1
|
Rodriguez-Romeu O, Constenla M, Soler-Membrives A, Dutto G, Saraux C, Schull Q. Sardines in hot water: Unravelling plastic fibre ingestion and feeding behaviour effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125035. [PMID: 39343348 DOI: 10.1016/j.envpol.2024.125035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Small pelagics are small fish species often schooling that mainly feed on planktonic organisms and are foraging species of larger animals. These species have experienced important declines in their wild populations during the last decades. For instance, the decrease of the European sardine (Sardina pilchardus) body condition has had a detrimental impact on its landings, leaving their commercial fishing unprofitable in some Mediterranean areas. The causes for this decline are not clearly established but seems to be mainly related to changes with planktonic communities inducing a switch in their foraging behaviour from particulate-feeding to filter-feeding. Moreover, it has been highlighted that sardines ingest plastic fibres throughout their natural spatial distribution, suggesting this additional pollution as a possible new threat affecting their populations' health. In this study we developped an experimental setup allowing us to maintain wild fish in captive controlled conditions in order to test the possible factors affecting plastic fibres ingestion in sardines. We demonstrate that sardines ingest fibres from water, and the amount of fibres ingested is highly impacted by their feeding behaviour. Sardines feeding by filtration ingest less food but more plastic fibres (mean = 4.95 fibres/ind; SD = 3.43), compared to sardines that feed by particulate-feeding (mean = 0.6 fibres/ind; SD = 1.04). Moreover, a decrease in sardine body condition factor was detected for filter-feeding individuals, mostly linked to the lower amount of food they ingested rather than to the fibre ingestion itself. Nonetheless, higher water temperature seems to accelerate the pattern of fibre expulsion in filter-feeding sardines. Alltogether, it is suggested that plastic fibres pollution and phytoplanctonic changes under global change, might synergistically act at disturbing the health of this species in wild populations.
Collapse
Affiliation(s)
- Oriol Rodriguez-Romeu
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Maria Constenla
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| | - Gilbert Dutto
- MARBEC, Univ Montpellier, IFREMER, IRD, CNRS, Palavas les flôts, France
| | - Claire Saraux
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178, 23 rue du Loess, 67037, Strasbourg, Cedex 2, France
| | - Quentin Schull
- MARBEC, Univ Montpellier, IFREMER, IRD, CNRS, Sète, France
| |
Collapse
|
2
|
Wang C, Zhang C, Cai H, Zhu Y, Sun J, Liu W, Wang Z, Li Y. Extreme drought shapes the gut microbiota composition and function of common cranes ( Grus grus) wintering in Poyang Lake. Front Microbiol 2024; 15:1489906. [PMID: 39633809 PMCID: PMC11614848 DOI: 10.3389/fmicb.2024.1489906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Extreme weather events driven by climate change profoundly affect migratory birds by altering their habitats, food sources, and migration routes. While gut microbiota is believed to play a role in helping birds adapt to environmental changes, research on how extreme weather impacts their gut microbiota and how these microbial communities respond to such conditions has been limited. Methods 16S rRNA gene sequencing was utilized to investigate the gut microbiota of common cranes (Grus grus) wintering at Poyang Lake from 2020 to 2023, with a particular focus on their response to extreme drought conditions on both inter-annual and monthly timescales. Results The results revealed that extreme drought conditions substantially impact gut microbiota, with inter-annual water-level fluctuations exerting a more pronounced impact on microbial community structure than that of inter-monthly fluctuations. Notably, a significant decline in bacterial diversity within the gut microbiota of common cranes was observed in the extreme drought year of 2022 compared with other years. Monthly observations indicated a gradual increase in gut microbial diversity, coinciding with relatively minor water-level changes. Key taxa that responded to drought included the Enterobacteriaceae family and Bifidobacterium and Lactobacillus species. Additionally, functional genes related to carbohydrate metabolism, the phosphotransferase system, and the two-component systems were significantly enriched during the extreme drought year. These functions may represent adaptive mechanisms by which the gut microbiota of common cranes respond to drought stress. Discussion This research provides novel insights into the temporal variability of gut microbiota in wintering waterbirds, underscoring the significant impact of climatic fluctuations on microbial communities. The findings highlight the importance of understanding the ecological and functional responses of gut microbiota to extreme weather events, which is crucial for the conservation and management of migratory bird populations in the face of climate change.
