1
|
Performance Comparison of Different Approaches in Genotyping MHC-DRB: The Contrast between Single-Locus and Multi-Locus Species. Animals (Basel) 2022; 12:ani12182452. [PMID: 36139311 PMCID: PMC9495155 DOI: 10.3390/ani12182452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Major histocompatibility complex (MHC) genes are widely recognised as valuable markers for wildlife genetic studies given their extreme polymorphism and functional importance in fitness-related traits. Newly developed genotyping methods, which rely on the use of next-generation sequencing (NGS), are gradually replacing traditional cloning and Sanger sequencing methods in MHC genotyping studies. Allele calling in NGS methods remains challenging due to extreme polymorphism and locus multiplication in the MHC coupled with allele amplification bias and the generation of artificial sequences. In this study, we compared the performance of molecular cloning with Illumina and Ion Torrent NGS sequencing in MHC-DRB genotyping of single-locus species (roe deer) and species with multiple DRB loci (red deer) in an attempt to adopt a reliable and straightforward method that does not require complex bioinformatic analyses. Our results show that all methods work similarly well in roe deer, but we demonstrate non-consistency in results across methods in red deer. With Illumina sequencing, we detected a maximum number of alleles in 10 red deer individuals (42), while other methods were somewhat less accurate as they scored 69–81% of alleles detected with Illumina sequencing.
Collapse
|
2
|
Diversity of the MHC class II DRB gene in the wolverine (Carnivora: Mustelidae: Gulo gulo) in Finland. PLoS One 2022; 17:e0267609. [PMID: 35536786 PMCID: PMC9089919 DOI: 10.1371/journal.pone.0267609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
The wolverine (Gulo gulo) in Finland has undergone significant population declines in the past. Since major histocompatibility complex (MHC) genes encode proteins involved in pathogen recognition, the diversity of these genes provides insights into the immunological fitness of regional populations. We sequenced 862 amplicons (242 bp) of MHC class II DRB exon 2 from 32 Finnish wolverines and identified 11 functional alleles and three pseudogenes. A molecular phylogenetic analysis indicated trans-species polymorphism, and PAML and MEME analyses indicated positive selection, suggesting that the Finnish wolverine DRB genes have evolved under balancing and positive selection. In contrast to DRB gene analyses in other species, allele frequencies in the Finnish wolverines clearly indicated the existence of two regional subpopulations, congruent with previous studies based on neutral genetic markers. In the Finnish wolverine, rapid population declines in the past have promoted genetic drift, resulting in a lower genetic diversity of DRB loci, including fewer alleles and positively selected sites, than other mustelid species analyzed previously. Our data suggest that the MHC region in the Finnish wolverine population was likely affected by a recent bottleneck.
Collapse
|
3
|
Buzan E, Potušek S, Duniš L, Pokorny B. Neutral and Selective Processes Shape MHC Diversity in Roe Deer in Slovenia. Animals (Basel) 2022; 12:ani12060723. [PMID: 35327121 PMCID: PMC8944837 DOI: 10.3390/ani12060723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Disease prevention and appropriate wildlife management are among the major challenges in wildlife conservation. In the present study, we made a first assessment of the variability of major histocompatibility complex (MHC) genes in roe deer in Slovenia and evaluated local population adaptation by comparing MHC variability with neutral microsatellites. We discovered three new MHC DRB exon 2 alleles in addition to seven previously described in the literature. Moreover, we found evidence of historical positive selection, as selection analysis indicated that approx. 10% of the encoded amino acids were subjected to episodic positive selection. This study provides the basis for further research on immunogenetic variation in roe deer and highlights opportunities to incorporate genetic data into science-based population management. Abstract Disease control and containment in free-ranging populations is one of the greatest challenges in wildlife management. Despite the importance of major histocompatibility complex (MHC) genes for immune response, an assessment of the diversity and occurrence of these genes is still rare in European roe deer, the most abundant and widespread large mammal in Europe. Therefore, we examined immunogenetic variation in roe deer in Slovenia to identify species adaptation by comparing the genetic diversity of the MHC genes with the data on neutral microsatellites. We found ten MHC DRB alleles, three of which are novel. Evidence for historical positive selection on the MHC was found using the maximum likelihood codon method. Patterns of MHC allelic distribution were not congruent with neutral population genetic findings. The lack of population genetic differentiation in MHC genes compared to existing structure in neutral markers suggests that MHC polymorphism was influenced primarily by balancing selection and, to a lesser extent, by neutral processes such as genetic drift, with no clear evidence of local adaptation. Selection analyses indicated that approx. 10% of amino acids encoded under episodic positive selection. This study represents one of the first steps towards establishing an immunogenetic map of roe deer populations across Europe, aiming to better support science-based management of this important game species.
