1
|
Ortjohann M, Leippe M. Molecular Characterization of Ancient Prosaposin-like Proteins from the Protist Dictyostelium discoideum. Biochemistry 2024; 63:2768-2777. [PMID: 39421968 PMCID: PMC11542183 DOI: 10.1021/acs.biochem.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
To combat the permanent exposure to potential pathogens every organism relies on an immune system. Important factors in innate immunity are antimicrobial peptides (AMPs) that are structurally highly diverse. Some AMPs are known to belong to the saposin-like proteins (SAPLIPs), a group of polypeptides with a broad functional spectrum. The model organism Dictyostelium discoideum possesses a remarkably large arsenal of potential SAPLIPs, which are termed amoebapore-like peptides (Apls), but the knowledge about these proteins is very limited. Here, we report about the biochemical characterization of AplE1, AplE2, AplK1, and AplK2, which are derived from the two precursor proteins AplE and AplK, thereby resembling prosaposins of vertebrates. We produced these Apls as recombinant polypeptides in Escherichia coli using a self-splicing intein to remove an affinity tag used for purification. All recombinant Apls exhibited pore-forming activity in a pH-dependent manner, as evidenced by liposome depolarization, showing higher activities the more acidic the setting was. Lipid preference was detected for negatively charged phospholipids and in particular for cardiolipin. Antimicrobial activity against various bacteria was found to be inferior in classical microdilution assays. However, all of the Apls studied permeabilized the cytoplasmic membrane of live Bacillus subtilis. Collectively, we assume that the selected Apls interact by their cationic charge with negatively charged bacterial membranes in acidic environments such as phagolysosomes and eventually lyse the target cells by pore formation.
Collapse
Affiliation(s)
- Marius Ortjohann
- Comparative Immunobiology,
Zoological Institute, Christian-Albrechts-Universität
Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology,
Zoological Institute, Christian-Albrechts-Universität
Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
2
|
Nanda S, Pandey R, Sardar R, Panda A, Naorem A, Gupta D, Malhotra P. Comparative genomics of two protozoans Dictyostelium discoideum and Plasmodium falciparum reveals conserved as well as distinct regulatory pathways crucial for exploring novel therapeutic targets for Malaria. Heliyon 2024; 10:e38500. [PMID: 39391471 PMCID: PMC11466611 DOI: 10.1016/j.heliyon.2024.e38500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Plasmodium falciparum, which causes life-threatening cerebral malaria has rapidly gained resistance against most frontline anti-malarial drugs, thereby generating an urgent need to develop novel therapeutic approaches. Conducting in-depth investigations on Plasmodium in its native form is challenging, thereby necessitating the requirement of an efficient model system. In line, mounting evidence suggests that Dictyostelium discoideum retains both conformational and functional properties of Plasmodium proteins, however, the true potential of Dictyostelium as a host system is not fully explored. In the present study, we have exploited comparative genomics as a tool to extract, compare, and curate the extensive data available on the organism-specific databases to evaluate if D. discoideum can be established as a prime model system for functional characterization of P. falciparum genes. Through comprehensive in silico analysis, we report that despite the presence of adaptation-specific genes, the two display noteworthy conservation in the housekeeping genes, signaling pathway components, transcription regulators, and post-translational modulators. Furthermore, through orthologue analysis, the known, potential, and novel drug target genes of P. falciparum were found to be significantly conserved in D. discoideum. Our findings advocate that D. discoideum can be employed to express and functionally characterize difficult-to-express P. falciparum genes.
Collapse
Affiliation(s)
- Shivam Nanda
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Rahila Sardar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Ashutosh Panda
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110 021, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| |
Collapse
|
3
|
Erisis S, Hörning M. Self-organization of PIP3 waves is controlled by the topology and curvature of cell membranes. Biophys J 2024; 123:1058-1068. [PMID: 38515298 PMCID: PMC11079865 DOI: 10.1016/j.bpj.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is a signaling lipid on the plasma membrane that plays a fundamental role in cell signaling with a strong impact on cell physiology and diseases. It is responsible for the protruding edge formation, cell polarization, macropinocytosis, and other membrane remodeling dynamics in cells. It has been shown that the membrane confinement and curvature affects the wave formation of PIP3 and F-actin. But, even in the absence of F-actin, a complex self-organization of the spatiotemporal PIP3 waves is observed. In recent findings, we have shown that these waves can be guided and pinned on strongly bended Dictyostelium membranes caused by molecular crowding and curvature-limited diffusion. Based on these experimental findings, we investigate the spatiotemporal PIP3 wave dynamics on realistic three-dimensional cell-like membranes to explore the effect of curvature-limited diffusion, as observed experimentally. We use an established stochastic reaction-diffusion model with enzymatic Michaelis-Menten-type reactions that mimics the dynamics of Dictyostelium cells. As these cells mimic the three-dimensional shape and size observed experimentally, we found that the PIP3 wave directionality can be explained by a Hopf-like and a reverse periodic-doubling bifurcation for uniform diffusion and curvature-limited diffusion properties. Finally, we compare the results with recent experimental findings and discuss the discrepancy between the biological and numerical results.
