1
|
David G, Bertolotti A, Layer R, Scofield D, Hayward A, Baril T, Burnett HA, Gudmunds E, Jensen H, Husby A. Calling Structural Variants with Confidence from Short-Read Data in Wild Bird Populations. Genome Biol Evol 2024; 16:evae049. [PMID: 38489588 PMCID: PMC11018544 DOI: 10.1093/gbe/evae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Comprehensive characterization of structural variation in natural populations has only become feasible in the last decade. To investigate the population genomic nature of structural variation, reproducible and high-confidence structural variation callsets are first required. We created a population-scale reference of the genome-wide landscape of structural variation across 33 Nordic house sparrows (Passer domesticus). To produce a consensus callset across all samples using short-read data, we compare heuristic-based quality filtering and visual curation (Samplot/PlotCritic and Samplot-ML) approaches. We demonstrate that curation of structural variants is important for reducing putative false positives and that the time invested in this step outweighs the potential costs of analyzing short-read-discovered structural variation data sets that include many potential false positives. We find that even a lenient manual curation strategy (e.g. applied by a single curator) can reduce the proportion of putative false positives by up to 80%, thus enriching the proportion of high-confidence variants. Crucially, in applying a lenient manual curation strategy with a single curator, nearly all (>99%) variants rejected as putative false positives were also classified as such by a more stringent curation strategy using three additional curators. Furthermore, variants rejected by manual curation failed to reflect the expected population structure from SNPs, whereas variants passing curation did. Combining heuristic-based quality filtering with rapid manual curation of structural variants in short-read data can therefore become a time- and cost-effective first step for functional and population genomic studies requiring high-confidence structural variation callsets.
Collapse
Affiliation(s)
- Gabriel David
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Ryan Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Douglas Scofield
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Hamish A Burnett
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erik Gudmunds
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arild Husby
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Targeted genome-wide SNP genotyping in feral horses using non-invasive fecal swabs. CONSERV GENET RESOUR 2022; 14:203-213. [PMID: 35673611 PMCID: PMC9162989 DOI: 10.1007/s12686-022-01259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
The development of high-throughput sequencing has prompted a transition in wildlife genetics from using microsatellites toward sets of single nucleotide polymorphisms (SNPs). However, genotyping large numbers of targeted SNPs using non-invasive samples remains challenging due to relatively large DNA input requirements. Recently, target enrichment has emerged as a promising approach requiring little template DNA. We assessed the efficacy of Tecan Genomics’ Allegro Targeted Genotyping (ATG) for generating genome-wide SNP data in feral horses using DNA isolated from fecal swabs. Total and host-specific DNA were quantified for 989 samples collected as part of a long-term individual-based study of feral horses on Sable Island, Nova Scotia, Canada, using dsDNA fluorescence and a host-specific qPCR assay, respectively. Forty-eight samples representing 44 individuals containing at least 10 ng of host DNA (ATG’s recommended minimum input) were genotyped using a custom multiplex panel targeting 279 SNPs. Genotyping accuracy and consistency were assessed by contrasting ATG genotypes with those obtained from the same individuals with SNP microarrays, and from multiple samples from the same horse, respectively. 62% of swabs yielded the minimum recommended amount of host DNA for ATG. Ignoring samples that failed to amplify, ATG recovered an average of 88.8% targeted sites per sample, while genotype concordance between ATG and SNP microarrays was 98.5%. The repeatability of genotypes from the same individual approached unity with an average of 99.9%. This study demonstrates the suitability of ATG for genome-wide, non-invasive targeted SNP genotyping, and will facilitate further ecological and conservation genetics research in equids and related species.