Collapse
Affiliation(s)
- Elena Buzan
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
- Environmental Protection College, Trg Mladosti 7, 3320 Velenje, Slovenia;
- Correspondence: ; Tel.: +38-65-6117570; Fax: +38-65-61175
| | - Sandra Potušek
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
| | - Luka Duniš
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
| | - Boštjan Pokorny
- Environmental Protection College, Trg Mladosti 7, 3320 Velenje, Slovenia;
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol Ecol 2019; 28:5115-5132. [PMID: 31614047 DOI: 10.1111/mec.15276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023]
Abstract
Disentangling the sources of variation in developing an effective immune response against pathogens is of major interest to immunoecology and evolutionary biology. To date, the link between immunocompetence and genetic variation at the major histocompatibility complex (MHC) has received little attention in wild animals, despite the key role of MHC genes in activating the adaptive immune system. Although several studies point to a link between MHC and immunocompetence, negative findings have also been reported. Such disparate findings suggest that limited statistical power might be affecting studies on this topic, owing to insufficient sample sizes and/or a generally small effect of MHC on the immunocompetence of wild vertebrates. To clarify this issue, we investigated the link between MHC variation and seven immunocompetence proxies in a large sample of barn owls and estimated the effect sizes and statistical power of this and published studies on this topic. We found that MHC poorly explained variation in immunocompetence of barn owls, with small-to-moderate associations between MHC and immunocompetence in owls (effect size: .1 ≥ r ≤ .3) similar to other vertebrates studied to date. Such small-to-moderate effects were largely associated with insufficient power, which was only sufficient (>0.8) to detect moderate-to-large effect sizes (r ≥ .3). Thus, studies linking MHC variation with immunocompetence in wild populations are underpowered to detect MHC effects, which are likely to be of generally small magnitude. Larger sample sizes (>200) will be required to achieve sufficient power in future studies aiming to robustly test for a link between MHC variation and immunocompetence.
Collapse
Affiliation(s)
- Arnaud Gaigher
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Luis M San-Jose
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Alexandre Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Laboratory for Conservation Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Nishita Y, Spassov N, Peeva S, Raichev EG, Kaneko Y, Masuda R. Genetic diversity of MHC class II DRB alleles in the marbled polecat, Vormela peregusna, in Bulgaria. ETHOL ECOL EVOL 2018. [DOI: 10.1080/03949370.2018.1486887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yoshinori Nishita
- Department of Biological Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Nikolai Spassov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Stanislava Peeva
- Department of Agricultural Science, Trakia University, Stara Zagora 6000, Bulgaria
| | - Evgeniy G. Raichev
- Department of Agricultural Science, Trakia University, Stara Zagora 6000, Bulgaria
| | - Yayoi Kaneko
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0057, Japan
| | - Ryuichi Masuda
- Department of Biological Sciences, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
Nishita Y, Abramov AV, Murakami T, Masuda R. Genetic diversity of MHC class II DRB alleles in the continental and Japanese populations of the sable Martes zibellina (Mustelidae, Carnivora, Mammalia). MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0366-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Razali H, O'Connor E, Drews A, Burke T, Westerdahl H. A quantitative and qualitative comparison of illumina MiSeq and 454 amplicon sequencing for genotyping the highly polymorphic major histocompatibility complex (MHC) in a non-model species. BMC Res Notes 2017; 10:346. [PMID: 28754172 PMCID: PMC5534077 DOI: 10.1186/s13104-017-2654-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
Background High-throughput sequencing enables high-resolution genotyping of extremely duplicated genes. 454 amplicon sequencing (454) has become the standard technique for genotyping the major histocompatibility complex (MHC) genes in non-model organisms. However, illumina MiSeq amplicon sequencing (MiSeq), which offers a much higher read depth, is now superseding 454. The aim of this study was to quantitatively and qualitatively evaluate the performance of MiSeq in relation to 454 for genotyping MHC class I alleles using a house sparrow (Passer domesticus) dataset with pedigree information. House sparrows provide a good study system for this comparison as their MHC class I genes have been studied previously and, consequently, we had prior expectations concerning the number of alleles per individual. Results We found that 454 and MiSeq performed equally well in genotyping amplicons with low diversity, i.e. amplicons from individuals that had fewer than 6 alleles. Although there was a higher rate of failure in the 454 dataset in resolving amplicons with higher diversity (6–9 alleles), the same genotypes were identified by both 454 and MiSeq in 98% of cases. Conclusions We conclude that low diversity amplicons are equally well genotyped using either 454 or MiSeq, but the higher coverage afforded by MiSeq can lead to this approach outperforming 454 in amplicons with higher diversity. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2654-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haslina Razali
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Emily O'Connor
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
| | - Anna Drews
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| |
Collapse
|
8
|
Nishita Y, Kosintsev PA, Haukisalmi V, Väinölä R, Raichev EG, Murakami T, Abramov AV, Kaneko Y, Masuda R. Diversity of MHC class II DRB alleles in the Eurasian population of the least weasel, Mustela nivalis (Mustelidae: Mammalia). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Rico Y, Ethier DM, Davy CM, Sayers J, Weir RD, Swanson BJ, Nocera JJ, Kyle CJ. Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. Evol Appl 2016; 9:1271-1284. [PMID: 27877205 PMCID: PMC5108218 DOI: 10.1111/eva.12410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Small and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (Taxidea taxus), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations. Our results suggest that gene flow plays a prominent role in shaping MHC polymorphism across large spatial scales, while the interplay between gene flow and selection was stronger towards the northern peripheries. The similarity of MHC alleles within subspecies relative to their neutral genetic differentiation suggests that adaptive divergence among subspecies can be maintained despite ongoing gene flow along subspecies boundaries. Neutral genetic diversity was low in small relative to large populations, but MHC diversity within individuals was high in small populations. Despite reduced neutral genetic variation, small and isolated populations harbour functional variation that likely contribute to the species evolutionary potential at the northern range. Our findings suggest that conservation approaches should focus on managing adaptive variation across the species range rather than protecting subspecies per se.
Collapse
Affiliation(s)
- Yessica Rico
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
- Present address: CONACYTInstituto de Ecología A.C.Centro Regional del BajíoAvenida Lázaro Cárdenas 253PátzcuaroMichoacán61600México
| | - Danielle M. Ethier
- Ontario Badger ProjectGuelphONCanada
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Christina M. Davy
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| | | | - Richard D. Weir
- Ecosystems Protection & Sustainability BranchMinistry of EnvironmentVictoriaBCCanada
| | | | - Joseph J. Nocera
- Wildlife Research and Monitoring SectionMinistry of Natural Resources & ForestryPeterboroughONCanada
| | - Christopher J. Kyle
- Forensic Science DepartmentTrent UniversityPeterboroughONCanada
- Natural Resources DNA Profiling and Forensics CentreTrent UniversityPeterboroughONCanada
| |
Collapse
|
10
|
Sallaberry‐Pincheira N, González‐Acuña D, Padilla P, Dantas GPM, Luna‐Jorquera G, Frere E, Valdés‐Velásquez A, Vianna JA. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins. Ecol Evol 2016; 6:7498-7510. [PMID: 28725416 PMCID: PMC5513272 DOI: 10.1002/ece3.2502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Collapse
Affiliation(s)
- Nicole Sallaberry‐Pincheira
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
- Escuela de Medicina VeterinariaFacultad Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
| | | | - Pamela Padilla
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| | | | - Guillermo Luna‐Jorquera
- Universidad Católica del NorteMillenium Nucleus of Ecology and Sustainable Management of Oceanic Islands ESMOICentro de Estudios Avanzados en Zonas Áridas CEAZACoquimboChile
| | - Esteban Frere
- Centro de Investigaciones de Puerto DeseadoUniversidad Nacional de la Patagonia AustralPuerto DeseadoArgentina
| | - Armando Valdés‐Velásquez
- Laboratorio de Estudios en BiodiversidadFacultad de Ciencias Biológicas y FisiológicasUniversidad Peruana Cayetano HerediaLimaPeru
| | - Juliana A. Vianna
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
11
|
Nishita Y, Abramov AV, Kosintsev PA, Lin LK, Watanabe S, Yamazaki K, Kaneko Y, Masuda R. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica. ACTA ACUST UNITED AC 2016; 86:431-42. [PMID: 26593752 DOI: 10.1111/tan.12700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023]
Abstract
Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship.