Collapse
Affiliation(s)
- Sema Erisis
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
4
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Rahman RJ, Rijal R, Jing S, Chen TA, Ismail I, Gomer RH. Polyphosphate uses mTOR, pyrophosphate, and Rho GTPase components to potentiate bacterial survival in Dictyostelium. mBio 2023; 14:e0193923. [PMID: 37754562 PMCID: PMC10653871 DOI: 10.1128/mbio.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ryan J. Rahman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Shiyu Jing
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Te-An Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Issam Ismail
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Gentili HG, Pignataro MF, Olmos J, Pavan MF, Ibañez LI, Santos J, Velazquez Duarte F. CRISPR/Cas9-based edition of frataxin gene in Dictyostelium discoideum. Biochem J 2023; 480:1533-1551. [PMID: 37721041 DOI: 10.1042/bcj20230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
In this paper, we describe the development of a Dictyostelium discoideum strain deficient in frataxin protein (FXN). We investigated the conservation of function between humans and D. discoideum and showed that DdFXN can substitute the human version in the interaction and activation of the Fe-S assembly supercomplex. We edited the D. discoideum fxn locus and isolated a defective mutant, clone 8, which presents landmarks of frataxin deficiency, such as a decrease in Fe-S cluster-dependent enzymatic functions, growth rate reduction, and increased sensitivity to oxidative stress. In addition, the multicellular development is affected as well as growing on bacterial lawn. We also assessed the rescuing capacity of DdFXN-G122V, a version that mimics a human variant present in some FA patients. While the expression of DdFXN-G122V rescues growth and enzymatic activity defects, as DdFXN does, multicellular development defects were only partially rescued. The results of the study suggest that this new D. discoideum strain offers a wide range of possibilities to easily explore diverse FA FXN variants. This can facilitate the development of straightforward drug screenings to look for new therapeutic strategies.
Collapse
Affiliation(s)
- Hernan G Gentili
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pignataro
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Justo Olmos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Lorena Itatí Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Francisco Velazquez Duarte
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
7
|
Favaron C, Gabano E, Zanellato I, Gaiaschi L, Casali C, Bottone MG, Ravera M. Effects of Ferrocene and Ferrocenium on MCF-7 Breast Cancer Cells and Interconnection with Regulated Cell Death Pathways. Molecules 2023; 28:6469. [PMID: 37764244 PMCID: PMC10537025 DOI: 10.3390/molecules28186469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The effects of ferrocene (Fc) and ferrocenium (Fc+) induced in triple negative human breast cancer MCF-7 cells were explored by immunofluorescence, flow cytometry, and transmission electron microscopy analysis. The different abilities of Fc and Fc+ to produce reactive oxygen species and induce oxidative stress were clearly observed by activating apoptosis and morphological changes after treatment, but also after tests performed on the model organism D. discoideum, particularly in the case of Fc+. The induction of ferroptosis, an iron-dependent form of regulated cell death driven by an overload of lipid peroxides in cellular membranes, occurred after 2 h of treatment with Fc+ but not Fc. However, the more stable Fc showed its effects by activating necroptosis after a longer-lasting treatment. The differences observed in terms of cell death mechanisms and timing may be due to rapid interconversion between the two oxidative forms of internalized iron species (from Fe2+ to Fe3+ and vice versa). Potential limitations include the fact that iron metabolism and mitophagy have not been investigated. However, the ability of both Fc and Fc+ to trigger different and interregulated types of cell death makes them suitable to potentially overcome the shortcomings of traditional apoptosis-mediated anticancer therapies.