Collapse
|
4
|
Lee KD, Millar CD, Brekke P, Whibley A, Ewen JG, Hingston M, Zhu A, Santure AW. The design and application of a 50 K SNP chip for a threatened Aotearoa New Zealand passerine, the hihi. Mol Ecol Resour 2021; 22:415-429. [PMID: 34323011 DOI: 10.1111/1755-0998.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing has transformed the fields of ecological and evolutionary genetics by allowing for cost-effective identification of genome-wide variation. Single nucleotide polymorphism (SNP) arrays, or "SNP chips", enable very large numbers of individuals to be consistently genotyped at a selected set of these identified markers, and also offer the advantage of being able to analyse samples of variable DNA quality. We used reduced representation restriction-aided digest sequencing (RAD-seq) of 31 birds of the threatened hihi (Notiomystis cincta; stitchbird) and low-coverage whole genome sequencing (WGS) of 10 of these birds to develop an Affymetrix 50 K SNP chip. We overcame the limitations of having no hihi reference genome and a low quantity of sequence data by separate and pooled de novo assembly of each of the 10 WGS birds. Reads from all individuals were mapped back to these de novo assemblies to identify SNPs. A subset of RAD-seq and WGS SNPs were selected for inclusion on the chip, prioritising SNPs with the highest quality scores whose flanking sequence uniquely aligned to the zebra finch (Taeniopygia guttata) genome. Of the 58,466 SNPs manufactured on the chip, 72% passed filtering metrics and were polymorphic. By genotyping 1,536 hihi on the array, we found that SNPs detected in multiple assemblies were more likely to successfully genotype, representing a cost-effective approach to identify SNPs for genotyping. Here, we demonstrate the utility of the SNP chip by describing the high rates of linkage disequilibrium in the hihi genome, reflecting the history of population bottlenecks in the species.
Collapse
Affiliation(s)
- Kate D Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Craig D Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | - Melanie Hingston
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Amy Zhu
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
An 85K SNP Array Uncovers Inbreeding and Cryptic Relatedness in an Antarctic Fur Seal Breeding Colony. G3-GENES GENOMES GENETICS 2020; 10:2787-2799. [PMID: 32540866 PMCID: PMC7407454 DOI: 10.1534/g3.120.401268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High density single nucleotide polymorphism (SNP) arrays allow large numbers of individuals to be rapidly and cost-effectively genotyped at large numbers of genetic markers. However, despite being widely used in studies of humans and domesticated plants and animals, SNP arrays are lacking for most wild organisms. We developed a custom 85K Affymetrix Axiom array for an intensively studied pinniped, the Antarctic fur seal (Arctocephalus gazella). SNPs were discovered from a combination of genomic and transcriptomic resources and filtered according to strict criteria. Out of a total of 85,359 SNPs tiled on the array, 75,601 (88.6%) successfully converted and were polymorphic in 270 animals from a breeding colony at Bird Island in South Georgia. Evidence was found for inbreeding, with three genomic inbreeding coefficients being strongly intercorrelated and the proportion of the genome in runs of homozygosity being non-zero in all individuals. Furthermore, analysis of genomic relatedness coefficients identified previously unknown first-degree relatives and multiple second-degree relatives among a sample of ostensibly unrelated individuals. Such “cryptic relatedness” within fur seal breeding colonies may increase the likelihood of consanguineous matings and could therefore have implications for understanding fitness variation and mate choice. Finally, we demonstrate the cross-amplification potential of the array in three related pinniped species. Overall, our SNP array will facilitate future studies of Antarctic fur seals and has the potential to serve as a more general resource for the wider pinniped research community.
Collapse
|
6
|
The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity (Edinb) 2020; 125:269-280. [PMID: 32753664 PMCID: PMC7553915 DOI: 10.1038/s41437-020-0348-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022] Open
Abstract
Inference of genetic clusters is a key aim of population genetics, sparking development of numerous analytical methods. Within these, there is a conceptual divide between finding de novo structure versus assessment of a priori groups. Recently developed, Discriminant Analysis of Principal Components (DAPC), combines discriminant analysis (DA) with principal component (PC) analysis. When applying DAPC, the groups used in the DA (specified a priori or described de novo) need to be carefully assessed. While DAPC has rapidly become a core technique, the sensitivity of the method to misspecification of groups and how it is being empirically applied, are unknown. To address this, we conducted a simulation study examining the influence of a priori versus de novo group designations, and a literature review of how DAPC is being applied. We found that with a priori groupings, distance between genetic clusters reflected underlying FST. However, when migration rates were high and groups were described de novo there was considerable inaccuracy, both in terms of the number of genetic clusters suggested and placement of individuals into those clusters. Nearly all (90.1%) of 224 studies surveyed used DAPC to find de novo clusters, and for the majority (62.5%) the stated goal matched the results. However, most studies (52.3%) omit key run parameters, preventing repeatability and transparency. Therefore, we present recommendations for standard reporting of parameters used in DAPC analyses. The influence of groupings in genetic clustering is not unique to DAPC, and researchers need to consider their goal and which methods will be most appropriate.
