1
|
Białecka N, Garbacz K, Berbeć E, Murawska A, Madras-Majewska B, Migdał P. Changes in Selected Biochemical Markers of Honey Bees Exposed to Fermented Common Tansy Solution ( Tanacetum vulgare L.). Animals (Basel) 2024; 14:2857. [PMID: 39409806 PMCID: PMC11475335 DOI: 10.3390/ani14192857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Honey bees use pollen and nectar from flowers to produce food. Because they often forage on crops, they are at risk of being exposed to plant protection products (PPPs), both directly and in stored food. Due to the adverse effects of synthetic PPPs on pollinators, biopesticides may be a viable alternative. Common tansy extract is used as one of the natural substitutes for synthetic pesticides. In our study, the effect of fermented common tansy extract on aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (GGTP) activity and the concentration of triglycerides (TGs), total protein (TP), total antioxidant status (TAS), and glucose in honey bee workers' hemolymph was assessed. These biochemical markers give valuable information about the immunity, detoxification, and nutrition of a bee's body. Caged bees were given tansy extract added at various concentrations in sugar syrup for 24 h. Then, they were provided with only sugar syrup. After 7 days of the experiment, hemolymph was collected and analyzed. We observed changes in the activity of AST, ALT, GGTP enzymes and TG, TP, and glucose levels, but not all changes were statistically significant. In terms of AST activity, statistically significant differences were found. All groups tested, including the negative control group, showed reduced enzyme activity values compared to the positive control group. In TG concentration, differences were observed between the groups receiving 2% extract and 1% ethanol. Glucose levels differed between the groups receiving 1% extract and 2% extract and between the positive control group and 1% extract. Bee body proper functioning is affected by changes in enzyme activity, especially those responsible for immunity and detoxification, such as AST, ALT, ALP, and GGTP. Despite the short time of bees' exposure to the agent, the results of study show visible effects. Our results provide a basis for further research on the impact of tansy extract on honey bees.
Collapse
Affiliation(s)
- Natalia Białecka
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, 38C Chelmonskiego St., 51-630 Wroclaw, Poland
| | - Klaudia Garbacz
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, 38C Chelmonskiego St., 51-630 Wroclaw, Poland
| | - Ewelina Berbeć
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, 38C Chelmonskiego St., 51-630 Wroclaw, Poland
| | - Agnieszka Murawska
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, 38C Chelmonskiego St., 51-630 Wroclaw, Poland
| | - Beata Madras-Majewska
- Apiculture Division, Institute of Animal Sciences, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Wroclaw University of Environmental and Life Sciences, 38C Chelmonskiego St., 51-630 Wroclaw, Poland
| |
Collapse
|
2
|
El Khoury S, Gauthier J, Mercier PL, Moïse S, Giovenazzo P, Derome N. Honeybee gut bacterial strain improved survival and gut microbiota homeostasis in Apis mellifera exposed in vivo to clothianidin. Microbiol Spectr 2024; 12:e0057824. [PMID: 39189755 PMCID: PMC11448422 DOI: 10.1128/spectrum.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/04/2024] [Indexed: 08/28/2024] Open
Abstract
Pesticides are causing honeybee mortality worldwide. Research carried out on honeybees indicates that application of pesticides has a significant impact on the core gut community, which ultimately leads to an increase in the growth of harmful pathogens. Disturbances caused by pesticides also affect the way bacterial members interact, which results in gut microbial dysbiosis. Administration of beneficial microbes has been previously demonstrated to be effective in treating or preventing disease in honeybees. The objective of this study was to measure under in vivo conditions the ability of two bacterial strains (the Enterobacter sp. and Pantoea sp.) isolated from honeybee gut to improve survival and mitigate gut microbiota dysbiosis in honeybees exposed to a sublethal clothianidin dose (0.1 ppb). Both gut bacterial strains were selected for their ability to degrade clothianidin in vitro regardless of their host-microbe interaction characteristics (e.g., beneficial, neutral, or harmful). To this end, we conducted cage trials on 4- to 6-day-old newly emerging honeybees. During microbial administration, we jointly monitored the taxonomic distribution and activity level of bacterial symbionts quantifying 16S rRNA transcripts. First, curative administration of the Pantoea sp. strain significantly improved the survival of clothianidin-exposed honeybees compared to sugar control bees (i.e., supplemented with sugar [1:1]). Second, curative administration of the Enterobacter sp. strain significantly mitigated the clothianidin-induced dysbiosis observed in the midgut structural network, but without improving survival. IMPORTANCE The present work suggests that administration of bacterial strains isolated from honeybee gut may promote recovery of gut microbiota homeostasis after prolonged clothianidin exposure, while improving survival. This study highlights that gut bacterial strains hold promise for developing efficient microbial formulations to mitigate environmental pesticide exposure in honeybee colonies.
Collapse
Affiliation(s)
- Sarah El Khoury
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Jeff Gauthier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Pierre Luc Mercier
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| | - Stéphane Moïse
- INRS, Institut National de la Recherche Scientifique, Québec, Canada
| | | | - Nicolas Derome
- Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec, Canada
- Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
4
|
Liu J, Shi J, Hu Y, Su Y, Zhang Y, Wu X. Flumethrin exposure perturbs gut microbiota structure and intestinal metabolism in honeybees (Apis mellifera). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135886. [PMID: 39298952 DOI: 10.1016/j.jhazmat.2024.135886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yonghong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China.
| |
Collapse
|
5
|
Chabanol E, Gendrin M. Insects and microbes: best friends from the nursery. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101270. [PMID: 39293738 DOI: 10.1016/j.cois.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Insects host microbes and interact with them throughout their life cycle. This microbiota is an important, if not essential, partner participating in many aspects of insect physiology. Recent omics studies have contributed to considerable advances in the current understanding of the molecular implications of microbiota during insect development. In this review, we present an overview of the current knowledge about the mechanisms underlying interactions between developing insects and their microbial companions. The microbiota is implicated in nutrition, both via compensating for metabolic pathways lacking in the host and via regulating host metabolism. Furthermore, the microbiota plays a protective role, enhancing the insect's tolerance to, or resistance against, various environmental stresses.
Collapse
Affiliation(s)
- Estelle Chabanol
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana.
| |
Collapse
|
6
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Changes in bumblebee queen gut microbiotas during and after overwintering diapause. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39175129 DOI: 10.1111/imb.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.
Collapse
|
7
|
Bovier M, Camenzind DW, Brown AF, Jeker L, Retschnig G, Neumann P, Straub L. Colony environment and absence of brood enhance tolerance to a neonicotinoid in winter honey bee workers, Apis mellifera. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:608-621. [PMID: 38780664 PMCID: PMC11252217 DOI: 10.1007/s10646-024-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In eusocial insects, worker longevity is essential to ensure colony survival in brood-free periods. Trade-offs between longevity and other traits may render long-living workers in brood-free periods more susceptible to pesticides compared to short-lived ones. Further, colony environment (e.g., adequate nutrition) may enable workers to better cope with pesticides, yet data comparing long vs. short-living workers and the role of the colony environment for pesticide tolerance are scarce. Here, we show that long-living honey bee workers, Apis mellifera, are less susceptible to the neonicotinoid thiamethoxam than short-lived workers, and that susceptibility was further reduced when workers were acclimatized under colony compared to laboratory conditions. Following an OECD protocol, freshly-emerged workers were exposed to thiamethoxam in summer and winter and either acclimatized within their colony or in the laboratory. Mortality and sucrose consumption were measured daily and revealed that winter workers were significantly less susceptible than summer workers, despite being exposed to higher thiamethoxam dosages due to increased food consumption. Disparencies in fat body activity, which is key for detoxification, may explain why winter bees were less susceptible. Furthermore, colony acclimatization significantly reduced susceptibility towards thiamethoxam in winter workers likely due to enhanced protein nutrition. Brood absence and colony environment seem to govern workers' ability to cope with pesticides, which should be considered in risk assessments. Since honey bee colony losses occur mostly over winter, long-term studies assessing the effects of pesticide exposure on winter bees are required to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Manon Bovier
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic W Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew F Brown
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- University of Freiburg, Freiburg, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand.