Collapse
Affiliation(s)
- Cristina Favaron
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Elisabetta Gabano
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, Piazza S. Eusebio 5, 13100 Vercelli, Italy;
| | - Ilaria Zanellato
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Ludovica Gaiaschi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Claudio Casali
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (C.F.); (L.G.); (C.C.)
| | - Mauro Ravera
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
8
|
Kin K, Chen ZH, Forbes G, Lawal H, Schilde C, Singh R, Cole C, Barton GJ, Schaap P. The protein kinases of Dictyostelia and their incorporation into a signalome. Cell Signal 2023; 108:110714. [PMID: 37187217 DOI: 10.1016/j.cellsig.2023.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases are major regulators of cellular processes, but the roles of most kinases remain unresolved. Dictyostelid social amoebas have been useful in identifying functions for 30% of its kinases in cell migration, cytokinesis, vesicle trafficking, gene regulation and other processes but their upstream regulators and downstream effectors are mostly unknown. Comparative genomics can assist to distinguish between genes involved in deeply conserved core processes and those involved in species-specific innovations, while co-expression of genes as evident from comparative transcriptomics can provide cues to the protein complement of regulatory networks. Genomes and developmental and cell-type specific transcriptomes are available for species that span the 0.5 billion years of evolution of Dictyostelia from their unicellular ancestors. In this work we analysed conservation and change in the abundance, functional domain architecture and developmental regulation of protein kinases across the 4 major taxon groups of Dictyostelia. All data are summarized in annotated phylogenetic trees of the kinase subtypes and accompanied by functional information of all kinases that were experimentally studied. We detected 393 different protein kinase domains across the five studied genomes, of which 212 were fully conserved. Conservation was highest (71%) in the previously defined AGC, CAMK, CK1, CMCG, STE and TKL groups and lowest (26%) in the "other" group of typical protein kinases. This was mostly due to species-specific single gene amplification of "other" kinases. Apart from the AFK and α-kinases, the atypical protein kinases, such as the PIKK and histidine kinases were also almost fully conserved. The phylogeny-wide developmental and cell-type specific expression profiles of the protein kinase genes were combined with profiles from the same transcriptomic experiments for the families of G-protein coupled receptors, small GTPases and their GEFs and GAPs, the transcription factors and for all genes that upon lesion generate a developmental defect. This dataset was subjected to hierarchical clustering to identify clusters of co-expressed genes that potentially act together in a signalling network. The work provides a valuable resource that allows researchers to identify protein kinases and other regulatory proteins that are likely to act as intermediates in a network of interest.
Collapse
Affiliation(s)
- Koryu Kin
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| | - Zhi-Hui Chen
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gillian Forbes
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS, École Normale Supérieure de Lyon and Université Claude Bernard Lyon-1, Lyon 69007, France.
| | - Hajara Lawal
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Christina Schilde
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom.
| | - Reema Singh
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Vaccine and Infectious Disease Organization, University of Saskatchewan,120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
| | - Christian Cole
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Geoffrey J Barton
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Pauline Schaap
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
9
|
Körber S, Junemann A, Litschko C, Winterhoff M, Faix J. Convergence of Ras- and Rac-regulated formin pathways is pivotal for phagosome formation and particle uptake in Dictyostelium. Proc Natl Acad Sci U S A 2023; 120:e2220825120. [PMID: 36897976 PMCID: PMC10243128 DOI: 10.1073/pnas.2220825120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.
Collapse
Affiliation(s)
- Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Alexander Junemann
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625Hannover, Germany
| |
Collapse
|
10
|
Ogasawara T, Watanabe J, Adachi R, Ono Y, Kamimura Y, Muramoto T. CRISPR/Cas9-based genome-wide screening of Dictyostelium. Sci Rep 2022; 12:11215. [PMID: 35780186 PMCID: PMC9250498 DOI: 10.1038/s41598-022-15500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Genome-wide screening is powerful method used to identify genes and pathways associated with a phenotype of interest. The simple eukaryote Dictyostelium discoideum has a unique life cycle and is often used as a crucial research model for a wide range of biological processes and rare metabolites. To address the inadequacies of conventional genetic screening approaches, we developed a highly efficient CRISPR/Cas9-based genome-wide screening system for Dictyostelium. A genome-wide library of 27,405 gRNAs and a kinase library of 4,582 gRNAs were compiled and mutant pools were generated. The resulting mutants were screened for defects in cell growth and more than 10 candidate genes were identified. Six of these were validated and five recreated mutants presented with growth abnormalities. Finally, the genes implicated in developmental defects were screened to identify the unknown genes associated with a phenotype of interest. These findings demonstrate the potential of the CRISPR/Cas9 system as an efficient genome-wide screening method.