Collapse
Affiliation(s)
- Y Nishita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - A V Abramov
- Zoological Institute, Russian Academy of Sciences, Moscow, Russia
| | - P A Kosintsev
- Institute of Plant & Animal Ecology, Russian Academy of Sciences, Moscow, Russia
| | - L-K Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - S Watanabe
- Seian University of Art and Design, Otsu, Japan
| | - K Yamazaki
- Forest Ecology Laboratory, Department of Forest Science, Faculty of Regional Environmental Science, Tokyo University of Agriculture, Fuchu, Japan
| | - Y Kaneko
- Department of Ecoregion Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - R Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Pearson SK, Bradford TM, Ansari TH, Bull CM, Gardner MG. MHC genotyping from next-generation sequencing: detailed methodology for the gidgee skink, Egernia stokesii. T ROY SOC SOUTH AUST 2016. [DOI: 10.1080/03721426.2016.1216735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S. K. Pearson
- School of Biological Sciences, Flinders University of South Australia, Bedford Park, Australia
| | - T. M. Bradford
- School of Biological Sciences, Flinders University of South Australia, Bedford Park, Australia
| | - T. H. Ansari
- School of Biological Sciences, Flinders University of South Australia, Bedford Park, Australia
| | - C. M. Bull
- School of Biological Sciences, Flinders University of South Australia, Bedford Park, Australia
| | - M. G. Gardner
- School of Biological Sciences, Flinders University of South Australia, Bedford Park, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| |
Collapse
|
13
|
Rapid identification of bovine MHCI haplotypes in genetically divergent cattle populations using next-generation sequencing. Immunogenetics 2016; 68:765-781. [PMID: 27516207 PMCID: PMC5056950 DOI: 10.1007/s00251-016-0945-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
The major histocompatibility complex (MHC) region contains many genes that are key regulators of both innate and adaptive immunity including the polymorphic MHCI and MHCII genes. Consequently, the characterisation of the repertoire of MHC genes is critical to understanding the variation that determines the nature of immune responses. Our current knowledge of the bovine MHCI repertoire is limited with only the Holstein-Friesian breed having been studied in any depth. Traditional methods of MHCI genotyping are of low resolution and laborious and this has been a major impediment to a more comprehensive analysis of the MHCI repertoire of other cattle breeds. Next-generation sequencing (NGS) technologies have been used to enable high throughput and much higher resolution MHCI typing in a number of species. In this study we have developed a MiSeq platform approach and requisite bioinformatics pipeline to facilitate typing of bovine MHCI repertoires. The method was validated initially on a cohort of Holstein-Friesian animals and then demonstrated to enable characterisation of MHCI repertoires in African cattle breeds, for which there was limited or no available data. During the course of these studies we identified >140 novel classical MHCI genes and defined 62 novel MHCI haplotypes, dramatically expanding the known bovine MHCI repertoire.
Collapse
|
14
|
Marmesat E, Soriano L, Mazzoni CJ, Sommer S, Godoy JA. PCR Strategies for Complete Allele Calling in Multigene Families Using High-Throughput Sequencing Approaches. PLoS One 2016; 11:e0157402. [PMID: 27294261 PMCID: PMC4905633 DOI: 10.1371/journal.pone.0157402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022] Open
Abstract
The characterization of multigene families with high copy number variation is often approached through PCR amplification with highly degenerate primers to account for all expected variants flanking the region of interest. Such an approach often introduces PCR biases that result in an unbalanced representation of targets in high-throughput sequencing libraries that eventually results in incomplete detection of the targeted alleles. Here we confirm this result and propose two different amplification strategies to alleviate this problem. The first strategy (called pooled-PCRs) targets different subsets of alleles in multiple independent PCRs using different moderately degenerate primer pairs, whereas the second approach (called pooled-primers) uses a custom-made pool of non-degenerate primers in a single PCR. We compare their performance to the common use of a single PCR with highly degenerate primers using the MHC class I of the Iberian lynx as a model. We found both novel approaches to work similarly well and better than the conventional approach. They significantly scored more alleles per individual (11.33 ± 1.38 and 11.72 ± 0.89 vs 7.94 ± 1.95), yielded more complete allelic profiles (96.28 ± 8.46 and 99.50 ± 2.12 vs 63.76 ± 15.43), and revealed more alleles at a population level (13 vs 12). Finally, we could link each allele's amplification efficiency with the primer-mismatches in its flanking sequences and show that ultra-deep coverage offered by high-throughput technologies does not fully compensate for such biases, especially as real alleles may reach lower coverage than artefacts. Adopting either of the proposed amplification methods provides the opportunity to attain more complete allelic profiles at lower coverages, improving confidence over the downstream analyses and subsequent applications.