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
8
|
Vommaro ML, Giglio A. Cytotoxic and genotoxic effects of a pendimethalin-based herbicide in Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116565. [PMID: 38870738 DOI: 10.1016/j.ecoenv.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Public concern about the effects of pesticides on non-target organisms has increased in the recent years. Nevertheless, there is a limited number of studies that address the actual toxic effects of herbicides on insects. This study investigated the side effects of herbicides on non-target organisms inhabiting agroecosystems and performing essential ecological and economic functions such as crop pollination. We analysed morphological alterations in the gut, Malpighian tubules and circulating haemocytes of Apis mellifera workers as markers of exposure effects. A commercial formulation of a pendimethalin-based herbicide (PND) was administered orally under laboratory conditions at a realistic concentration admitted in the field (330gL-1 of active ingredient., 4 L ha-1 for cereal and vegetable crops). The worker bees were exposed to a single application of PND for a period of one week, to simulate the exposure that can occur when foraging bees accidentally drink drops of contaminated water upon treatments. Histopathological analyses of the midgut, ileum and Malpighian tubules showed alterations over time (from 24 to 72 h after the beginning of exposure) such as loss of epithelial organisation, cellular vacuolisation and altered pyknotic nuclei as well as disruption of the peritrophic membrane over time. Semiquantitative analyses of the midgut showed a significant increase in the organ injury index 24 and 72 h after the initial exposure in PND-exposed bees compared to control bees. In addition, a change in positivity to Gram staining was observed in the midgut histological sections. A recovery of cytotoxic effects was observed one week after the initial exposure, which was favoured by the periodic renewal of the intestinal epithelium and the herbicide dissipation time. Cytochemical staining with Giemsa of haemocytes from PND-treated workers over 24 and 72 h showed significant nuclear alterations such as lobed or polymorphic nuclei and micronuclei compared to bees in the control group. These results show that the dose of PND used to protect crops from weeds can lead to significant cytotoxic and genotoxic effects in non-target organisms such as honey bees. In croplands, the sublethal effects on cell morphology can impair vital physiological processes such as nutrition, osmoregulation, and resistance to pathogens, contributing to the decline in biodiversity and abundance of species that play a prominent ecological role, such as pollinators.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
9
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Gaubert J, Mercier PL, Martin G, Giovenazzo P, Derome N. Managing Microbiota Activity of Apis mellifera with Probiotic (Bactocell ®) and Antimicrobial (Fumidil B ®) Treatments: Effects on Spring Colony Strength. Microorganisms 2024; 12:1154. [PMID: 38930537 PMCID: PMC11205764 DOI: 10.3390/microorganisms12061154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Against a backdrop of declining bee colony health, this study aims to gain a better understanding of the impact of an antimicrobial (Fumidil B®, Can-Vet Animal Health Supplies Ltd., Guelph, ON, Canada) and a probiotic (Bactocell®, Lallemand Inc., Montreal, QC, Canada) on bees' microbiota and the health of their colonies after wintering. Therefore, colonies were orally exposed to these products and their combination before wintering in an environmental room. The results show that the probiotic significantly improved the strength of the colonies in spring by increasing the total number of bees and the number of capped brood cells. This improvement translated into a more resilient structure of the gut microbiota, highlighted by a more connected network of interactions between bacteria. Contrastingly, the antimicrobial treatment led to a breakdown in this network and a significant increase in negative interactions, both being hallmarks of microbiota dysbiosis. Although this treatment did not translate into a measurable colony strength reduction, it may impact the health of individual bees. The combination of these products restored the microbiota close to control, but with mixed results for colony performance. More tests will be needed to validate these results, but the probiotic Bactocell® could be administrated as a food supplement before wintering to improve colony recovery in spring.
Collapse
Affiliation(s)
- Joy Gaubert
- Derome Laboratory, Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada; (P.-L.M.); (N.D.)
- Giovenazzo, Laboratory, Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Pierre-Luc Mercier
- Derome Laboratory, Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada; (P.-L.M.); (N.D.)
| | - Georges Martin
- Centre de Recherche en Sciences Animales de Deschambault, Deschambault, QC G0A 1S0, Canada;
| | - Pierre Giovenazzo
- Giovenazzo, Laboratory, Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Nicolas Derome
- Derome Laboratory, Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada; (P.-L.M.); (N.D.)
| |
Collapse
|
11
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
12
|
Peterson BF. Microbiome toxicology - bacterial activation and detoxification of insecticidal compounds. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101192. [PMID: 38490450 DOI: 10.1016/j.cois.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Insect gut bacteria have been implicated in a myriad of physiological processes from nutrient supplementation to pathogen protection. In fact, symbiont-mediated insecticide degradation has helped explain sudden control failure in the field to a range of active ingredients. The mechanisms behind the loss of susceptibility are varied based on host, symbiont, and insecticide identity. However, while some symbionts directly break down pesticides, others modulate endogenous host detoxification pathways or involve reciprocal degradation of insecticidal and bactericidal compounds both inspiring new questions and requiring the reexamination of past conclusions. Good steward of the chemical pesticide arsenal requires consideration of these ecological interactions from development to deployment.
Collapse
Affiliation(s)
- Brittany F Peterson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA.
| |
Collapse
|
13
|
Wu J, Liu F, Sun J, Wei Q, Kang W, Wang F, Zhang C, Zhao M, Xu S, Han B. Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. CHEMOSPHERE 2024; 358:142207. [PMID: 38697560 DOI: 10.1016/j.chemosphere.2024.142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fenazaquin, a potent insecticide widely used to control phytophagous mites, has recently emerged as a potential solution for managing Varroa destructor mites in honeybees. However, the comprehensive impact of fenazaquin on honeybee health remains insufficiently understood. Our current study investigated the acute and chronic toxicity of fenazaquin to honeybee larvae, along with its influence on larval hemolymph metabolism and gut microbiota. Results showed that the acute median lethal dose (LD50) of fenazaquin for honeybee larvae was 1.786 μg/larva, and the chronic LD50 was 1.213 μg/larva. Although chronic exposure to low doses of fenazaquin exhibited no significant effect on larval development, increasing doses of fenazaquin resulted in significant increases in larval mortality, developmental time, and deformity rates. At the metabolic level, high doses of fenazaquin inhibited nucleotide, purine, and lipid metabolism pathways in the larval hemolymph, leading to energy metabolism disorders and physiological dysfunction. Furthermore, high doses of fenazaquin reduced gut microbial diversity and abundance, characterized by decreased relative abundance of functional gut bacterium Lactobacillus kunkeei and increased pathogenic bacterium Melissococcus plutonius. The disrupted gut microbiota, combined with the observed gut tissue damage, could potentially impair food digestion and nutrient absorption in the larvae. Our results provide valuable insights into the complex and diverse effects of fenazaquin on honeybee larvae, establishing an important theoretical basis for applying fenazaquin in beekeeping.