Collapse
Affiliation(s)
- Chaoyang Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Chao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Hao Cai
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yunlong Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiwan Sun
- Office of Poyang Lake Water Control Project Construction of Jiangxi Province, Nanchang, China
| | - Wen Liu
- Office of Poyang Lake Water Control Project Construction of Jiangxi Province, Nanchang, China
| | - Zhenyu Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yankuo Li
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
3
|
Mu X, Shi S, Hu X, Gan X, Han Q, Yu Q, Qu J, Li H. Gut microbiome and antibiotic resistance genes in plateau model animal (Ochotona curzoniae) exhibit a relative stability under cold stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135472. [PMID: 39137548 DOI: 10.1016/j.jhazmat.2024.135472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antibiotic resistance genes (ARGs) carried by gut pathogens may pose a threat to the host and ecological environment. However, few studies focus on the effects of cold stress on intestinal bacteria and ARGs in plateau animals. Here, we used 16S rRNA gene sequencing and gene chip technique to explore the difference of gut microbes and ARGs in plateau pika under 4 °C and 25 °C. The results showed that tetracycline and aminoglycoside resistance genes were the dominant ARGs in pika intestine. Seven kinds of high-risk ARGs (aadA-01, aadA-02, ermB, floR, mphA-01, mphA-02, tetM-02) existed in pika's intestine, and cold had no significant effect on the composition and structure of pika's intestinal ARGs. The dominant phyla in pika intestine were Bacteroidetes and Firmicutes. Cold influenced 0.47 % of pika intestinal bacteria in OTU level, while most other bacteria had no significant change. The diversity and community assembly of intestinal bacteria in pika remained relatively stable under cold conditions, while low temperature decreased gut microbial network complexity. In addition, low temperature led to the enrichment of glycine biosynthesis and metabolism-related pathways. Moreover, the correlation analysis showed that eight opportunistic pathogens (such as Clostridium, Staphylococcus, Streptococcus, etc.) detected in pika intestine might be potential hosts of ARGs.
Collapse
Affiliation(s)
- Xianxian Mu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shunqin Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueying Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Marquardt T, Kaczmarek S, Niedbała W. Distribution of euptyctimous mite Phthiracarus longulus (Acari: Oribatida) under future climate change in the Palearctic. Sci Rep 2024; 14:21913. [PMID: 39300195 DOI: 10.1038/s41598-024-72852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The aim of this paper is to prepare, describe and discuss the models of the current and future distribution of Phthiracarus longulus (Koch, 1841) (Acari: Oribatida: Euptyctima), the oribatid mite species widely distributed within the Palearctic. We used the maximum entropy (MAXENT) method to predict its current and future (until the year 2100) distribution based on macroclimatic bio-variables. To our best knowledge, this is the first-ever prediction of distribution in mite species using environmental niche modelling. The main thermal variables that shape the current distribution of P. longulus are the temperature annual range, mean temperature of the coldest quarter and the annual mean temperature, while for precipitation variables the most important is precipitation of the driest quarter. Regardless of the climatic change scenario (SSP1-2.6, SSP2-4.5, SSP5-8.5) our models show generally the northward shift of species range, and in Southern Europe the loss of most habitats with parallel upslope shift. According to our current model, the most of suitable habitats for P. longulus are located in the European part of Palearctic. In general, the species range is mostly affected in Europe. The most stable areas of P. longulus distribution were the Jutland with surrounding southern coasts of Scandinavia, islands of the Danish Straits and the region of Trondheim Fjord.
Collapse
Affiliation(s)
- Tomasz Marquardt
- Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland.
| | - Sławomir Kaczmarek
- Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Wojciech Niedbała
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Chen LJ, Li ZZ, Liu W, Lyu B. Impact of high temperature and drought stress on the microbial community in wolf spiders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116801. [PMID: 39083866 DOI: 10.1016/j.ecoenv.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
High temperatures and drought present significant abiotic challenges that can limit the survival of many arthropods, including wolf spiders, which are ectothermic and play a crucial role in controlling pest populations. However, the impact of these stress factors on the microbiota of spiders remains poorly understood. In this study, we utilized 16 S rRNA gene sequencing to explore the diversity and composition of bacterial communities within Pardosa pseudoannulata under conditions of high temperature and drought stress. We found that Firmicutes, Bacteroidetes, and Proteobacteria were the predominant bacterial phyla present. Analyses of alpha diversity indicated an increase in bacterial diversity under combined stress conditions, as reflected by various diversity indices such as Ace, Chao1, Shannon, and Simpson. Furthermore, co-occurrence network analysis highlighted intricate interactions among the microbial taxa (e.g., Enterobacter, Chitinophaga, and Eubacterium), revealing the adaptive complexity of the spider's microbiome to environmental stress. Functional prediction analysis suggested that combined stress conditions might enhance key metabolic pathways, particularly those related to oxidative phosphorylation and amino acid metabolism. Using Random Forest analysis, we determined that changes in three heat shock proteins were largely attributed to variations in bacterial communities, with Firmicutes being notably influential. Collectively, this in-depth analysis offers novel insights into the responses of microbial communities within spider microbiomes to combined abiotic stresses, providing valuable information for understanding extreme climate impacts and informing ecological management strategies.
