1
|
Doumatey AP, Shriner D, Zhou J, Lei L, Chen G, Oluwasola-Taiwo O, Nkem S, Ogundeji A, Adebamowo SN, Bentley AR, Gouveia MH, Meeks KAC, Adebamowo CA, Adeyemo AA, Rotimi CN. Untargeted metabolomic profiling reveals molecular signatures associated with type 2 diabetes in Nigerians. Genome Med 2024; 16:38. [PMID: 38444015 PMCID: PMC10913364 DOI: 10.1186/s13073-024-01308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) has reached epidemic proportions globally, including in Africa. However, molecular studies to understand the pathophysiology of T2D remain scarce outside Europe and North America. The aims of this study are to use an untargeted metabolomics approach to identify: (a) metabolites that are differentially expressed between individuals with and without T2D and (b) a metabolic signature associated with T2D in a population of Sub-Saharan Africa (SSA). METHODS A total of 580 adult Nigerians from the Africa America Diabetes Mellitus (AADM) study were studied. The discovery study included 310 individuals (210 without T2D, 100 with T2D). Metabolites in plasma were assessed by reverse phase, ultra-performance liquid chromatography and mass spectrometry (RP)/UPLC-MS/MS methods on the Metabolon Platform. Welch's two-sample t-test was used to identify differentially expressed metabolites (DEMs), followed by the construction of a biomarker panel using a random forest (RF) algorithm. The biomarker panel was evaluated in a replication sample of 270 individuals (110 without T2D and 160 with T2D) from the same study. RESULTS Untargeted metabolomic analyses revealed 280 DEMs between individuals with and without T2D. The DEMs predominantly belonged to the lipid (51%, 142/280), amino acid (21%, 59/280), xenobiotics (13%, 35/280), carbohydrate (4%, 10/280) and nucleotide (4%, 10/280) super pathways. At the sub-pathway level, glycolysis, free fatty acid, bile metabolism, and branched chain amino acid catabolism were altered in T2D individuals. A 10-metabolite biomarker panel including glucose, gluconate, mannose, mannonate, 1,5-anhydroglucitol, fructose, fructosyl-lysine, 1-carboxylethylleucine, metformin, and methyl-glucopyranoside predicted T2D with an area under the curve (AUC) of 0.924 (95% CI: 0.845-0.966) and a predicted accuracy of 89.3%. The panel was validated with a similar AUC (0.935, 95% CI 0.906-0.958) in the replication cohort. The 10 metabolites in the biomarker panel correlated significantly with several T2D-related glycemic indices, including Hba1C, insulin resistance (HOMA-IR), and diabetes duration. CONCLUSIONS We demonstrate that metabolomic dysregulation associated with T2D in Nigerians affects multiple processes, including glycolysis, free fatty acid and bile metabolism, and branched chain amino acid catabolism. Our study replicated previous findings in other populations and identified a metabolic signature that could be used as a biomarker panel of T2D risk and glycemic control thus enhancing our knowledge of molecular pathophysiologic changes in T2D. The metabolomics dataset generated in this study represents an invaluable addition to publicly available multi-omics data on understudied African ancestry populations.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA.
| | - Daniel Shriner
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | - Jie Zhou
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | - Lin Lei
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | - Guanjie Chen
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | | | - Susan Nkem
- Center for Bioethics & Research, Ibadan, Nigeria
| | | | - Sally N Adebamowo
- Department of Epidemiology and Public Health, and the Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Bentley
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | - Mateus H Gouveia
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | - Karlijn A C Meeks
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, and the Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adebowale A Adeyemo
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA.