Collapse
Affiliation(s)
- Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengying Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajing Sun
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weipeng Kang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Institute of Horticultural Research, Shanxi Academy of Agricultural Sciences, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Meijiao Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Lv N, Zhang X, Li R, Liu X, Liang P. Mesoporous silica nanospheres-mediated insecticide and antibiotics co-delivery system for synergizing insecticidal toxicity and reducing environmental risk of insecticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171984. [PMID: 38547983 DOI: 10.1016/j.scitotenv.2024.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xudong Zhang
- Analytical & Testing Center, Beihang University, Beijing 100191, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Sattayawat P, Inwongwan S, Noirungsee N, Li J, Guo J, Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? INSECTS 2024; 15:369. [PMID: 38786925 PMCID: PMC11121833 DOI: 10.3390/insects15050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Bees play a crucial role as pollinators, contributing significantly to ecosystems. However, the honeybee population faces challenges such as global warming, pesticide use, and pathogenic microorganisms. Promoting bee growth using several approaches is therefore crucial for maintaining their roles. To this end, the bacterial microbiota is well-known for its native role in supporting bee growth in several respects. Maximizing the capabilities of these microorganisms holds the theoretical potential to promote the growth of bees. Recent advancements have made it feasible to achieve this enhancement through the application of genetic engineering. In this review, we present the roles of gut symbionts in promoting bee growth and collectively summarize the engineering approaches that would be needed for future applications. Particularly, as the engineering of bee gut symbionts has not been advanced, the dominant gut symbiotic bacteria Snodgrassella alvi and Gilliamella apicola are the main focus of the paper, along with other dominant species. Moreover, we propose engineering strategies that will allow for the improvement in bee growth with listed gene targets for modification to further encourage the use of engineered gut symbionts to promote bee growth.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jilian Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
16
|
Aguado-López D, Urbieta Magro A, Higes M, Rodríguez JM, Martín-Hernández R. Influence of Age of Infection on the Gut Microbiota in Worker Honey Bees ( Apis mellifera iberiensis) Experimentally Infected with Nosema ceranae. Microorganisms 2024; 12:635. [PMID: 38674580 PMCID: PMC11051791 DOI: 10.3390/microorganisms12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The gut microbiota of honey bees has received increasing interest in the past decades due to its crucial role in their health, and can be disrupted by pathogen infection. Nosema ceranae is an intracellular parasite that affects the epithelial cells of the midgut, altering gut homeostasis and representing a major threat to honey bees. Previous studies indicated that younger worker bees are more susceptible to experimental infection by this parasite, although the impact of infection and of age on the gut bacterial communities remains unclear. To address this, honey bees were experimentally infected with a consistent number of N. ceranae spores at various ages post-emergence (p.e.) and the gut bacteria 7 days post-infection (p.i.) were analysed using real-time quantitative PCR, with the results compared to non-infected controls. Infected bees had a significantly higher proportion and load of Gilliamella apicola. In respect to the age of infection, the bees infected just after emergence had elevated loads of G. apicola, Bifidobacterium asteroides, Bombilactobacillus spp., Lactobacillus spp., Bartonella apis, and Bombella apis. Moreover, the G. apicola load was higher in bees infected at nearly all ages, whereas older non-infected bees had higher loads of Bifidobacterium asteroides, Bombilactobacillus spp., Lactobacillus spp., Ba. apis, and Bo apis. These findings suggest that N. ceranae infection and, in particular, the age of bees at infection modulate the gut bacterial community, with G. apicola being the most severely affected species.
Collapse
Affiliation(s)
- Daniel Aguado-López
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| | - Almudena Urbieta Magro
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| |
Collapse
|
17
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
18
|
Liu L, Shi M, Wu Y, Xie X, Li S, Dai P, Gao J. Interactive effects of dinotefuran and Nosema ceranae on the survival status and gut microbial community of honey bees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105808. [PMID: 38582580 DOI: 10.1016/j.pestbp.2024.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 04/08/2024]
Abstract
Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.
Collapse
Affiliation(s)
- Linlin Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, Nanchang 330031, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
19
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
20
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|
21
|
Zhang G, Dilday S, Kuesel RW, Hopkins B. Phytochemicals, Probiotics, Recombinant Proteins: Enzymatic Remedies to Pesticide Poisonings in Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:54-62. [PMID: 38127782 PMCID: PMC10785755 DOI: 10.1021/acs.est.3c07581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Sam Dilday
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
22
|
Giampaoli O, Messi M, Merlet T, Sciubba F, Canepari S, Spagnoli M, Astolfi ML. Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31561-x. [PMID: 38158534 DOI: 10.1007/s11356-023-31561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Thomas Merlet
- Department of Chemistry, Toulouse INP - ENSIACET, 4 Allée Emile Monso, 31030, Toulouse, France
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St, 00015, Rome, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
23
|
Martin Ewert A, Simone-Finstrom M, Read Q, Husseneder C, Ricigliano V. Effects of ingested essential oils and propolis extracts on honey bee (Hymenoptera: Apidae) health and gut microbiota. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:15. [PMID: 38055949 DOI: 10.1093/jisesa/iead087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023]
Abstract
Managed honey bee (Hymenoptera: Apidae: Apis mellifera Linnaeus) hives require frequent human inputs to maintain colony health and productivity. A variety of plant natural products (PNPs) are delivered via feeding to control diseases and reduce the use of synthetic chemical treatments. However, despite their prevalent use in beekeeping, there is limited information regarding the impact of ingested PNPs on bee health. Here, we tested the effects of different essential oils and propolis extracts on honey bee life span, nutrient assimilation, xenobiotic detoxification, and gut microbiota abundance. Brazilian propolis extract lengthened worker life span, while the other PNPs (Louisiana propolis extract, lemongrass oil, spearmint oil, and thyme oil) exerted variable and dose-dependent effects on life span. Vitellogenin (vg) gene expression was reduced by Brazilian propolis extract at high doses. Expression of CYP6AS1, a detoxification-related gene, was reduced by low doses of thyme oil. The abundances of 8 core gut microbiota taxa were largely unaffected by host consumption of PNPs. Our results suggest that in addition to propolis's structural and immunomodulatory roles in the colony, it may also exert beneficial health effects when ingested. Thyme oil, a commonly used hive treatment, was toxic at field-realistic dosages, and its use as a feed additive should be viewed with caution until its effects on bee health are more thoroughly investigated. We conclude that the tested propolis extracts, lemongrass oil, and spearmint oil are generally safe for bee consumption, with some apparent health-promoting effects.
Collapse
Affiliation(s)
- Allyson Martin Ewert
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70802, USA
- Department of Entomology, Louisiana State University AgCenter, 402 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70802, USA
| | - Quentin Read
- USDA-ARS, Southeast Area, North Carolina State University, Raleigh, NC 27695, USA
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University AgCenter, 402 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Vincent Ricigliano
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70802, USA
| |
Collapse
|
24
|
Liu Y, Yu J, Zhu F, Shen Z, Jiang H, Li Z, Liu X, Xu H. Function of Cytochrome P450s and Gut Microbiome in Biopesticide Adaptation of Grapholita molesta on Different Host Diets. Int J Mol Sci 2023; 24:15435. [PMID: 37895115 PMCID: PMC10607806 DOI: 10.3390/ijms242015435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Insects that feed on various host plants possess diverse xenobiotic adaptations; however, the underlying mechanisms are poorly understood. In the present study, we used Grapholita molesta, which shifts feeding sites from peach shoots to apple fruits, as a model to explore the effects of shifts in host plant diet on the profiles of cytochrome P450s and the gut bacteria microbiome, as well as their effects on biopesticide adaptation. We found that the sensitivity of the fruit-feeding G. molesta to emamectin benzoate biopesticide was significantly lower than that of the shoot-feeding larvae. We also found that the P450 enzyme activity and the expression of nine cytochrome P450s were enhanced in G. molesta fed on Fuji apples compared to those fed on peach shoots. The survival rates of G. molesta exposed to emamectin benzoate significantly decreased as each of three of four emamectin benzoate-inducted cytochrome P450 genes were silenced. Furthermore, we discovered the gut bacteria dynamics of G. molesta changed with the host shift and the structure of the gut bacteria microbiome was determined by the final diet ingested; additionally, the dysbiosis of the gut microbiota induced by antibiotics could significantly increase the sensitivity to emamectin benzoate. Taken together, our results suggest that the expression of P450s and the composition of the gut bacteria microbiome promote adaptation to emamectin benzoate in G. molesta, providing new insights into the molecular mechanisms underlying xenobiotic adaptation in this notorious pest.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.)
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Jianmei Yu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
- Institute of Vegetables, Zibo Academy of Agricultural Sciences, Zibo 255000, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhongjian Shen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.)
| | - Zhen Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Huanli Xu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| |
Collapse
|
25
|
Gekière A, Vanderplanck M, Michez D. Trace metals with heavy consequences on bees: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165084. [PMID: 37379929 DOI: 10.1016/j.scitotenv.2023.165084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The pervasiveness of human imprint on Earth is alarming and most animal species, including bees (Hymenoptera: Apoidea: Anthophila), must cope with several stressors. Recently, exposure to trace metals and metalloids (TMM) has drawn attention and has been suggested as a threat for bee populations. In this review, we aimed at bringing together all the studies (n = 59), both in laboratories and in natura, that assessed the effects of TMM on bees. After a brief comment on semantics, we listed the potential routes of exposure to soluble and insoluble (i.e. nanoparticle) TMM, and the threat posed by metallophyte plants. Then, we reviewed the studies that addressed whether bees could detect and avoid TMM in their environment, as well as the ways bee detoxify these xenobiotics. Afterwards, we listed the impacts TMM have on bees at the community, individual, physiological, histological and microbial levels. We discussed around the interspecific variations among bees, as well as around the simultaneous exposure to TMM. Finally, we highlighted that bees are likely exposed to TMM in combination or with other stressors, such as pesticides and parasites. Overall, we showed that most studies focussed on the domesticated western honey bee and mainly addressed lethal effects. Because TMM are widespread in the environment and have been shown to result in detrimental consequences, evaluating their lethal and sublethal effects on bees, including non-Apis species, warrants further investigations.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| | - Maryse Vanderplanck
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, 34090 Montpellier, France.