Collapse
|
7
|
Hanson HE, Mathews NS, Hauber ME, Martin LB. The house sparrow in the service of basic and applied biology. eLife 2020; 9:e52803. [PMID: 32343224 PMCID: PMC7189751 DOI: 10.7554/elife.52803] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
From the northernmost tip of Scandinavia to the southernmost corner of Patagonia, and across six continents, house sparrows (Passer domesticus) inhabit most human-modified habitats of the globe. With over 7,000 articles published, the species has become a workhorse for not only the study of self-urbanized wildlife, but also for understanding life history and body size evolution, sexual selection and many other biological phenomena. Traditionally, house sparrows were studied for their adaptations to local biotic and climatic conditions, but more recently, the species has come to serve as a focus for studies seeking to reveal the genomic, epigenetic and physiological underpinnings of success among invasive vertebrate species. Here, we review the natural history of house sparrows, highlight what the study of these birds has meant to bioscience generally, and describe the many resources available for future work on this species.
Collapse
Affiliation(s)
- Haley E Hanson
- Global and Planetary Health, University of South FloridaTampaUnited States
| | - Noreen S Mathews
- Global and Planetary Health, University of South FloridaTampaUnited States
| | - Mark E Hauber
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Lynn B Martin
- Global and Planetary Health, University of South FloridaTampaUnited States
| |
Collapse
|
8
|
Abstract
AbstractTranslocation of conspecific individuals to reduce extinction risk of small, isolated populations and prevent genetic depletion is a powerful tool in conservation biology. An important question is how the translocated individuals influence the long-term genetic composition of the recipient population. Here, we experimentally reinforced a house sparrow (Passer domesticus) population, and examined the impact of this translocation on allele frequencies, levels of heterozygosity and genetic differentiation over six cohorts. We found no permanent increase in the mean number of alleles across loci or levels of observed heterozygosity, but a few alleles private to the translocated individuals remained in the population and we found a short-term increase in heterozygosity. Consequently, genetic differentiation of the recipient population compared to the genetic composition prior to reinforcement was small. The limited genetic impact was due to combined effects of a small probability of establishment and low mating success for the translocated individuals, together with increased genetic drift in the recipient population. Our findings emphasize the importance of selection and genetic drift as forces that may decrease the genetic contribution of reinforcement, especially in small populations. Conservation managers should aim to improve habitat quality in the recipient population to reduce genetic drift following translocation and thereby avoid the need for continued reinforcement. Furthermore, by facilitating establishment success and selecting individuals expected to have high mating success, possibly indicated by sexually selected traits, genetic contribution of released individuals is increased which in turn will decrease reproductive skew and genetic drift.