Collapse
Affiliation(s)
- Elena Marmesat
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Sevilla, Spain
| | - Laura Soriano
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Sevilla, Spain
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - José A. Godoy
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), Sevilla, Spain
- * E-mail:
| |
Collapse
|
15
|
Gaigher A, Burri R, Gharib WH, Taberlet P, Roulin A, Fumagalli L. Family-assisted inference of the genetic architecture of major histocompatibility complex variation. Mol Ecol Resour 2016; 16:1353-1364. [DOI: 10.1111/1755-0998.12537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Affiliation(s)
- A. Gaigher
- Laboratory for Conservation Biology; Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne CH-1015 Switzerland
| | - R. Burri
- Department of Evolutionary Biology; Uppsala University; Norbyvägen 18D SE-752 36 Uppsala Sweden
| | - W. H. Gharib
- Interfaculty Bioinformatics Unit; University of Bern; CH-3012 Bern Switzerland
| | - P. Taberlet
- CNRS; Laboratoire d'Ecologie Alpine (LECA); 38000 Grenoble France
- Laboratoire d'Ecologie Alpine (LECA); University of Grenoble Alpes; 38000 Grenoble France
| | - A. Roulin
- Laboratory for Conservation Biology; Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne CH-1015 Switzerland
| | - L. Fumagalli
- Laboratory for Conservation Biology; Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne CH-1015 Switzerland
| |
Collapse
|
16
|
Jaeger CP, Duvall MR, Swanson BJ, Phillips CA, Dreslik MJ, Baker SJ, King RB. Microsatellite and major histocompatibility complex variation in an endangered rattlesnake, the Eastern Massasauga (Sistrurus catenatus). Ecol Evol 2016; 6:3991-4003. [PMID: 27516858 PMCID: PMC4874855 DOI: 10.1002/ece3.2159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/18/2023] Open
Abstract
Genetic diversity is fundamental to maintaining the long-term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.
Collapse
Affiliation(s)
- Collin P. Jaeger
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois60115
| | - Melvin R. Duvall
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois60115
| | - Bradley J. Swanson
- Department of BiologyCentral Michigan UniversityMt. PleasantMichigan48859
| | - Christopher A. Phillips
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinois61820
| | - Michael J. Dreslik
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinois61820
| | - Sarah J. Baker
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinois61820
| | - Richard B. King
- Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois60115
| |
Collapse
|
17
|
Grogan KE, McGinnis GJ, Sauther ML, Cuozzo FP, Drea CM. Next-generation genotyping of hypervariable loci in many individuals of a non-model species: technical and theoretical implications. BMC Genomics 2016; 17:204. [PMID: 26957424 PMCID: PMC4782575 DOI: 10.1186/s12864-016-2503-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Across species, diversity at the Major Histocompatibility Complex (MHC) is critical to disease resistance and population health; however, use of MHC diversity to quantify the genetic health of populations has been hampered by the extreme variation found in MHC genes. Next generation sequencing (NGS) technology generates sufficient data to genotype even the most diverse species, but workflows for distinguishing artifacts from alleles are still under development. We used NGS to evaluate the MHC diversity of over 300 captive and wild ring-tailed lemurs (Lemur catta: Primates: Mammalia). We modified a published workflow to address errors that arise from deep sequencing individuals and tested for evidence of selection at the most diverse MHC genes. RESULTS In addition to evaluating the accuracy of 454 Titanium and Ion Torrent PGM for genotyping large populations at hypervariable genes, we suggested modifications to improve current methods of allele calling. Using these modifications, we genotyped 302 out of 319 individuals, obtaining an average sequencing depth of over 1000 reads per amplicon. We identified 55 MHC-DRB alleles, 51 of which were previously undescribed, and provide the first sequences of five additional MHC genes: DOA, DOB, DPA, DQA, and DRA. The additional five MHC genes had one or two alleles each with little sequence variation; however, the 55 MHC-DRB alleles showed a high dN/dS ratio and trans-species polymorphism, indicating a history of positive selection. Because each individual possessed 1-7 MHC-DRB alleles, we suggest that ring-tailed lemurs have four, putatively functional, MHC-DRB copies. CONCLUSIONS In the future, accurate genotyping methods for NGS data will be critical to assessing genetic variation in non-model species. We recommend that future NGS studies increase the proportion of replicated samples, both within and across platforms, particularly for hypervariable genes like the MHC. Quantifying MHC diversity within non-model species is the first step to assessing the relationship of genetic diversity at functional loci to individual fitness and population viability. Owing to MHC-DRB diversity and copy number, ring-tailed lemurs may serve as an ideal model for estimating the interaction between genetic diversity, fitness, and environment, especially regarding endangered species.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Emory University, Room 2006 O. Wayne Rollins Research Center, 1510 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | | | - Michelle L Sauther
- Department of Anthropology, University of Colorado-Boulder, Boulder, CO, USA
| | - Frank P Cuozzo
- Department of Anthropology, University of North Dakota, Grand Forks, ND, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
18
|
Lack of Spatial Immunogenetic Structure among Wolverine (Gulo gulo) Populations Suggestive of Broad Scale Balancing Selection. PLoS One 2015; 10:e0140170. [PMID: 26448462 PMCID: PMC4598017 DOI: 10.1371/journal.pone.0140170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.