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
26
|
Shi T, Jiang X, Cao H, Yu L. Exposure to sublethal concentrations of thiacloprid insecticide modulated the expression of microRNAs in honeybees (Apis mellifera L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115499. [PMID: 37729803 DOI: 10.1016/j.ecoenv.2023.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
This study aimed to investigate the sublethal effects of thiacloprid on microRNA (miRNA) expression in honeybees (Apis mellifera L.) and the role of a specific miRNA, ame-miR-283-5p, in thiacloprid resistance. The high-throughput small RNA-sequencing was used to analyze global miRNA expression profile changes in honeybees orally exposed to sublethal concentrations of thiacloprid (20 mg/L and 4 mg/L) for 72 h. Thiacloprid at 20 mg/L had no observed adverse effects. In addition, bees were fed with miRNA mimics or inhibitors to increase or decrease ame-miR-283-5p expression, and its effects on P450 gene expression (CYP9Q2 and CYP9Q3) were examined. Thiacloprid susceptibility was also detected. The results showed that treatment with thiacloprid at 20 mg/L and 4 mg/L induced 11 and five differentially expressed miRNAs (DEMs), respectively. Bioinformatic analysis suggested that the DEMs are mainly involved in the regulation of growth and development, metabolism, nerve conduction, and behavior. ame-miR-283-5p was downregulated by both concentrations, which was validated using quantitative real-time reverse transcription PCR analysis. Enhancing ame-miR-283-5p expression significantly inhibited CYP9Q2 mRNA and protein expression, and increased thiacloprid toxicity, while reducing ame-miR-283-5p expression significantly promoted CYP9Q2 expression, and decreased thiacloprid susceptibility. Our study revealed a novel role of miRNAs in insecticide resistance in honeybees.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Institute of Apiculture Research, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Xingchuan Jiang
- School of Plant Protection, Institute of Apiculture Research, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Institute of Apiculture Research, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Linsheng Yu
- School of Plant Protection, Institute of Apiculture Research, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
27
|
Mills TJT, Nelson TM, Pearson LA, Neilan BA. Hive Transplantation Has Minimal Impact on the Core Gut Microbiome of the Australian Stingless Bee, Tetragonula carbonaria. MICROBIAL ECOLOGY 2023; 86:2086-2096. [PMID: 37088849 PMCID: PMC10497653 DOI: 10.1007/s00248-023-02222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Bacteria residing in the guts of pollinating insects play a key role in nutrient acquisition, digestion, and resistance to pests and diseases. Imbalances in microbial flora in response to environmental change and stress can therefore impact insect health and resilience. This study is aimed at defining the core gut microbiome of the Australian native stingless bee, Tetragonula carbonaria, and exploring the impact of colony transplantation on gut health. The gut microbiomes of nine forager bees from natural (log) and manufactured (box) hives were examined via 16S rRNA gene amplicon sequencing. Some differences were observed at the ASV level between the microbiomes of log and box hive bees. However, a core microbiome, dominated by Lactobacillus spp., unclassified Acetobacteraceae spp., and Bombella spp., was maintained. Further, the inferred functional potential of the microbiomes was consistent across all individuals. This study highlights that although hive transplantation has an impact on the overall diversity of stingless bee gut microbiomes, it is unlikely to have a significant negative impact on the overall health and resilience of the colony.
Collapse
Affiliation(s)
- T J T Mills
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - T M Nelson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - L A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
28
|
Sun Z, Liu Y, Hou A, Han A, Yan C, Sun J. Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115467. [PMID: 37716071 DOI: 10.1016/j.ecoenv.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Aoran Hou
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Anqi Han
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
29
|
Zaghloul HAH, El Halfawy NM. Whole genome analyses of toxicants tolerance genes of Apis mellifera gut-derived Enterococcus faecium strains. BMC Genomics 2023; 24:479. [PMID: 37620768 PMCID: PMC10463970 DOI: 10.1186/s12864-023-09590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Because of its social nature, the honeybee is regularly exposed to environmental toxicants such as heavy metals and xenobiotics. These toxicants are known to exert strong selective pressure on the gut microbiome's structure and diversity. For example, resistant microbial members are more likely to dominate in maintaining a stable microbiome, which is critical for bee health. Therefore, the aim of this study was to examine the Enterococcus faecium strains isolated from bee guts for their in vitro growth and tolerability to diverse heavy metals and xenobiotics. An additional aim was to analyze the genomes of E. faecium isolates to assess the molecular bases of resistance and compare them with E. faecium species isolated from other environmental sources. RESULTS The E. faecium bee isolates were able to tolerate high levels (up to 200 mg/L) of toxicants, including cadmium, zinc, benzoate, phenol and hexane. Moreover, the isolates could tolerate toluene and copper at up to 100 mg/L. The genome of E. faecium Am5, isolated from the larval stage of Apis mellifera gut, was about 2.7 Mb in size, had a GC content of 37.9% and 2,827 predicted coding sequences. Overall, the Am5 genome features were comparable with previously sequenced bee-gut isolates, E. faecium Am1, Bee9, SM21, and H7. The genomes of the bee isolates provided insight into the observed heavy metal tolerance. For example, heavy metal tolerance and/or regulation genes were present, including czcD (cobalt/zinc/cadmium resistance), cadA (exporting ATPase), cutC (cytoplasmic copper homeostasis) and zur (zinc uptake regulation). Additionally, genes associated with nine KEGG xenobiotic biodegradation pathways were detected, including γ-hexachlorocyclohexane, benzoate, biphenyl, bisphenol A, tetrachloroethene, 1,4-dichlorobenzene, ethylbenzene, trinitrotoluene and caprolactam. Interestingly, a comparative genomics study demonstrated the conservation of toxicant resistance genes across a variety of E. faecium counterparts isolated from other environmental sources such as non-human mammals, humans, avians, and marine animals. CONCLUSIONS Honeybee gut-derived E. faecium strains can tolerate a variety of heavy metals. Moreover, their genomes encode many xenobiotic biodegradation pathways. Further research is required to examine E. faecium strains potential to boost host resistance to environmental toxins.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek 21511, Alexandria, Egypt
| | - Nancy M El Halfawy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek 21511, Alexandria, Egypt.
| |
Collapse
|
30
|
Gaubert J, Giovenazzo P, Derome N. Individual and social defenses in Apis mellifera: a playground to fight against synergistic stressor interactions. Front Physiol 2023; 14:1172859. [PMID: 37485064 PMCID: PMC10360197 DOI: 10.3389/fphys.2023.1172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The honeybee is an important species for the agri-food and pharmaceutical industries through bee products and crop pollination services. However, honeybee health is a major concern, because beekeepers in many countries are experiencing significant colony losses. This phenomenon has been linked to the exposure of bees to multiple stresses in their environment. Indeed, several biotic and abiotic stressors interact with bees in a synergistic or antagonistic way. Synergistic stressors often act through a disruption of their defense systems (immune response or detoxification). Antagonistic interactions are most often caused by interactions between biotic stressors or disruptive activation of bee defenses. Honeybees have developed behavioral defense strategies and produce antimicrobial compounds to prevent exposure to various pathogens and chemicals. Expanding our knowledge about these processes could be used to develop strategies to shield bees from exposure. This review aims to describe current knowledge about the exposure of honeybees to multiple stresses and the defense mechanisms they have developed to protect themselves. The effect of multi-stress exposure is mainly due to a disruption of the immune response, detoxification, or an excessive defense response by the bee itself. In addition, bees have developed defenses against stressors, some behavioral, others involving the production of antimicrobials, or exploiting beneficial external factors.