Collapse
|
9
|
Hagen IJ, Lien S, Billing AM, Elgvin TO, Trier C, Niskanen AK, Tarka M, Slate J, Sætre G, Jensen H. A genome‐wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome. Mol Ecol Resour 2020; 20:544-559. [DOI: 10.1111/1755-0998.13134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Ingerid J. Hagen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics Department of Animal and Aquacultural Sciences Faculty of Biosciences Norwegian University of Life Sciences Ås Norway
| | - Anna M. Billing
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tore O. Elgvin
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Cassandra Trier
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Maja Tarka
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Department of Biology Lund University Lund Sweden
| | - Jon Slate
- Department of Animal and Plant Sciences University of Sheffield Western Bank Sheffield UK
| | - Glenn‐Peter Sætre
- Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo Oslo Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
10
|
Minias P, Dunn PO, Whittingham LA, Johnson JA, Oyler-McCance SJ. Evaluation of a Chicken 600K SNP genotyping array in non-model species of grouse. Sci Rep 2019; 9:6407. [PMID: 31015535 PMCID: PMC6478925 DOI: 10.1038/s41598-019-42885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
The use of single nucleotide polymorphism (SNP) arrays to generate large SNP datasets for comparison purposes have recently become an attractive alternative to other genotyping methods. Although most SNP arrays were originally developed for domestic organisms, they can be effectively applied to wild relatives to obtain large panels of SNPs. In this study, we tested the cross-species application of the Affymetrix 600K Chicken SNP array in five species of North American prairie grouse (Centrocercus and Tympanuchus genera). Two individuals were genotyped per species for a total of ten samples. A high proportion (91%) of the total 580 961 SNPs were genotyped in at least one individual (73–76% SNPs genotyped per species). Principal component analysis with autosomal SNPs separated the two genera, but failed to clearly distinguish species within genera. Gene ontology analysis identified a set of genes related to morphogenesis and development (including genes involved in feather development), which may be primarily responsible for large phenotypic differences between Centrocercus and Tympanuchus grouse. Our study provided evidence for successful cross-species application of the chicken SNP array in grouse which diverged ca. 37 mya from the chicken lineage. As far as we are aware, this is the first reported application of a SNP array in non-passerine birds, and it demonstrates the feasibility of using commercial SNP arrays in research on non-model bird species.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeff A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | | |
Collapse
|
11
|
Matsushima W, Brink K, Schroeder J, Miska EA, Gapp K. Mature sperm small-RNA profile in the sparrow: implications for transgenerational effects of age on fitness. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz007. [PMID: 31139435 PMCID: PMC6527922 DOI: 10.1093/eep/dvz007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/16/2019] [Accepted: 04/09/2019] [Indexed: 05/13/2023]
Abstract
Mammalian sperm RNA has recently received a lot of interest due to its involvement in epigenetic germline inheritance. Studies of epigenetic germline inheritance have shown that environmental exposures can induce effects in the offspring without altering the DNA sequence of germ cells. Most mechanistic studies were conducted in laboratory rodents and C.elegans while observational studies confirm the phenotypic phenomenon in wild populations of humans and other species including birds. Prominently, paternal age in house sparrows affects offspring fitness, yet the mechanism is unknown. This study provides a first reference of house sparrow sperm small RNA as an attempt to uncover their role in the transmission of the effects of paternal age on the offspring. In this small-scale pilot, we found no statistically significant differences between miRNA and tRNA fragments in aged and prime sparrow sperm. These results indicate a role of other epigenetic information carriers, such as distinct RNA classes, RNA modifications, DNA methylation and retained histones, and a clear necessity of future studies in wild populations.
Collapse
Affiliation(s)
- Wayo Matsushima
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Human Genetics Programme, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Kristiana Brink
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Human Genetics Programme, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Katharina Gapp
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Human Genetics Programme, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
12
|
Lundregan SL, Hagen IJ, Gohli J, Niskanen AK, Kemppainen P, Ringsby TH, Kvalnes T, Pärn H, Rønning B, Holand H, Ranke PS, Båtnes AS, Selvik LK, Lien S, Saether BE, Husby A, Jensen H. Inferences of genetic architecture of bill morphology in house sparrow using a high-density SNP array point to a polygenic basis. Mol Ecol 2018; 27:3498-3514. [DOI: 10.1111/mec.14811] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Ingerid J. Hagen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Norwegian Institute for Nature Research; Trondheim Norway
| | - Jostein Gohli
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
| | - Alina K. Niskanen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Department of Ecology and Genetics; University of Oulu; Oulu Finland
| | - Petri Kemppainen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
| | - Thor Harald Ringsby
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Thomas Kvalnes
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Henrik Pärn
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Bernt Rønning
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Håkon Holand
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Peter S. Ranke
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Anna S. Båtnes
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Linn-Karina Selvik
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics; Department of Animal and Aquacultural Sciences; Faculty of Life Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Bernt-Erik Saether
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| | - Arild Husby
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Organismal and Evolutionary Biology Research Programme; University of Helsinki; Helsinki Finland
- Department of Ecology and Genetics; EBC; Uppsala University; Uppsala Sweden
| | - Henrik Jensen
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
13
|
Phenotypic divergence despite low genetic differentiation in house sparrow populations. Sci Rep 2018; 8:394. [PMID: 29321524 PMCID: PMC5762629 DOI: 10.1038/s41598-017-18718-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/17/2017] [Indexed: 11/09/2022] Open
Abstract
Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST) was lower in comparison to phenotypic variation (P ST), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.
