1
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2024:1-19. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
González E, Vera F, Scott F, Guerrero C, Bolívar JM, Aroca G, Muñoz JÁ, Ladero M, Santos VE. Acidophilic heterotrophs: basic aspects and technological applications. Front Microbiol 2024; 15:1374800. [PMID: 38827148 PMCID: PMC11141062 DOI: 10.3389/fmicb.2024.1374800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
Acidophiles comprise a group of microorganisms adapted to live in acidic environments. Despite acidophiles are usually associated with an autotrophic metabolism, more than 80 microorganisms capable of utilizing organic matter have been isolated from natural and man-made environments. The ability to reduce soluble and insoluble iron compounds has been described for many of these species and may be harnessed to develop new or improved mining processes when oxidative bioleaching is ineffective. Similarly, as these microorganisms grow in highly acidic media and the chances of contamination are reduced by the low pH, they may be employed to implement robust fermentation processes. By conducting an extensive literature review, this work presents an updated view of basic aspects and technological applications in biomining, bioremediation, fermentation processes aimed at biopolymers production, microbial electrochemical systems, and the potential use of extremozymes.
Collapse
Affiliation(s)
- Ernesto González
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fernando Vera
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Felipe Scott
- Faculty of Engineering and Applied Sciences, Universidad de Los Andes, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan M. Bolívar
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Germán Aroca
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jesús Ángel Muñoz
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ladero
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria E. Santos
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Song Z, Fang J, Wang D, Tian Y, Xu Y, Wang Z, Geng J, Wang C, Li M. Inhibition of LPS-Induced Skin Inflammatory Response and Barrier Damage via MAPK/NF-κB Signaling Pathway by Houttuynia cordata Thunb Fermentation Broth. Foods 2024; 13:1470. [PMID: 38790770 PMCID: PMC11120194 DOI: 10.3390/foods13101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Houttuynia cordata Thunb is rich in active substances and has excellent antioxidant and anti-inflammatory activity. Scanning electron microscopy and gel permeation chromatography were used to analyze the molecular characteristics of the fermentation broth of Houttuynia cordata Thunb obtained through fermentation with Clavispora lusitaniae (HCT-f). The molecular weight of HCT-f was 2.64265 × 105 Da, and the polydispersity coefficient was 183.10, which were higher than that of unfermented broth of Houttuynia cordata Thunb (HCT). By investigating the active substance content and in vitro antioxidant activity of HCT-f and HCT, the results indicated that HCT-f had a higher active substance content and exhibited a superior scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals and hydroxyl radicals, with IC50 values of 11.85% and 9.01%, respectively. Our results showed that HCT-f could effectively alleviate the increase in the secretion of inflammatory factors and apoptotic factors caused by lipopolysaccharide (LPS) stimulation, and had a certain effect on repairing skin barrier damage. HCT-f could exert an anti-inflammatory effect by down-regulating signaling in the MAPK/NF-κB pathway. The results of erythrocyte hemolysis and chicken embryo experiments showed that HCT-f had a high safety profile. Therefore, this study provides a theoretical basis for the application of HCT-f as an effective ingredient in food and cosmetics.
Collapse
Affiliation(s)
- Zixin Song
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Jiaxuan Fang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Dongdong Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Yuncai Tian
- Shanghai AZ Science & Technology Co., Ltd., Shanghai 201100, China; (Y.T.); (Y.X.)
| | - Yuhua Xu
- Shanghai AZ Science & Technology Co., Ltd., Shanghai 201100, China; (Y.T.); (Y.X.)
| | - Ziwen Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Jiman Geng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Meng Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| |
Collapse
|
4
|
Cheon YH, Lee CH, Eun SY, Park GD, Chung CH, Kim JY, Lee MS. Vigeo attenuates cartilage and bone destruction in a collagen‑induced arthritis mouse model by reducing production of pro‑inflammatory cytokines. Exp Ther Med 2024; 27:208. [PMID: 38590570 PMCID: PMC11000045 DOI: 10.3892/etm.2024.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease characterized by articular cartilage destruction, bone destruction and synovial hyperplasia. It has been suggested that Vigeo, a mixture of Eleutherococcus senticosus, Achyranthes japonica and Atractylodes japonica fermented with Korean nuruk, has an anti-osteoporotic effect in a mouse model of inflammation-mediated bone loss. The present study evaluated the therapeutic effects of Vigeo in RA using a collagen-induced arthritis (CIA) mouse model. DBA/1J mice were immunized with bovine type II collagen on days 0 and 21 and Vigeo was administered daily for 20 days beginning the day after the second type II collagen injection. The mice were sacrificed on day 42 and the joint tissues were anatomically separated and subjected to micro computed tomography and histological analyses. In addition, the serum levels of TNF-α, IL-6 and IL-1β were determined by enzyme-linked immunosorbent assays. CIA in DBA/1J mice caused symptoms of RA, such as joint inflammation, cartilage destruction and bone erosion. Treatment of CIA mice with Vigeo markedly decreased the symptoms and cartilage pathology. In addition, radiological and histological analyses showed that Vigeo attenuated bone and cartilage destruction. The serum TNF-α, IL-6 and IL-1β levels following oral Vigeo administration were also reduced when compared with those in CIA mice. The present study revealed that Vigeo suppressed arthritis symptoms in a CIA-RA mouse model, including bone loss and serum levels of TNF-α, IL-6 and IL-1β.
