more extracellular protein compared to the widetype strain ATCC6051, due to the inactivation of multiple proteases. Using this mutant as the host, eleven plasmids equipped with single promoters were constructed for recombinant expression of pullulanase (PUL) from Bacillus naganoensis. The plasmid containing the PspovG promoter produced the highest extracellular PUL activity, which achieved 412.9 U/mL. Subsequently, sixteen dual-promoter plasmids were constructed and evaluated using this same method. The plasmid containing the dual promoter PamyL–PspovG produced the maximum extracellular PUL activity (625.5 U/mL) and showed the highest expression level (the dry cell weight of 18.7 g/L). Conclusions Taken together, we constructed an effective B. subtilis expression system by deleting multiple proteases and screening strong promoters. The dual-promoter PamyL–PspovG system was found to support superior expression of extracellular proteins in B. subtilis ATCC6051. Electronic supplementary material The online version of this article (10.1186/s12934-018-1011-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hai Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
16
|
Cui W, Suo F, Cheng J, Han L, Hao W, Guo J, Zhou Z. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microb Biotechnol 2018; 11:930-942. [PMID: 29984489 PMCID: PMC6116739 DOI: 10.1111/1751-7915.13298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nattokinase (NK) is an important serine‐protease with direct fibrinolytic activity involving the prevention of cardiovascular disease as an antithrombotic agent. Dozens of studies have focused on the characterization of intrinsic novel promoters and signal peptides to the secretory production of recombinant proteins in Bacillus subtilis. However, intrinsic genetic elements have several drawbacks, which cannot mediate the production of NK to the desired level. In this study, the genetic elements, which were used to overproduce the recombinant secretory NK, were rationally modified in B. subtilis in a stepwise manner. The first step was to select a suitable signal peptide for the highly efficient secretion of NK. By comparison of the secretory levels mediated by two different signal peptides, which were encoded by the genes of a minor extracellular protease epr (SPepr) and cell‐wall associated protease wapA (SPwapA), respectively, SPwapA was verified as the superior secretory element. Second, P04, which was a synthetic promoter screened from an array of mutants based on the promoter cloned from the operon of a quorum‐sensing associated gene srfA (PsrfA), was paired to SPwapA. The secretory level of NK was obviously augmented by the combination of these two genetic elements. Third, the cis‐acting element CodY‐binding sequence positioned at the 5′UTR was deleted (yielding P08), and thus the secretory level was significantly elevated. The activity of NK, which was defined as fibrinolytic units (FU), reached to a level of 270 FU ml−1. Finally, the superior genetic element composed of P08 and SPwapA was utilized to overproduce NK in the host B. subtilis WB800, which was able to produce the secretory NK at 292 FU ml−1. The strategy established in this study can not only be used to overproduce NK in B. subtilis but also might be a promising pipeline to modify the genetic element for the synthetic secretory system.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jintao Cheng
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|