Collapse
|
19
|
Bracamonte SE, Smith S, Hammer M, Pavey SA, Sunnucks P, Beheregaray LB. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations. FISH & SHELLFISH IMMUNOLOGY 2015; 46:468-476. [PMID: 26093210 DOI: 10.1016/j.fsi.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Molecular Ecology Lab, Flinders University, Adelaide 5001, South Australia, Australia; Department of Integrative Biology and Evolution, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Steve Smith
- Molecular Ecology Lab, Flinders University, Adelaide 5001, South Australia, Australia; Department of Integrative Biology and Evolution, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Michael Hammer
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide, South Australia 5000 and Curator of Fishes, Museum and Art Gallery of the Northern Territory, PO Box 4646, Darwin, Northern Territory 0801, Australia
| | - Scott A Pavey
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec QC G1V 0A6, Canada
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Lab, Flinders University, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
20
|
Sebastian A, Herdegen M, Migalska M, Radwan J. amplisas: a web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Resour 2015; 16:498-510. [DOI: 10.1111/1755-0998.12453] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/16/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Alvaro Sebastian
- Evolutionary Biology Group; Faculty of Biology; Adam Mickiewicz University; ul. Umultowska 89 61-614 Poznan Poland
| | - Magdalena Herdegen
- Evolutionary Biology Group; Faculty of Biology; Adam Mickiewicz University; ul. Umultowska 89 61-614 Poznan Poland
| | - Magdalena Migalska
- Evolutionary Biology Group; Faculty of Biology; Adam Mickiewicz University; ul. Umultowska 89 61-614 Poznan Poland
| | - Jacek Radwan
- Evolutionary Biology Group; Faculty of Biology; Adam Mickiewicz University; ul. Umultowska 89 61-614 Poznan Poland
| |
Collapse
|
21
|
Ferrandiz-Rovira M, Bigot T, Allainé D, Callait-Cardinal MP, Cohas A. Large-scale genotyping of highly polymorphic loci by next-generation sequencing: how to overcome the challenges to reliably genotype individuals? Heredity (Edinb) 2015; 114:485-93. [PMID: 25757407 DOI: 10.1038/hdy.2015.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
Studying the different roles of adaptive genes is still a challenge in evolutionary ecology and requires reliable genotyping of large numbers of individuals. Next-generation sequencing (NGS) techniques enable such large-scale sequencing, but stringent data processing is required. Here, we develop an easy to use methodology to process amplicon-based NGS data and we apply this methodology to reliably genotype four major histocompatibility complex (MHC) loci belonging to MHC class I and II of Alpine marmots (Marmota marmota). Our post-processing methodology allowed us to increase the number of retained reads. The quality of genotype assignment was further assessed using three independent validation procedures. A total of 3069 high-quality MHC genotypes were obtained at four MHC loci for 863 Alpine marmots with a genotype assignment error rate estimated as 0.21%. The proposed methodology could be applied to any genetic system and any organism, except when extensive copy-number variation occurs (that is, genes with a variable number of copies in the genotype of an individual). Our results highlight the potential of amplicon-based NGS techniques combined with adequate post-processing to obtain the large-scale highly reliable genotypes needed to understand the evolution of highly polymorphic functional genes.