Collapse
Affiliation(s)
- Joy Gaubert
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Pierre Giovenazzo
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nicolas Derome
- Laboratoire Derome, Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Laboratoire Giovenazzo, Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Chang H, Guo J, Qi G, Gao Y, Wang S, Wang X, Liu Y. Comparative analyses of the effects of sublethal doses of emamectin benzoate and tetrachlorantraniliprole on the gut microbiota of Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 37471131 DOI: 10.1093/jisesa/iead039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023]
Abstract
Spodoptera frugiperda (J. E. Smith) is an important invasive pest that poses a serious threat to global crop production. Both emamectin benzoate (EB) and diamide insecticides are effective insecticides used to protect against S. frugiperda. Here, 16S rRNA sequencing was used to characterize the gut microbiota in S. frugiperda larvae exposed to EB or tetrachlorantraniliprole (TE). Firmicutes and Proteobacteria were found to be the dominant bacterial phyla present in the intestines of S. frugiperda. Following insecticide treatment, larvae were enriched for species involved in the process of insecticide degradation. High-level alpha and beta diversity indices suggested that exposure to TE and EB significantly altered the composition and diversity of the gastrointestinal microbiota in S. frugiperda. At 24 h post-EB treatment, Burkholderia-Caballeronia-Paraburkholderia abundance was significantly increased relative to the control group, with significant increases in Stenotrophobacter, Nitrospira, Blastocatella, Sulfurifustis, and Flavobacterium also being evident in these larvae. These microbes may play a role in the degradation or detoxification of EB and TE, although further work will be needed to explore the mechanisms underlying such activity. Overall, these findings will serve as a theoretical foundation for subsequent studies of the relationship between the gut microbiota and insecticide resistance in S. frugiperda (J. E. Smith) (Lepidoptera: Noctuidae).
Collapse
Affiliation(s)
- Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Jianglong Guo
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yan Gao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yanping Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| |
Collapse
|
32
|
Motta EVS, Arnott RLW, Moran NA. Caffeine Consumption Helps Honey Bees Fight a Bacterial Pathogen. Microbiol Spectr 2023; 11:e0052023. [PMID: 37212661 PMCID: PMC10269917 DOI: 10.1128/spectrum.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
Caffeine has long been used as a stimulant by humans. Although this secondary metabolite is produced by some plants as a mechanism of defense against herbivores, beneficial or detrimental effects of such consumption are usually associated with dose. The Western honey bee, Apis mellifera, can also be exposed to caffeine when foraging at Coffea and Citrus plants, and low doses as are found in the nectar of these plants seem to boost memory learning and ameliorate parasite infection in bees. In this study, we investigated the effects of caffeine consumption on the gut microbiota of honey bees and on susceptibility to bacterial infection. We performed in vivo experiments in which honey bees, deprived of or colonized with their native microbiota, were exposed to nectar-relevant concentrations of caffeine for a week, then challenged with the bacterial pathogen Serratia marcescens. We found that caffeine consumption did not impact the gut microbiota or survival rates of honey bees. Moreover, microbiota-colonized bees exposed to caffeine were more resistant to infection and exhibited increased survival rates compared to microbiota-colonized or microbiota-deprived bees only exposed to the pathogen. Our findings point to an additional benefit of caffeine consumption in honey bee health by protecting against bacterial infections. IMPORTANCE The consumption of caffeine is a remarkable feature of the human diet. Common drinks, such as coffee and tea, contain caffeine as a stimulant. Interestingly, honey bees also seem to like caffeine. They are usually attracted to the low concentrations of caffeine found in nectar and pollen of Coffea plants, and consumption improves learning and memory retention, as well as protects against viruses and fungal parasites. In this study, we expanded these findings by demonstrating that caffeine can improve survival rates of honey bees infected with Serratia marcescens, a bacterial pathogen known to cause sepsis in animals. However, this beneficial effect was only observed when bees were colonized with their native gut microbiota, and caffeine seemed not to directly affect the gut microbiota or survival rates of bees. Our findings suggest a potential synergism between caffeine and gut microbial communities in protection against bacterial pathogens.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Ryan L. W. Arnott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
33
|
Han W, Ye Z, Gu Y, Zhong Y, Gao J, Zhao S, Wang S. Gut microbiota composition and gene expression changes induced in the Apis cerana exposed to acetamiprid and difenoconazole at environmentally realistic concentrations alone or combined. Front Physiol 2023; 14:1174236. [PMID: 37256066 PMCID: PMC10226273 DOI: 10.3389/fphys.2023.1174236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Apis cerana is an important pollinator of agricultural crops in China. In the agricultural environment, A. cerana may be exposed to acetamiprid (neonicotinoid insecticide) and difenoconazole (triazole fungicide), alone or in combination because they are commonly applied to various crops. At present, our understanding of the toxicological effects of acetamiprid and difenoconazole on honey bee gut microbiomes is limited. The primary objective of this study was to explore whether these two pesticides affect honey bees' gut microbiota and to analyze the transcriptional effects of these two pesticides on honey bees' head and gut. In this study, adults of A. cerana were exposed to acetamiprid and/or difenoconazole by contaminated syrup at field-realistic concentrations for 10 days. Results indicated that acetamiprid and/or difenoconazole chronic exposure did not affect honey bees' survival and food consumption, whereas difenoconazole decreased the weight of honey bees. 16S rRNA sequencing suggested that difenoconazole and the mixture of difenoconazole and acetamiprid decreased the diversity index and shaped the composition of gut bacteria microbiota, whereas acetamiprid did not impact the gut bacterial community. The ITS sequence data showed that neither of the two pesticides affected the fungal community structure. Meanwhile, we also observed that acetamiprid or difenoconazole significantly altered the expression of genes related to detoxification and immunity in honey bees' tissues. Furthermore, we observed that the adverse effect of the acetamiprid and difenoconazole mixture on honey bees' health was greater than that of a single mixture. Taken together, our study demonstrates that acetamiprid and/or difenoconazole exposure at field-realistic concentrations induced changes to the honey bee gut microbiome and gene expression.
Collapse
Affiliation(s)
- Wensu Han
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zheyuan Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yifan Gu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yihai Zhong
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinglin Gao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shan Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shijie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
34
|
Hubert J, Nesvorna M, Bostlova M, Sopko B, Green SJ, Phillips TW. The Effect of Residual Pesticide Application on Microbiomes of the Storage Mite Tyrophagus putrescentiae. MICROBIAL ECOLOGY 2023; 85:1527-1540. [PMID: 35840683 DOI: 10.1007/s00248-022-02072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 05/10/2023]
Abstract
Arthropods can host well-developed microbial communities, and such microbes can degrade pesticides and confer tolerance to most types of pests. Two cultures of the stored-product mite Tyrophagus putrescentiae, one with a symbiotic microbiome containing Wolbachia and the other without Wolbachia, were compared on pesticide residue (organophosphate: pirimiphos-methyl and pyrethroid: deltamethrin, deltamethrin + piperonyl butoxide)-containing diets. The microbiomes from mite bodies, mite feces and debris from the spent mite diet were analyzed using barcode sequencing. Pesticide tolerance was different among mite cultures and organophosphate and pyrethroid pesticides. The pesticide residues influenced the microbiome composition in both cultures but without any remarkable trend for mite cultures with and without Wolbachia. The most influenced bacterial taxa were Bartonella-like and Bacillus for both cultures and Wolbachia for the culture containing this symbiont. However, there was no direct evidence of any effect of Wolbachia on pesticide tolerance. The high pesticide concentration residues in diets reduced Wolbachia, Bartonella-like and Bacillus in mites of the symbiotic culture. This effect was low for Bartonella-like and Bacillus in the asymbiotic microbiome culture. The results showed that the microbiomes of mites are affected by pesticide residues in the diets, but the effect is not systemic. No actual detoxification effect by the microbiome was observed for the tested pesticides.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00, Prague 6 - Suchdol, Czechia.
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia
| | - Marie Bostlova
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia
- Department of Ecology, Faculty of Science, Charles University, Vinicna 1594/7, CZ-128 44, Prague 2 - New Town, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, 60612, USA
| | - Thomas W Phillips
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
35
|
Steinigeweg C, Alkassab AT, Erler S, Beims H, Wirtz IP, Richter D, Pistorius J. Impact of a Microbial Pest Control Product Containing Bacillus thuringiensis on Brood Development and Gut Microbiota of Apis mellifera Worker Honey Bees. MICROBIAL ECOLOGY 2023; 85:1300-1307. [PMID: 35389085 PMCID: PMC10167108 DOI: 10.1007/s00248-022-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/28/2022] [Indexed: 05/10/2023]
Abstract
To avoid potential adverse side effects of chemical plant protection products, microbial pest control products (MPCP) are commonly applied as biological alternatives. This study aimed to evaluate the biosafety of a MPCP with the active organism Bacillus thuringiensis ssp. aizawai (strain: ABTS-1857). An in-hive feeding experiment was performed under field-realistic conditions to examine the effect of B. thuringiensis (B. t.) on brood development and the bacterial abundance of the core gut microbiome (Bifidobacterium asteroids, Gilliamella apicola, the group of Lactobacillus and Snodgrasella alvi) in Apis mellifera worker bees. We detected a higher brood termination rate and a non-successful development into worker bees of treated colonies compared to those of the controls. For the gut microbiome, all tested core members showed a significantly lower normalized abundance in bees of the treated colonies than in those of the controls; thus, a general response of the gut microbiome may be assumed. Consequently, colony exposure to B. t. strain ABTS-1857 had a negative effect on brood development under field-realistic conditions and caused dysbiosis of the gut microbiome. Further studies with B. t.-based products, after field-realistic application in bee attractive crops, are needed to evaluate the potential risk of these MPCPs on honey bees.