| | - Charles N Rotimi
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12 A, Room 1025A, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Lu J, Wang S, Li M, Gao Z, Xu Y, Zhao X, Hu C, Zhang Y, Liu R, Hu R, Shi L, Zheng R, Du R, Su Q, Wang J, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Wang X, Li Q, Qin G, Wan Q, Chen G, Xu M, Dai M, Zhang D, Tang X, Wang G, Shen F, Luo Z, Qin Y, Chen L, Huo Y, Li Q, Ye Z, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Li D, Lai S, Mu Y, Chen L, Zhao J, Xu G, Ning G, Bi Y, Wang W. Association of Serum Bile Acids Profile and Pathway Dysregulation With the Risk of Developing Diabetes Among Normoglycemic Chinese Adults: Findings From the 4C Study. Diabetes Care 2021; 44:499-510. [PMID: 33355246 DOI: 10.2337/dc20-0884] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/29/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comprehensive assessment of serum bile acids (BAs) aberrations before diabetes onset remains inconclusive. We examined the association of serum BA profile and coregulation with the risk of developing type 2 diabetes mellitus (T2DM) among normoglycemic Chinese adults. RESEARCH DESIGN AND METHODS We tested 23 serum BA species in subjects with incident diabetes (n = 1,707) and control subjects (n = 1,707) matched by propensity score (including age, sex, BMI, and fasting glucose) from the China Cardiometabolic Disease and Cancer Cohort (4C) Study, which was composed of 54,807 normoglycemic Chinese adults with a median follow-up of 3.03 years. Multivariable-adjusted odds ratios (ORs) for associations of BAs with T2DM were estimated using conditional logistic regression. RESULTS In multivariable-adjusted logistic regression analysis, per SD increment of unconjugated primary and secondary BAs were inversely associated with incident diabetes, with an OR (95% CI) of 0.89 (0.83-0.96) for cholic acid, 0.90 (0.84-0.97) for chenodeoxycholic acid, and 0.90 (0.83-0.96) for deoxycholic acid (P < 0.05 and false discovery rate <0.05). On the other hand, conjugated primary BAs (glycocholic acid, taurocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, and sulfated glycochenodeoxycholic acid) and secondary BA (tauroursodeoxycholic acid) were positively related with incident diabetes, with ORs ranging from 1.11 to 1.19 (95% CIs ranging between 1.05 and 1.28). In a fully adjusted model additionally adjusted for liver enzymes, HDL cholesterol, diet, 2-h postload glucose, HOMA-insulin resistance, and waist circumference, the risk estimates were similar. Differential correlation network analysis revealed that perturbations in intraclass (i.e., primary and secondary) and interclass (i.e., unconjugated and conjugated) BA coregulation preexisted before diabetes onset. CONCLUSIONS These findings reveal novel changes in BAs exist before incident T2DM and support a potential role of BA metabolism in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhengnan Gao
- Dalian Municipal Central Hospital, Dalian, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lixin Shi
- Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Rui Du
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing Su
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qi Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Wan
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Chen
- Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Meng Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xulei Tang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Feixia Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zuojie Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Huo
- Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Qiang Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yinfei Zhang
- Central Hospital of Shanghai Jiading District, Shanghai, China
| | - Chao Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Youmin Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengli Wu
- Karamay Municipal People's Hospital, Xinjiang, China
| | - Tao Yang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huacong Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shenghan Lai
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yiming Mu
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lulu Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajun Zhao
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
5
|
Liu X, Shi L, Dai X, Chen H, Zhang C, Wang P, Wu Q, Zeng L, Yan H. Plasma metabolites mediate the association of coarse grain intake with blood pressure in hypertension-free adults. Nutr Metab Cardiovasc Dis 2020; 30:1512-1519. [PMID: 32624346 DOI: 10.1016/j.numecd.2020.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Increased intake of whole/coarse grains was associated with improved blood pressure control, but concurrent metabolism alterations are less clear. We sought to identify metabolomic profiles of blood pressure, and to explore their mediation effects on the coarse grain intake-blood pressure association among young adults free of hypertension. METHODS AND RESULTS Plasma metabolome of 86 participants from the Carbohydrate Alternatives and Metabolic Phenotypes study was characterized by untargeted lipidomics and metabolomics using liquid chromatography-high-resolution mass spectrometry. We identified 24 and 117 metabolites associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively, using random forest modeling and partial correlation analysis. Moreover, metabolite panels for highly specific prediction of blood pressure (8 metabolites for SBP and 11 metabolites for DBP) were determined using ten-fold cross-validated ridge regression (R2 ≥ 0.70). We also observed an inverse association between metabolite panel of SBP (β ± SE = -0.02 ± 0.01, P = 0.04) or DBP (β ± SE = -0.03 ± 0.01, P = 0.02) and coarse grain intake. Furthermore, we observed significant mediating effects of metabolites, in particular, sphingolipid ceramides, on the association between coarse grain exposure and blood pressure using both bias-corrected bootstrap tests and high-dimensional mediation analysis adapted for large-scale and high-throughput omics data. CONCLUSIONS We identified metabolomic profiles specifically associated with blood pressure in young Chinese adults without diagnosed hypertension. The inverse association between coarse grain intake and blood pressure may be mediated by sphingolipid metabolites.
Collapse
Affiliation(s)
- Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| | - Lin Shi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden; School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, 710062, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518083, PR China.
| | - Huangtao Chen
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Chenglin Zhang
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Pei Wang
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Lingxia Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China; Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| |
Collapse
|