Collapse
Affiliation(s)
- Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Jeonbuk 54538, Republic of Korea
| | - So Young Eun
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gyeong Do Park
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chong Hyuk Chung
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
5
|
Hu Q, Sun S, Zhang Z, Liu W, Yi X, He H, Scrutton NS, Chen GQ. Ectoine hyperproduction by engineered Halomonas bluephagenesis. Metab Eng 2024; 82:238-249. [PMID: 38401747 DOI: 10.1016/j.ymben.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.
Collapse
Affiliation(s)
- Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Liu
- PhaBuilder Biotechnology Co. Ltd., Shunyi District, Beijing 101309, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Zhang X, Chen H, Ouyang P, Liu X. Next-generation industrial biotechnology for low-cost mass production of PHA. Trends Biotechnol 2024; 42:135-136. [PMID: 37833199 DOI: 10.1016/j.tibtech.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Affiliation(s)
- Xiaohan Zhang
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Huanyu Chen
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Pengfei Ouyang
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd, Shunyi District, Beijing, 101309, China.
| |
Collapse
|
7
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
8
|
Thakur M, Dean SN, Caruana JC, Walper SA, Ellis GA. Bacterial Membrane Vesicles for In Vitro Catalysis. Bioengineering (Basel) 2023; 10:1099. [PMID: 37760201 PMCID: PMC10525882 DOI: 10.3390/bioengineering10091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The use of biological systems in manufacturing and medical applications has seen a dramatic rise in recent years as scientists and engineers have gained a greater understanding of both the strengths and limitations of biological systems. Biomanufacturing, or the use of biology for the production of biomolecules, chemical precursors, and others, is one particular area on the rise as enzymatic systems have been shown to be highly advantageous in limiting the need for harsh chemical processes and the formation of toxic products. Unfortunately, biological production of some products can be limited due to their toxic nature or reduced reaction efficiency due to competing metabolic pathways. In nature, microbes often secrete enzymes directly into the environment or encapsulate them within membrane vesicles to allow catalysis to occur outside the cell for the purpose of environmental conditioning, nutrient acquisition, or community interactions. Of particular interest to biotechnology applications, researchers have shown that membrane vesicle encapsulation often confers improved stability, solvent tolerance, and other benefits that are highly conducive to industrial manufacturing practices. While still an emerging field, this review will provide an introduction to biocatalysis and bacterial membrane vesicles, highlight the use of vesicles in catalytic processes in nature, describe successes of engineering vesicle/enzyme systems for biocatalysis, and end with a perspective on future directions, using selected examples to illustrate these systems' potential as an enabling tool for biotechnology and biomanufacturing.
Collapse
Affiliation(s)
- Meghna Thakur
- College of Science, George Mason University, Fairfax, VA 22030, USA
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Scott N. Dean
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Julie C. Caruana
- American Society for Engineering Education, Washington, DC 20036, USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
9
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
11
|
Lee JA, Kim HU, Na JG, Ko YS, Cho JS, Lee SY. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol 2022; 41:798-816. [PMID: 36357213 DOI: 10.1016/j.tibtech.2022.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Sustainable production of chemicals and materials from renewable non-food biomass using biorefineries has become increasingly important in an effort toward the vision of 'net zero carbon' that has recently been pledged by countries around the world. Systems metabolic engineering has allowed the efficient development of microbial strains overproducing an increasing number of chemicals and materials, some of which have been translated to industrial-scale production. Fermentation is one of the key processes determining the overall economics of bioprocesses, but has recently been attracting less research attention. In this Review, we revisit and discuss factors affecting the competitiveness of bacterial fermentation in connection to strain development by systems metabolic engineering. Future perspectives for developing efficient fermentation processes are also discussed.