Collapse
Affiliation(s)
| | - Abdulrahim T Alkassab
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany.
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| | - Hannes Beims
- Institute for Apiculture, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Celle, Germany
| | - Ina P Wirtz
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| | - Dania Richter
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn-Institut (JKI) - FederalResearch Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
36
|
Lv L, Li W, Li X, Wang D, Weng H, Zhu YC, Wang Y. Mixture toxic effects of thiacloprid and cyproconazole on honey bees (Apis mellifera L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161700. [PMID: 36690094 DOI: 10.1016/j.scitotenv.2023.161700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Pesticide exposure remains one of the main factors in the population decline of insect pollinators. It is urgently necessary to assess the effects of mixtures on pollinator risk assessments because they are often exposed to numerous agrochemicals. In the present study, we explored the mixture toxic effects of thiacloprid (THI) and cyproconazole (CYP) on honey bees (Apis mellifera L.). Our findings revealed that THI possessed higher acute toxicity to A. mellifera (96-h LC50 value of 216.3 mg a.i. L-1) than CYP (96-h LC50 value of 601.4 mg a.i. L-1). It's worth noting that the mixture of THI and CYP exerted an acute synergistic effect on honey bees. At the same time, the activities of detoxification enzyme cytochrome P450s (CYP450s) and neuro target enzyme Acetylcholinesterase (AChE), as well as the expressions of seven genes (CRBXase, CYP306A1, CYP6AS14, apidaecin, defensing-2, vtg, and gp-93) associated with detoxification metabolism, immune response, development, and endoplasmic reticulum stress, were significantly altered in the combined treatment compared with the corresponding individual exposures of THI or CYP. These data indicated that a mixture of THI and CYP could disturb the physiological homeostasis of honey bees. Our study provides a theoretical basis for in-depth studies on the impacts of pesticide mixtures on the health of honey bees. Our study also provides important guidance for the rational application of pesticide mixtures to protect pollinators in agricultural production effectively.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Wenhong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
37
|
Lv N, Li R, Cheng S, Zhang L, Liang P, Gao X. The gut symbiont Sphingomonas mediates imidacloprid resistance in the important agricultural insect pest Aphis gossypii Glover. BMC Biol 2023; 21:86. [PMID: 37069589 PMCID: PMC10111731 DOI: 10.1186/s12915-023-01586-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Neonicotinoid insecticides are applied worldwide for the control of agricultural insect pests. The evolution of neonicotinoid resistance has led to the failure of pest control in the field. The enhanced detoxifying enzyme activity and target mutations play important roles in the resistance of insects to neonicotinoid resistance. Emerging evidence indicates a central role of the gut symbiont in insect pest resistance to pesticides. Existing reports suggest that symbiotic microorganisms could mediate pesticide resistance by degrading pesticides in insect pests. RESULTS The 16S rDNA sequencing results showed that the richness and diversity of the gut community between the imidacloprid-resistant (IMI-R) and imidacloprid-susceptible (IMI-S) strains of the cotton aphid Aphis gossypii showed no significant difference, while the abundance of the gut symbiont Sphingomonas was significantly higher in the IMI-R strain. Antibiotic treatment deprived Sphingomonas of the gut, followed by an increase in susceptibility to imidacloprid in the IMI-R strain. The susceptibility of the IMI-S strain to imidacloprid was significantly decreased as expected after supplementation with Sphingomonas. In addition, the imidacloprid susceptibility in nine field populations, which were all infected with Sphingomonas, increased to different degrees after treatment with antibiotics. Then, we demonstrated that Sphingomonas isolated from the gut of the IMI-R strain could subsist only with imidacloprid as a carbon source. The metabolic efficiency of imidacloprid by Sphingomonas reached 56% by HPLC detection. This further proved that Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction. CONCLUSIONS Our findings suggest that the gut symbiont Sphingomonas, with detoxification properties, could offer an opportunity for insect pests to metabolize imidacloprid. These findings enriched our knowledge of mechanisms of insecticide resistance and provided new symbiont-based strategies for control of insecticide-resistant insect pests with high Sphingomonas abundance.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Shenhang Cheng
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Cang T, Lou Y, Zhu YC, Li W, Weng H, Lv L, Wang Y. Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. ENVIRONMENT INTERNATIONAL 2023; 172:107764. [PMID: 36689864 DOI: 10.1016/j.envint.2023.107764] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The extensive use of pesticides has negative effects on the health of insect pollinators. Although pollinators in the field are seldom exposed to individual pesticides, few reports have assessed the toxic impacts of pesticide combinations on them. In this work, we purposed to reveal the combined impacts of tetrachlorantraniliprole (TET) and tebuconazole (TEB) on honey bees (Apis mellifera L.). Our data exhibited that TET had greater toxicity to A. mellifera (96-h LC50 value of 298.2 mg a.i. L-1) than TEB (96-h LC50 value of 1,841 mg a.i. L-1). The mixture of TET and TEB displayed acute synergistic toxicity to the pollinators. Meanwhile, the activities of CarE, CYP450, trypsin, and sucrase, as well as the expressions of five genes (ppo, abaecin, cat, CYP4G11, and CYP6AS14) associated with immune response, oxidative stress, and detoxification metabolism, were conspicuously altered when exposed to the mixture relative to the individual exposures. These results provided an overall comprehension of honey bees upon the challenge of sublethal toxicity between neonicotinoid insecticides and triazole fungicides and could be used to assess the intricate toxic mechanisms in honey bees when exposed to pesticide mixtures. Additionally, these results might guide pesticide regulation strategies to enhance the honey bee populations.
Collapse
Affiliation(s)
- Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yancen Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Wenhong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China; Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, PR China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| |
Collapse
|
39
|
Zhang G, Olsson RL, Hopkins BK. Strategies and techniques to mitigate the negative impacts of pesticide exposure to honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120915. [PMID: 36563989 DOI: 10.1016/j.envpol.2022.120915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In order to support food, fiber, and fuel production around the world, billions of kilograms of pesticides are applied to crop fields every year to suppress pests, plant diseases and weeds. These fields are often home to the most important commercial pollinators, honey bees (Apis spp.), which improve yield and quality of many agricultural products. The pesticides applied to support crop health can be detrimental to honey bee health. The conflict of pesticide use and reliance on honey bees contributes to significant honey bee colony losses across the world. Recommendations for reducing impact on honey bees are generally suggested in literature, pesticide regulations, and by crop consultants, but without a considerable discussion of the realistic limitations of protecting honey bees. New techniques in farming and beekeeping can reduce pesticide exposure through reduction in bee exposure, reduced toxicity of pesticides, and remedies that can be in response to exposure. However, lack of assessment of those new techniques under a systematical, comprehensive framework may overestimate or underestimate these techniques' potential to protect honey bees from pesticide damage. In this review, we summarize the current and arising strategies and techniques with the goal to inspire the development and adoption of pesticide mitigation practices for both agriculture and apiculture.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington State 99164, United State of America.