Collapse
Affiliation(s)
- M Ferrandiz-Rovira
- 1] Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France [2] Université Lyon, VetAgro Sup Campus Vet, Marcy-L'Étoile, France
| | - T Bigot
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France
| | - D Allainé
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France
| | - M-P Callait-Cardinal
- 1] Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France [2] Université Lyon, VetAgro Sup Campus Vet, Marcy-L'Étoile, France
| | - A Cohas
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, CNRS, UMR5558, Université Lyon 1, F-69622, Villeurbanne, F-69000 Lyon, France
| |
Collapse
|
22
|
Kyle CJ, Rico Y, Castillo S, Srithayakumar V, Cullingham CI, White BN, Pond BA. Spatial patterns of neutral and functional genetic variations reveal patterns of local adaptation in raccoon (Procyon lotor) populations exposed to raccoon rabies. Mol Ecol 2014; 23:2287-98. [PMID: 24655158 DOI: 10.1111/mec.12726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022]
Abstract
Local adaptation is necessary for population survival and depends on the interplay between responses to selective forces and demographic processes that introduce or retain adaptive and maladaptive attributes. Host-parasite systems are dynamic, varying in space and time, where both host and parasites must adapt to their ever-changing environment in order to survive. We investigated patterns of local adaptation in raccoon populations with varying temporal exposure to the raccoon rabies virus (RRV). RRV infects approximately 85% of the population when epizootic and has been presumed to be completely lethal once contracted; however, disease challenge experiments and varying spatial patterns of RRV spread suggest some level of immunity may exist. We first assessed patterns of local adaptation in raccoon populations along the eastern seaboard of North America by contrasting spatial patterns of neutral (microsatellite loci) and functional, major histocompatibility complex (MHC) genetic diversity and structure. We explored variation of MHC allele frequencies in the light of temporal population exposure to RRV (0-60 years) and specific RRV strains in infected raccoons. Our results revealed high levels of MHC variation (66 DRB exon 2 alleles) and pronounced genetic structure relative to neutral microsatellite loci, indicative of local adaptation. We found a positive association linking MHC genetic diversity and temporal RRV exposure, but no association with susceptibility and resistance to RRV strains. These results have implications for landscape epidemiology studies seeking to predict the spread of RRV and present an example of how population demographics influence the degree to which populations adapt to local selective pressures.
Collapse
Affiliation(s)
- Christopher J Kyle
- Forensic Science Department, Trent University, Peterborough, ON, Canada, K9J 7B8; Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, ON, Canada, K9J 7B8
| | | | | | | | | | | | | |
Collapse
|
23
|
Lighten J, van Oosterhout C, Bentzen P. Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 2014; 23:3957-72. [DOI: 10.1111/mec.12843] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Jackie Lighten
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| | - Cock van Oosterhout
- School of Environmental Sciences; University of East Anglia; Norwich Research Park; Norwich UK
| | - Paul Bentzen
- Department of Biology; Marine Gene Probe Laboratory; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
24
|
A review of molecular approaches for investigating patterns of coevolution in marine host-parasite relationships. ADVANCES IN PARASITOLOGY 2014; 84:209-52. [PMID: 24480315 DOI: 10.1016/b978-0-12-800099-1.00004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Parasites and their relationships with hosts play a crucial role in the evolutionary pathways of every living organism. One method of investigating host-parasite systems is using a molecular approach. This is particularly important as analyses based solely on morphology or laboratory studies of parasites and their hosts do not take into account historical evolutionary interactions that can shape the distribution, abundance and population structure of parasites and their hosts. However, the predominant host-parasite coevolution literature has focused on terrestrial hosts and their parasites, and there still is a lack of studies in marine environments. Given that marine systems are generally more open than terrestrial ones, they provide fascinating opportunities for large-scale (as well as small-scale) geographic studies. Further, patterns and processes of genetic structuring and systematics are becoming more available across many different taxa (but especially fishes) in many marine systems, providing an excellent basis for examining whether parasites follow host population/species structure. In this chapter, we first highlight the factors and processes that challenge our ability to interpret evolutionary patterns of coevolution of hosts and their parasites in marine systems at different spatial, temporal and taxonomic scales. We then review the use of the most commonly utilized genetic markers in studying marine host-parasite systems. We give an overview and discuss which molecular methodologies resolve evolutionary relationships best and also discuss the applicability of new approaches, such as next-generation sequencing and studies utilizing functional markers to gain insights into more contemporary processes shaping host-parasite relationships.