Collapse
Affiliation(s)
- Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
12
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Wang Z, Zheng Y, Ji M, Zhang X, Wang H, Chen Y, Wu Q, Chen GQ. Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors. Microb Biotechnol 2022; 15:1586-1597. [PMID: 34978757 PMCID: PMC9049619 DOI: 10.1111/1751-7915.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023] Open
Abstract
Bacterial outer membrane (OM) is a self‐protective and permeable barrier, while having many non‐negligible negative effects in industrial biotechnology. Our previous studies revealed enhanced properties of Halomonas bluephagenesis based on positive cellular properties by OM defects. This study further expands the OM defect on membrane compactness by completely deleting two secondary acyltransferases for lipid A modification in H. bluephagenesis, LpxL and LpxM, and found more significant advantages than that of the previous lpxL mutant. Deletions on LpxL and LpxM accelerated poly(3‐hydroxybutyrate) (PHB) production by H. bluephagenesis WZY229, leading to a 37% increase in PHB accumulation and 84‐folds reduced endotoxin production. Enhanced membrane permeability accelerates the diffusion of γ‐butyrolactone, allowing H. bluephagenesis WZY254 derived from H. bluephagenesis WZY229 to produce 82wt% poly(3‐hydroxybutyrate‐co‐23mol%4‐hydroxybutyrate) (P(3HB‐co‐23mol%4HB)) in shake flasks, showing increases of 102% and 307% in P(3HB‐co‐4HB) production and 4HB accumulation, respectively. The 4HB molar fraction in copolymer can be elevated to 32 mol% in the presence of more γ‐butyrolactone. In a 7‐l bioreactor fed‐batch fermentation, H. bluephagenesis WZY254 supported a 84 g l−1 dry cell mass with 81wt% P(3HB‐co‐26mol%4HB), increasing 136% in 4HB molar fraction. This study further demonstrated that OM defects generate a hyperproduction strain for high 4HB containing copolymers.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yifei Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengke Ji
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuemeng Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Su A, Yu Q, Luo Y, Yang J, Wang E, Yuan H. Metabolic engineering of microorganisms for the production of multifunctional non-protein amino acids: γ-aminobutyric acid and δ-aminolevulinic acid. Microb Biotechnol 2021; 14:2279-2290. [PMID: 33675575 PMCID: PMC8601173 DOI: 10.1111/1751-7915.13783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA), playing important roles in agriculture, medicine and other fields, are multifunctional non-protein amino acids with similar and comparable properties and biosynthesis pathways. Recently, microbial synthesis has become an inevitable trend to produce GABA and ALA due to its green and sustainable characteristics. In addition, the development of metabolic engineering and synthetic biology has continuously accelerated and increased the GABA and ALA yield in microorganisms. Here, focusing on the current trends in metabolic engineering strategies for microbial synthesis of GABA and ALA, we analysed and compared the efficiency of various metabolic strategies in detail. Moreover, we provide the insights to meet challenges of realizing industrially competitive strains and highlight the future perspectives of GABA and ALA production.
Collapse
Affiliation(s)
- Anping Su
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Qijun Yu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Ying Luo
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Entao Wang
- Departamento de MicrobiologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico City11340Mexico
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| |
Collapse
|
15
|
Meena M, Shubham S, Paritosh K, Pareek N, Vivekanand V. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. BIORESOURCE TECHNOLOGY 2021; 340:125642. [PMID: 34315128 DOI: 10.1016/j.biortech.2021.125642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bioenergy may be a major replacement of fossil fuels which can make the path easier for sustainable development and decrease the dependency on conventional sources of energy. The main concern with the bioenergy is the availability of feedstock, dealing with its economics as well as its demand and supply chain management. This review deals with the finding of distinct potential of different Artificial Intelligence technologies focusing the challenges in bioenergy production system and its overall improvement in application. The study also highlights the contribution of Artificial Intelligence techniques for the prediction of energy from biomass and evaluates the computing-reasoning techniques for managing bioenergy production, biomass supply chain and optimization of process parameters for efficient bioconversion technologies.
Collapse
Affiliation(s)
- Manish Meena
- Centre for Energy and Environment, Malviya National Institute of Technology, JLN Marg, Jaipur, Rajasthan 302017 India
| | - Shubham Shubham
- Centre for Energy and Environment, Malviya National Institute of Technology, JLN Marg, Jaipur, Rajasthan 302017 India
| | - Kunwar Paritosh
- Centre for Energy and Environment, Malviya National Institute of Technology, JLN Marg, Jaipur, Rajasthan 302017 India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305801, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malviya National Institute of Technology, JLN Marg, Jaipur, Rajasthan 302017 India.
| |
Collapse
|