Collapse
Affiliation(s)
- Takanori Ogasawara
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Jun Watanabe
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Remi Adachi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yusuke Ono
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
11
|
Allan CY, Fisher PR. The Dictyostelium Model for Mucolipidosis Type IV. Front Cell Dev Biol 2022; 10:741967. [PMID: 35493081 PMCID: PMC9043695 DOI: 10.3389/fcell.2022.741967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Mucolipidosis type IV, a devastating neurological lysosomal disease linked to mutations in the transient receptor potential channel mucolipin 1, TRPML1, a calcium permeable channel in the membranes of vesicles in endolysosomal system. TRPML1 function is still being elucidated and a better understanding of the molecular pathogenesis of Mucolipidosis type IV, may facilitate development of potential treatments. We have created a model to study mucolipin function in the eukaryotic slime mould Dictyostelium discoideum by altering expression of its single mucolipin homologue, mcln. We show that in Dictyostelium mucolipin overexpression contributes significantly to global chemotactic calcium responses in vegetative and differentiated cells. Knockdown of mucolipin also enhances calcium responses in vegetative cells but does not affect responses in 6–7 h developed cells, suggesting that in developed cells mucolipin may help regulate local calcium signals rather than global calcium waves. We found that both knocking down and overexpressing mucolipin often, but not always, presented the same phenotypes. Altering mucolipin expression levels caused an accumulation or increased acidification of Lysosensor Blue stained vesicles in vegetative cells. Nutrient uptake by phagocytosis and macropinocytosis were increased but growth rates were not, suggesting defects in catabolism. Both increasing and decreasing mucolipin expression caused the formation of smaller slugs and larger numbers of fruiting bodies during multicellular development, suggesting that mucolipin is involved in initiation of aggregation centers. The fruiting bodies that formed from these smaller aggregates had proportionately larger basal discs and thickened stalks, consistent with a regulatory role for mucolipin-dependent Ca2+ signalling in the autophagic cell death pathways involved in stalk and basal disk differentiation in Dictyostelium. Thus, we have provided evidence that mucolipin contributes to chemotactic calcium signalling and that Dictyostelium is a useful model to study the molecular mechanisms involved in the cytopathogenesis of Mucolipidosis type IV.
Collapse
|
12
|
Liberato MV, Campos BM, Tomazetto G, Crouch LI, Garcia W, Zeri ACDM, Bolam DN, Squina FM. Unique properties of a Dictyostelium discoideum carbohydrate-binding module expand our understanding of CBM-ligand interactions. J Biol Chem 2022; 298:101891. [PMID: 35378128 PMCID: PMC9079177 DOI: 10.1016/j.jbc.2022.101891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/04/2022] Open
Abstract
Deciphering how enzymes interact, modify, and recognize carbohydrates has long been a topic of interest in academic, pharmaceutical, and industrial research. Carbohydrate-binding modules (CBMs) are noncatalytic globular protein domains attached to carbohydrate-active enzymes that strengthen enzyme affinity to substrates and increase enzymatic efficiency via targeting and proximity effects. CBMs are considered auspicious for various biotechnological purposes in textile, food, and feed industries, representing valuable tools in basic science research and biomedicine. Here, we present the first crystallographic structure of a CBM8 family member (CBM8), DdCBM8, from the slime mold Dictyostelium discoideum, which was identified attached to an endo-β-1,4-glucanase (glycoside hydrolase family 9). We show that the planar carbohydrate-binding site of DdCBM8, composed of aromatic residues, is similar to type A CBMs that are specific for crystalline (multichain) polysaccharides. Accordingly, pull-down assays indicated that DdCBM8 was able to bind insoluble forms of cellulose. However, affinity gel electrophoresis demonstrated that DdCBM8 also bound to soluble (single chain) polysaccharides, especially glucomannan, similar to type B CBMs, although it had no apparent affinity for oligosaccharides. Therefore, the structural characteristics and broad specificity of DdCBM8 represent exceptions to the canonical CBM classification. In addition, mutational analysis identified specific amino acid residues involved in ligand recognition, which are conserved throughout the CBM8 family. This advancement in the structural and functional characterization of CBMs contributes to our understanding of carbohydrate-active enzymes and protein–carbohydrate interactions, pushing forward protein engineering strategies and enhancing the potential biotechnological applications of glycoside hydrolase accessory modules.