Collapse
|
14
|
Andrew SC, Awasthy M, Bolton PE, Rollins LA, Nakagawa S, Griffith SC. The genetic structure of the introduced house sparrow populations in Australia and New Zealand is consistent with historical descriptions of multiple introductions to each country. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1643-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Kvalnes T, Ringsby TH, Jensen H, Hagen IJ, Rønning B, Pärn H, Holand H, Engen S, Saether BE. Reversal of response to artificial selection on body size in a wild passerine. Evolution 2017; 71:2062-2079. [DOI: 10.1111/evo.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Ingerid Julie Hagen
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Steinar Engen
- Centre for Biodiversity Dynamics (CBD); Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Department of Biology; Norwegian University of Science and Technology (NTNU); NO-7491 Trondheim Norway
| |
Collapse
|
16
|
Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A. Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity (Edinb) 2017; 119:197-205. [PMID: 28613280 DOI: 10.1038/hdy.2017.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/08/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023] Open
Abstract
Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689 SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house sparrows and explained 1.2% of phenotypic variation (VP), and one SNP on chromosome 4 was associated with tarsus length in collared flycatchers (3% of VP). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a polygenic basis for morphological traits.
Collapse
Affiliation(s)
- C N S Silva
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - S E McFarlane
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - I J Hagen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - L Rönnegård
- School of Technology and Business Studies, Dalarna University, Falun, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A M Billing
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - T Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - P Kemppainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - B Rønning
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - T H Ringsby
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - B-E Sæther
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - H Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - H Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Elgvin TO, Trier CN, Tørresen OK, Hagen IJ, Lien S, Nederbragt AJ, Ravinet M, Jensen H, Sætre GP. The genomic mosaicism of hybrid speciation. SCIENCE ADVANCES 2017; 3:e1602996. [PMID: 28630911 PMCID: PMC5470830 DOI: 10.1126/sciadv.1602996] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/26/2017] [Indexed: 05/21/2023]
Abstract
Hybridization is widespread in nature and, in some instances, can result in the formation of a new hybrid species. We investigate the genetic foundation of this poorly understood process through whole-genome analysis of the hybrid Italian sparrow and its progenitors. We find overall balanced yet heterogeneous levels of contribution from each parent species throughout the hybrid genome and identify areas of novel divergence in the hybrid species exhibiting signals consistent with balancing selection. High-divergence areas are disproportionately located on the Z chromosome and overrepresented in gene networks relating to key traits separating the focal species, which are likely involved in reproductive barriers and/or species-specific adaptations. Of special interest are genes and functional groups known to affect body patterning, beak morphology, and the immune system, which are important features of diversification and fitness. We show that a combination of mosaic parental inheritance and novel divergence within the hybrid lineage has facilitated the origin and maintenance of an avian hybrid species.
Collapse
Affiliation(s)
- Tore O. Elgvin
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Cassandra N. Trier
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Ole K. Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Ingerid J. Hagen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty for Biosciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Alexander J. Nederbragt
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Mark Ravinet
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Glenn-Peter Sætre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
- Corresponding author.
| |
Collapse
|
18
|
Kemppainen P, Rønning B, Kvalnes T, Hagen IJ, Ringsby TH, Billing AM, Pärn H, Lien S, Husby A, Saether BE, Jensen H. Controlling for P
-value inflation in allele frequency change in experimental evolution and artificial selection experiments. Mol Ecol Resour 2016; 17:770-782. [DOI: 10.1111/1755-0998.12631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Petri Kemppainen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Ingerid J. Hagen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Anna M. Billing
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Sigbjørn Lien
- CIGENE; Norwegian University of Life Sciences; P.O. Box 5003 NO-1432 Ås Norway
| | - Arild Husby
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) 00014 Helsinki Finland
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics; Department of Biology; Norwegian University of Science and Technology; Høgskoleringen 5, Realfagbygget E1-126 NO-7491 Trondheim Norway
| |
Collapse
|
19
|
Humble E, Thorne MAS, Forcada J, Hoffman JI. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success. BMC Res Notes 2016; 9:418. [PMID: 27562535 PMCID: PMC5000416 DOI: 10.1186/s13104-016-2209-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/06/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. RESULTS Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. CONCLUSIONS Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be explored in future studies of non-model organisms.