| | - Rae L Olsson
- Department of Entomology, Washington State University, Pullman, Washington State 99164, United State of America
| | - Brandon Kingsley Hopkins
- Department of Entomology, Washington State University, Pullman, Washington State 99164, United State of America
| |
Collapse
|
40
|
Wang D, Lv L, Gao Z, Zhu YC, Weng H, Yang G, Wang Y. Joint toxic effects of thiamethoxam and flusilazole on the adult worker honey bees (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120806. [PMID: 36470454 DOI: 10.1016/j.envpol.2022.120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Insect pollinators are routinely exposed to a complex mixture of many pesticides. However, traditional environmental risk assessment is only carried out based on ecotoxicological data of single substances. In this context, we aimed to explore the potential effects when worker honey bees (Apis mellifera L.) were simultaneously challenged by thiamethoxam (TMX) and flusilazole (FSZ). Results displayed that TMX possessed higher toxicity to A. mellifera (96-h LC50 value of 0.11 mg a. i. L-1) than FSZ (96-h LC50 value of 738 mg a. i. L-1). Furthermore, the mixture of TMX and FSZ exhibited an acute synergistic impact on the pollinators. Meanwhile, the activities of SOD, caspase 3, caspase 9, and PPO, as well as the expressions of six genes (abaecin, dorsal-2, defensin-2, vtg, caspase-1, and CYP6AS14) associated with oxidative stress, immune response, lifespan, cell apoptosis, and detoxification metabolism were noteworthily varied in the individual and mixture challenges than at the baseline level. These data revealed that it is imminently essential to investigate the combined toxicity of pesticides since the toxicity evaluation from individual compounds toward honey bees may underestimate the toxicity in realistic conditions. Overall, the present results could help understand the potential contribution of pesticide mixtures to the decline of bee populations.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Zhongwen Gao
- Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China.
| |
Collapse
|
41
|
Zhang Y, Cai T, Yuan M, Li Z, Jin R, Ren Z, Qin Y, Yu C, Cai Y, Shu R, He S, Li J, Wong ACN, Wan H. Microbiome variation correlates with the insecticide susceptibility in different geographic strains of a significant agricultural pest, Nilaparvata lugens. NPJ Biofilms Microbiomes 2023; 9:2. [PMID: 36635299 PMCID: PMC9837087 DOI: 10.1038/s41522-023-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Microbiome-mediated insecticide resistance is an emerging phenomenon found in insect pests. However, microbiome composition can vary by host genotype and environmental factors, but how these variations may be associated with insecticide resistance phenotype remains unclear. In this study, we compared different field and laboratory strains of the brown planthopper Nilaparvata lugens in their microbiome composition, transcriptome, and insecticide resistance profiles to identify possible patterns of correlation. Our analysis reveals that the abundances of core bacterial symbionts are significantly correlated with the expression of several host detoxifying genes (especially NlCYP6ER1, a key gene previously shown involved in insecticides resistance). The expression levels of these detoxifying genes correlated with N. lugens insecticide susceptibility. Furthermore, we have identified several environmental abiotic factors, including temperature, precipitation, latitude, and longitude, as potential predictors of symbiont abundances associated with expression of key detoxifying genes, and correlated with insecticide susceptibility levels of N. lugens. These findings provide new insights into how microbiome-environment-host interactions may influence insecticide susceptibility, which will be helpful in guiding targeted microbial-based strategies for insecticide resistance management in the field.
Collapse
Affiliation(s)
- Yunhua Zhang
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingwei Cai
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Maojun Yuan
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhao Li
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ruoheng Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhijie Ren
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yao Qin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chang Yu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongfeng Cai
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Runhang Shu
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611 USA
| | - Shun He
- grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianhong Li
- grid.35155.370000 0004 1790 4137Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Adam C. N. Wong
- grid.15276.370000 0004 1936 8091Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611 USA
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
43
|
Liu P, Niu J, Zhu Y, Li Z, Ye L, Cao H, Shi T, Yu L. Apilactobacillus kunkeei Alleviated Toxicity of Acetamiprid in Honeybee. INSECTS 2022; 13:1167. [PMID: 36555077 PMCID: PMC9784809 DOI: 10.3390/insects13121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, colony collapse disorder extensively affects honeybees. Insecticides, including acetamiprid, are considered as critical factors. As prevalent probiotics, we speculated that supplementation with lactic acid bacteria (LAB) could alleviate acetamiprid-induced health injuries in honeybees. Apilactobacillus kunkeei was isolated from beebread; it significantly increased the survival of honeybees under acetamiprid exportation (from 84% to 92%). Based on 16S rRNA pyrosequencing, information on the intestinal bacteria of honeybees was acquired. The results showed that supplementation with A. kunkeei significantly increased survival and decreased pollen consumption by honeybees under acetamiprid exportation. Under acetamiprid exportation, some opportunistic and pathogenic bacteria invaded the intestinal regions. Subsequently, the community richness and diversity of symbiotic microbiota were decreased. The community structure of intestinal bacteria was changed and differentiated. However, with the supplementation of A. kunkeei, the community richness and community diversity of symbiotic microbiota showed an upward trend, and the community structure was stabilized. Our results showed that A. kunkeei alleviated acetamiprid-induced symbiotic microbiota dysregulation and mortality in honeybees. This demonstrates the importance of symbiotic microbiota in honeybees and supports the application of Apilactobacillus kunkeei as probiotics in beekeeping.
Collapse
Affiliation(s)
- Peng Liu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Jingheng Niu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Yejia Zhu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Zhuang Li
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
- School of Plant Protection, Biotechnology Center of Anhui Agriculture University, Hefei 230031, China
| | - Liang Ye
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Haiqun Cao
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Tengfei Shi
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| | - Linsheng Yu
- School of Plant Protection, Apiculture Research Institute, Anhui Agricultural University, Hefei 230031, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230031, China
| |
Collapse
|
44
|
Yang Y, Liu X, Guo J, Xu H, Liu Y, Lu Z. Gut bacterial communities and their assembly processing in Cnaphalocrocis medinalis from different geographic sources. Front Microbiol 2022; 13:1035644. [PMID: 36590437 PMCID: PMC9797858 DOI: 10.3389/fmicb.2022.1035644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The insect gut harbors numerous microorganisms that may have functions in development and reproduction, digestion, immunity and protection, and detoxification. Recently, the influence factors on gut microbiota were evaluated in the rice leaffolder Cnaphalocrocis medinalis, a widespread insect pest in paddy fields. However, the relationship between gut microbiota composition and geography is poorly understood in C. medinalis. Methods To reveal the patterns of C. medinalis gut bacterial communities across geographic sources and the ecological processes driving the patterns, C. medinalis were sampled from six geographic sources in China, Thailand, and Vietnam in 2016, followed by gut bacterial 16S ribosomal RNA gene sequencing. Results A total of 22 bacterial phyla, 56 classes, 84 orders, 138 families, 228 genera, and 299 species were generated in C. medinalis from six geographic sources. All alpha diversity indices differed among the samples from different geographic sources. Analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) both revealed significant differences in the gut microbiota of C. medinalis from six geographic sources. A total of 94 different taxa were screened as indicators for the gut microbiota of C. medinalis from six geographic sources by linear discriminant analysis effect size (LEfSe). The gene ontology (GO) pathways of the gut microbiota in C. medinalis differed among geographic sources. In total, the bacterial communities within geographic sources were mainly determined by stochastic processes, and those between geographic sources were mainly determined by deterministic processes. Discussion This study elucidates that geography plays a crucial role in shaping the gut microbiota of C. medinalis. Thus, it enriches our knowledge of gut bacteria in C. medinalis and sheds light on the mechanisms underlying C. medinalis gut microbial shifts across geography.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,College of Plant Protection, Southwest University, Chongqing, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China,*Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Zhongxian Lu,
| |
Collapse
|
45
|
Dong ZX, Tang QH, Li WL, Wang ZW, Li XJ, Fu CM, Li D, Qian K, Tian WL, Guo J. Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120340. [PMID: 36208825 DOI: 10.1016/j.envpol.2022.120340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chao-Min Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kai Qian
- Department of Thoracic Surgery, Institute of the First People's Hospital of Yunnan Province, Kunming, China; Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Wen-Li Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
46
|
Validation of quantitative real-time PCR reference genes and spatial expression profiles of detoxication-related genes under pesticide induction in honey bee, Apis mellifera. PLoS One 2022; 17:e0277455. [DOI: 10.1371/journal.pone.0277455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, pesticides have been suggested to be one of the factors responsible for the large-scale decline in honey bee populations, including colony collapse disorder. The identification of the genes that respond to pesticide exposure based on their expression is essential for understanding the xenobiotic detoxification metabolism in honey bees. For the accurate determination of target gene expression by quantitative real-time PCR, the expression stability of reference genes should be validated in honey bees exposed to various pesticides. Therefore, in this study, to select the optimal reference genes, we analyzed the amplification efficiencies of five candidate reference genes (RPS5, RPS18, GAPDH, ARF1, and RAD1a) and their expression stability values using four programs (geNorm, NormFinder, BestKeeper, and RefFinder) across samples of five body parts (head, thorax, gut, fat body, and carcass) from honey bees exposed to seven pesticides (acetamiprid, imidacloprid, flupyradifurone, fenitrothion, carbaryl, amitraz, and bifenthrin). Among these five candidate genes, a combination of RAD1a and RPS18 was suggested for target gene normalization. Subsequently, expression levels of six genes (AChE1, CYP9Q1, CYP9Q2, CYP9Q3, CAT, and SOD1) were normalized with a combination of RAD1a and RPS18 in the different body parts from honey bees exposed to pesticides. Among the six genes in the five body parts, the expression of SOD1 in the head, fat body, and carcass was significantly induced by six pesticides. In addition, among seven pesticides, flupyradifurone statistically induced expression levels of five genes in the fat body.