Collapse
Affiliation(s)
- Marcelo Vizona Liberato
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Bruna Medeia Campos
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Geizecler Tomazetto
- Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus, Denmark
| | - Lucy Isobel Crouch
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Ana Carolina de Mattos Zeri
- Laboratório Nacional de Luz Sincrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - David Nichol Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle, United Kingdom
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
13
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
14
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
15
|
Yamashita K, Iriki H, Kamimura Y, Muramoto T. CRISPR Toolbox for Genome Editing in Dictyostelium. Front Cell Dev Biol 2021; 9:721630. [PMID: 34485304 PMCID: PMC8416318 DOI: 10.3389/fcell.2021.721630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
The development of new techniques to create gene knockouts and knock-ins is essential for successful investigation of gene functions and elucidation of the causes of diseases and their associated fundamental cellular processes. In the biomedical model organism Dictyostelium discoideum, the methodology for gene targeting with homologous recombination to generate mutants is well-established. Recently, we have applied CRISPR/Cas9-mediated approaches in Dictyostelium, allowing the rapid generation of mutants by transiently expressing sgRNA and Cas9 using an all-in-one vector. CRISPR/Cas9 techniques not only provide an alternative to homologous recombination-based gene knockouts but also enable the creation of mutants that were technically unfeasible previously. Herein, we provide a detailed protocol for the CRISPR/Cas9-based method in Dictyostelium. We also describe new tools, including double knockouts using a single CRISPR vector, drug-inducible knockouts, and gene knockdown using CRISPR interference (CRISPRi). We demonstrate the use of these tools for some candidate genes. Our data indicate that more suitable mutants can be rapidly generated using CRISPR/Cas9-based techniques to study gene function in Dictyostelium.
Collapse
Affiliation(s)
- Kensuke Yamashita
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| |
Collapse
|
16
|
Mroczek K, Fernando S, Fisher PR, Annesley SJ. Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:741662. [PMID: 34552934 PMCID: PMC8450459 DOI: 10.3389/fcell.2021.741662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The abnormal accumulation of the tau protein into aggregates is a hallmark in neurodegenerative diseases collectively known as tauopathies. In normal conditions, tau binds off and on microtubules aiding in their assembly and stability dependent on the phosphorylation state of the protein. In disease-affected neurons, hyperphosphorylation leads to the accumulation of the tau protein into aggregates, mainly neurofibrillary tangles (NFT) which have been seen to colocalise with other protein aggregates in neurodegeneration. One such protein is α-synuclein, the main constituent of Lewy bodies (LB), a hallmark of Parkinson's disease (PD). In many neurodegenerative diseases, including PD, the colocalisation of tau and α-synuclein has been observed, suggesting possible interactions between the two proteins. To explore the cytotoxicity and interactions between these two proteins, we expressed full length human tau and α-synuclein in Dictyostelium discoideum alone, and in combination. We show that tau is phosphorylated in D. discoideum and colocalises closely (within 40 nm) with tubulin throughout the cytoplasm of the cell as well as with α-synuclein at the cortex. Expressing wild type α-synuclein alone caused inhibited growth on bacterial lawns, phagocytosis and intracellular Legionella proliferation rates, but activated mitochondrial respiration and non-mitochondrial oxygen consumption. The expression of tau alone impaired multicellular morphogenesis, axenic growth and phototaxis, while enhancing intracellular Legionella proliferation. Direct respirometric assays showed that tau impairs mitochondrial ATP synthesis and increased the "proton leak," while having no impact on respiratory complex I or II function. In most cases depending on the phenotype, the coexpression of tau and α-synuclein exacerbated (phototaxis, fruiting body morphology), or reversed (phagocytosis, growth on plates, mitochondrial respiratory function, Legionella proliferation) the defects caused by either tau or α-synuclein expressed individually. Proteomics data revealed distinct patterns of dysregulation in strains ectopically expressing tau or α-synuclein or both, but down regulation of expression of cytoskeletal proteins was apparent in all three groups and most evident in the strain expressing both proteins. These results indicate that tau and α-synuclein exhibit different but overlapping patterns of intracellular localisation, that they individually exert distinct but overlapping patterns of cytotoxic effects and that they interact, probably physically in the cell cortex as well as directly or indirectly in affecting some phenotypes. The results show the efficacy of using D. discoideum as a model to study the interaction of proteins involved in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
17
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|