Collapse
Affiliation(s)
- Li-Jun Chen
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang 422000, China.
| | - Zhe-Zhi Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang 422000, China
| | - Wei Liu
- College of Urban and Environment Sciences, Hunan University of Technology, Zhuzhou 412007, China
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Shen W, Gao P, Zhou K, Li J, Bo T, Xu D. The Impact of High-Temperature Stress on Gut Microbiota and Reproduction in Siberian Hamsters ( Phodopus sungorus). Microorganisms 2024; 12:1426. [PMID: 39065194 PMCID: PMC11278997 DOI: 10.3390/microorganisms12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Global warming has induced alterations in the grassland ecosystem, such as elevated temperatures and decreased precipitation, which disturb the equilibrium of these ecosystems and impact various physiological processes of grassland rodents, encompassing growth, development, and reproduction. As global warming intensifies, the repercussions of high-temperature stress on small mammals are garnering increased attention. Recently, research has highlighted that the composition and ratio of gut microbiota are not only shaped by environmental factors and the host itself but also reciprocally influence an array of physiological functions and energy metabolism in animals. In this research, we combined 16S rRNA high-throughput sequencing with conventional physiological assessments, to elucidate the consequences of high-temperature stress on the gut microbiota structure and reproductive capacity of Siberian hamsters (Phodopus sungorus). The results were as follows: 1. The growth and development of male and female hamsters in the high-temperature group were delayed, with lower body weight and reduced food intake. 2. High temperature inhibits the development of reproductive organs in both female and male hamsters. 3. High temperature changes the composition and proportion of gut microbiota, reducing bacteria that promote reproduction, such as Pseudobutyricoccus, Ruminiclostridium-E, Sporofaciens, UMGS1071, and CAG_353. Consequently, our study elucidates the specific impacts of high-temperature stress on the gut microbiota dynamics and reproductive health of Siberian hamsters, thereby furnishing insights for managing rodent populations amidst global climatic shifts. It also offers a valuable framework for understanding seasonal variations in mammalian reproductive strategies, contributing to the broader discourse on conservation and adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Peng Gao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Kunying Zhou
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Jin Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Tingbei Bo
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Deli Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| |
Collapse
|
7
|
Zhu W, Chang L, Zhang M, Chen Q, Sui L, Shen C, Jiang J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024; 27:109907. [PMID: 38812552 PMCID: PMC11135016 DOI: 10.1016/j.isci.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Yang J, Liu W, Han X, Hao X, Yao Q, Du W. Gut microbiota modulation enhances the immune capacity of lizards under climate warming. MICROBIOME 2024; 12:37. [PMID: 38388458 PMCID: PMC10882899 DOI: 10.1186/s40168-023-01736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Host-microbial interactions are expected to affect species' adaptability to climate change but have rarely been explored in ectothermic animals. Some studies have shown that short-term warming reduced gut microbial diversity that could hamper host functional performance. RESULTS However, our longitudinal experiments in semi-natural conditions demonstrated that warming decreased gut microbiota diversity at 2 months, but increased diversity at 13 and 27 months in a desert lizard (Eremias multiocellata). Simultaneously, long-term warming significantly increased the antibacterial activity of serum, immune responses (higher expression of intestinal immune-related genes), and the concentration of short-chain fatty acids (thereby intestinal barrier and immunity) in the lizard. Fecal microbiota transplant experiments further revealed that increased diversity of gut microbiota significantly enhanced antibacterial activity and the immune response of lizards. More specifically, the enhanced immunity is likely due to the higher relative abundance of Bacteroides in warming lizards, given that the bacteria of Bacteroides fragilis regulated IFN-β expression to increase the immune response of lizards under a warming climate. CONCLUSIONS Our study suggests that gut microbiota can help ectotherms cope with climate warming by enhancing host immune response, and highlights the importance of long-term studies on host-microbial interactions and their biological impacts.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingzhi Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Xin Hao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou, 571737, China
| | - Qibin Yao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Abstract
Climate change is a major threat to human respiratory health and associated allergic disorders given its broad impact on the exposome. Climate change can affect exposure to allergens, such as pollen, dust mites, molds, as well as other factors such as temperature, air pollution, and nutritional factors, which synergistically impact the immune response to these allergens. Exposome change can differentially exacerbate allergic reactions across subgroups of populations, especially those who are more vulnerable to environmental stressors. Understanding links between climate change and health impacts can help inform how to protect individuals and vulnerable populations from adverse health effects.
Collapse
Affiliation(s)
- Heresh Amini
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Mohamad Amini
- Department of Dermatology, Besat Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| |
Collapse
|
10
|
Wright RJ, Demain JG. Growing Impact of Climate Change on Respiratory Health and Related Allergic Disorders: Need for Health Systems to Prepare. Immunol Allergy Clin North Am 2024; 44:xi-xv. [PMID: 37973264 DOI: 10.1016/j.iac.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Rosalind J Wright
- Department of Environmental Medicine, and Public Health, Institute for Exposomic Research, Icahn School of Medicine at, Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Jeffrey G Demain
- Department of Pediatrics, University of Washington, Seattle WA, USA; WWAMI School of Medicine, University of Alaska, Anchorage, AK 99516, USA.
| |
Collapse
|