Collapse
|
47
|
Sun Z, Sun W, An J, Xu H, Liu Y, Yan C. Copper and chlorpyrifos stress affect the gut microbiota of chironomid larvae (Propsilocerus akamusi). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114027. [PMID: 36049336 DOI: 10.1016/j.ecoenv.2022.114027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Chironomids are characterized by their ubiquitous distribution, global diversity and tolerant ability to deal with environmental stressors. To our knowledge, this is the first study presenting the gut microbial structure of chironomid larvae and examining the microbial alteration induced by invading chlorpyrifos and copper with different dosages. Lethal bioassay displayed a significantly decreased percentage survival of Propsilocerus akamusi larvae exposed to 800 mg/L copper and 50 μg/L chlorpyrifos at 96 h. Larvae with deficient gut microbiota exhibited a depressed level of glutathione S-transferase activity after stressful exposure. The high-throughput 16S rRNA gene sequencing was adopted to investigate the community structure and it turned out that both copper and chlorpyrifos were able to generate distinguished variations of gut microbiota in the stressor-specific and concentration-dependent manner. Of note, the relative abundance of Comamonas, Stenotrophomonas, and Yersinia remarkably elevated in the presence of copper while chlorpyrifos exposure upregulated the prevalence of certain genera (e.g. Serratia). Flavobacterium was greatly attenuated in chlorpyrifos group with lethal dosage exhibiting more severe impacts. The predicted gene functions of the gut commensals differed between normal samples and those subjected to distinct toxins. Besides, more positive associations and limited modularity of microbial interactions were observed in stressor-challenged larvae, presenting a network with impaired complexity and stability. The appearance of either copper or chlorpyrifos exhibited strong positive correlations with genera belonging to Proteobacteria and Firmicutes. Collectively, this investigation introduces a general outline of gut microbiota obtained from chironomid individuals with latent adaptive tactics to nocuous factors (heavy metal and pesticide), which could build a fundamental basis for us to further explore the protective roles of chironomid gut bacterial colonizers in defending against aquatic contaminants.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Jiating An
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Haixuan Xu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
48
|
Antonelli P, Duval P, Luis P, Minard G, Valiente Moro C. Reciprocal interactions between anthropogenic stressors and insect microbiota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64469-64488. [PMID: 35864395 DOI: 10.1007/s11356-022-21857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Insects play many important roles in nature due to their diversity, ecological role, and impact on agriculture or human health. They are directly influenced by environmental changes and in particular anthropic activities that constitute an important driver of change in the environmental characteristics. Insects face numerous anthropogenic stressors and have evolved various detoxication mechanisms to survive and/or resist to these compounds. Recent studies highligted the pressure exerted by xenobiotics on insect life-cycle and the important role of insect-associated bacterial microbiota in the insect responses to environmental changes. Stressor exposure can have various impacts on the composition and structure of insect microbiota that in turn may influence insect biology. Moreover, bacterial communities associated with insects can be directly or indirectly involved in detoxification processes with the selection of certain microorganisms capable of degrading xenobiotics. Further studies are needed to assess the role of insect-associated microbiota as key contributor to the xenobiotic metabolism and thus as a driver for insect adaptation to polluted habitats.
Collapse
Affiliation(s)
- Pierre Antonelli
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Pénélope Duval
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
49
|
Sun Z, Liu Y, Xu H, Yan C. Genome-Wide Identification of P450 Genes in Chironomid Propsilocerus akamusi Reveals Candidate Genes Involved in Gut Microbiota-Mediated Detoxification of Chlorpyrifos. INSECTS 2022; 13:insects13090765. [PMID: 36135466 PMCID: PMC9504602 DOI: 10.3390/insects13090765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 06/10/2023]
Abstract
Chironomids commonly dominate macroinvertebrate assemblages in aquatic habitats and these non-biting midges are known for their ability to tolerate contaminants. Studies regarding the interplay between gut microbiota and host detoxification ability is currently a point of interest. Cytochrome P450s (P450s) are critical metabolic enzymes in which a subset is involved in xenobiotic detoxification. In this study, we first conducted an integrated global investigation of P450s based on the whole genomic sequence of Propsilocerus akamusi and retrieved a series of 64 P450 genes which were further classified into 4 clans and 25 families on the basis of phylogenetic relationships. With assistance of RNA-Seq and RT-qPCR validation, the expression profile of screened PaP450s in guts was compared between chlorpyrifos-challenged larvae with deficient gut microbiota (GD) and those with a conventional gut community (CV). An increasing prevalence of chlorpyrifos from sublethal to lethal dosages induced a greater mortality rate of individuals coupled with remarkable downregulation of 14 P450s in GD larval guts when compared to CV ones. Moreover, it turned out that the decreased level of PaCYP3998B1 and PaCYP3987D1 might imply impaired host endogenous detoxification capability potentiated by gut dysbiosis, reflected by a remarkably severe mortality in GD larvae treated with lethal chlorpyrifos. Collectively, our study unveiled candidate P450 genes that might be mediated by gut symbionts in chlorpyrifos-challenged P. akamusi larvae, possibly facilitating further understanding of the detoxified mechanism that chironomids might employ to alleviate poisonousness.
Collapse
|
50
|
Li D, Zhi J, Yue W, Zhang T, Liu L. Resistance to Spinetoram Affects Host Adaptability of Frankliniella occidentalis (Thysanoptera: Thripidae) Based on Detoxifying Enzyme Activities and an Age-Stage-Two-Sex Life Table. ENVIRONMENTAL ENTOMOLOGY 2022; 51:780-789. [PMID: 35834261 DOI: 10.1093/ee/nvac053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The western flower thrip (WFT) Frankliniella occidentalis (Pergande) is a serious agricultural pest with a wide host range which has developed resistance to several groups of insecticides. In this study, the effect of insecticide resistance on WFT host adaptability was explored by examining changes in detoxification enzyme activities and thrip development, and reproduction on preferred and less preferred host plants, eggplant Solanum melongena L. and broad bean Vicia faba L., respectively. Thrips were screened with spinetoram on kidney bean for six generations. Activities of glutathione S-transferase (GST), mixed function oxidases (MFOs), and cytochrome P450 enzyme (P450) in a resistant strain (RS) reared on broad bean were significantly higher than those in a sensitive strain (SS), and only carboxylesterase (CarE) increased in the RS when reared on eggplant, compared with the SS. Activities of the four detoxification enzymes in the RS reared on broad bean were significantly higher than in those reared-on eggplant. On broad bean, RS adult longevity was lower and developmental duration of offspring was shorter than those of the SS, but fecundity increased. On eggplant, RS fecundity was lower and developmental duration of offspring was shorter than those of the SS. In addition, fecundity was higher and developmental duration was longer in the RS reared on broad bean than in those reared-on eggplant. The results indicated that spinetoram resistance could change WFT host preference and that those changes might be associated with detoxification enzyme activities. Thus, it was hypothesized that adaptability of the RS to the less preferred host broad bean increased, whereas adaptability to the preferred host eggplant decreased.
Collapse
Affiliation(s)
- Dingyin Li
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, P. R. China
| | - Junrui Zhi
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, P. R. China
| | - Wenbo Yue
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, P. R. China
| | - Tao Zhang
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, P. R. China
| | - Li Liu
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, P. R. China
| |
Collapse
|