Collapse
|
25
|
Lighten J, van Oosterhout C, Paterson IG, McMullan M, Bentzen P. Ultra-deep Illumina sequencing accurately identifies MHC class IIb alleles and provides evidence for copy number variation in the guppy (Poecilia reticulata). Mol Ecol Resour 2014; 14:753-67. [PMID: 24400817 DOI: 10.1111/1755-0998.12225] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 11/27/2022]
Abstract
We address the bioinformatic issue of accurately separating amplified genes of the major histocompatibility complex (MHC) from artefacts generated during high-throughput sequencing workflows. We fit observed ultra-deep sequencing depths (hundreds to thousands of sequences per amplicon) of allelic variants to expectations from genetic models of copy number variation (CNV). We provide a simple, accurate and repeatable method for genotyping multigene families, evaluating our method via analyses of 209 b of MHC class IIb exon 2 in guppies (Poecilia reticulata). Genotype repeatability for resequenced individuals (N = 49) was high (100%) within the same sequencing run. However, repeatability dropped to 83.7% between independent runs, either because of lower mean amplicon sequencing depth in the initial run or random PCR effects. This highlights the importance of fully independent replicates. Significant improvements in genotyping accuracy were made by greatly reducing type I genotyping error (i.e. accepting an artefact as a true allele), which may occur when using low-depth allele validation thresholds used by previous methods. Only a small amount (4.9%) of type II error (i.e. rejecting a genuine allele as an artefact) was detected through fully independent sequencing runs. We observed 1-6 alleles per individual, and evidence of sharing of alleles across loci. Variation in the total number of MHC class II loci among individuals, both among and within populations was also observed, and some genotypes appeared to be partially hemizygous; total allelic dosage added up to an odd number of allelic copies. Collectively, observations provide evidence of MHC CNV and its complex basis in natural populations.
Collapse
Affiliation(s)
- Jackie Lighten
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | | | | | | | | |
Collapse
|
26
|
Zigouris J, Schaefer JA, Fortin C, Kyle CJ. Phylogeography and post-glacial recolonization in wolverines (Gulo gulo) from across their circumpolar distribution. PLoS One 2013; 8:e83837. [PMID: 24386287 PMCID: PMC3875487 DOI: 10.1371/journal.pone.0083837] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.
Collapse
Affiliation(s)
- Joanna Zigouris
- Environmental and Life Sciences Gradate Program, Trent University, Peterborough, Ontario, Canada
| | | | | | - Christopher J. Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
27
|
Sommer S, Courtiol A, Mazzoni CJ. MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genomics 2013; 14:542. [PMID: 23937623 PMCID: PMC3750822 DOI: 10.1186/1471-2164-14-542] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/30/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is the most important genetic marker to study patterns of adaptive genetic variation determining pathogen resistance and associated life history decisions. It is used in many different research fields ranging from human medical, molecular evolutionary to functional biodiversity studies. Correct assessment of the individual allelic diversity pattern and the underlying structural sequence variation is the basic requirement to address the functional importance of MHC variability. Next-generation sequencing (NGS) technologies are likely to replace traditional genotyping methods to a great extent in the near future but first empirical studies strongly indicate the need for a rigorous quality control pipeline. Strict approaches for data validation and allele calling to distinguish true alleles from artefacts are required. RESULTS We developed the analytical methodology and validated a data processing procedure which can be applied to any organism. It allows the separation of true alleles from artefacts and the evaluation of genotyping reliability, which in addition to artefacts considers for the first time the possibility of allelic dropout due to unbalanced amplification efficiencies across alleles. Finally, we developed a method to assess the confidence level per genotype a-posteriori, which helps to decide which alleles and individuals should be included in any further downstream analyses. The latter method could also be used for optimizing experiment designs in the future. CONCLUSIONS Combining our workflow with the study of amplification efficiency offers the chance for researchers to evaluate enormous amounts of NGS-generated data in great detail, improving confidence over the downstream analyses and subsequent applications.
Collapse
Affiliation(s)
- Simone Sommer
- Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, D-10315 Berlin, Germany
| | - Alexandre Courtiol
- Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, D-10315 Berlin, Germany
| | - Camila J Mazzoni
- Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, D-10315 Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Koenigin-Luise-Straße 6-8, D-14195 Berlin, Germany
| |
Collapse
|
28
|
Aguilar JRD, Schut E, Merino S, Martínez J, Komdeur J, Westerdahl H. MHC class II B diversity in blue tits: a preliminary study. Ecol Evol 2013; 3:1878-89. [PMID: 23919136 PMCID: PMC3728931 DOI: 10.1002/ece3.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.
Collapse
Affiliation(s)
- Juan Rivero-de Aguilar
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Elske Schut
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Javier Martínez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de AlcaláAlcalá de Henares, E-28871, Madrid, Spain
| | - Jan Komdeur
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Ecology Building, Lund UniversitySölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
29
|
Winternitz JC, Wares JP. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents. Ecol Evol 2013; 3:1552-68. [PMID: 23789067 PMCID: PMC3686191 DOI: 10.1002/ece3.567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 11/07/2022] Open
Abstract
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high-amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model-averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.
Collapse
|