Collapse
Affiliation(s)
- Emily Humble
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501, Bielefeld, Germany. .,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK.
| | - Michael A S Thorne
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Joseph I Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
| |
Collapse
|
20
|
Holand AM, Steinsland I. Is my study system good enough? A case study for identifying maternal effects. Ecol Evol 2016; 6:3486-3495. [PMID: 27127611 PMCID: PMC4842024 DOI: 10.1002/ece3.2124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022] Open
Abstract
In this paper, we demonstrate how simulation studies can be used to answer questions about identifiability and consequences of omitting effects from a model. The methodology is presented through a case study where identifiability of genetic and/or individual (environmental) maternal effects is explored. Our study system is a wild house sparrow (Passer domesticus) population with known pedigree. We fit pedigree‐based (generalized) linear mixed models (animal models), with and without additive genetic and individual maternal effects, and use deviance information criterion (DIC) for choosing between these models. Pedigree and R‐code for simulations are available. For this study system, the simulation studies show that only large maternal effects can be identified. The genetic maternal effect (and similar for individual maternal effect) has to be at least half of the total genetic variance to be identified. The consequences of omitting a maternal effect when it is present are explored. Our results indicate that the total (genetic and individual) variance are accounted for. When an individual (environmental) maternal effect is omitted from the model, this only influences the estimated (direct) individual (environmental) variance. When a genetic maternal effect is omitted from the model, both (direct) genetic and (direct) individual variance estimates are overestimated.
Collapse
Affiliation(s)
- Anna Marie Holand
- Department of Mathematical Sciences Centre for Biodiversity Dynamics NTNU NO-7491 Trondheim Norway
| | - Ingelin Steinsland
- Department of Mathematical Sciences Centre for Biodiversity Dynamics NTNU NO-7491 Trondheim Norway
| |
Collapse
|
21
|
Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MAS, Hoffmann M, Wolf JBW, Hoffman JI. A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. Mol Ecol Resour 2016; 16:909-21. [DOI: 10.1111/1755-0998.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
Affiliation(s)
- E. Humble
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - A. Martinez-Barrio
- Science of Life Laboratories and Department of Cell and Molecular Biology; Uppsala University; Husargatan 3 75124 Uppsala Sweden
| | - J. Forcada
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - P. N. Trathan
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. A. S. Thorne
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. Hoffmann
- Max Planck Institute for Developmental Biology; Spemannstrasse 35 72076 Tübingen Germany
| | - J. B. W. Wolf
- Science of Life Laboratories and Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - J. I. Hoffman
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
22
|
Ringsby TH, Jensen H, Pärn H, Kvalnes T, Boner W, Gillespie R, Holand H, Hagen IJ, Rønning B, Sæther BE, Monaghan P. On being the right size: increased body size is associated with reduced telomere length under natural conditions. Proc Biol Sci 2015; 282:20152331. [PMID: 26631569 PMCID: PMC4685786 DOI: 10.1098/rspb.2015.2331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/03/2015] [Indexed: 01/21/2023] Open
Abstract
Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.
Collapse
Affiliation(s)
- Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Pärn
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Robert Gillespie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Håkon Holand
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingerid Julie Hagen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Edwards SV, Shultz AJ, Campbell-Staton SC. Next-generation sequencing and the expanding domain of phylogeography. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a2.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Shane C. Campbell-Staton
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| |
Collapse
|
24
|
Souche EL, Hellemans B, Babbucci M, MacAoidh E, Guinand B, Bargelloni L, Chistiakov DA, Patarnello T, Bonhomme F, Martinsohn JT, Volckaert FAM. Range-wide population structure of European sea bassDicentrarchus labrax. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12572] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Erika L. Souche
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
- Center of Human Genetics; University of Leuven; O&N I Herestraat 49 - PO Box 602 B-3000 Leuven Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
| | - Massimiliano Babbucci
- Dipartimento di Biomedicina Comparata e Alimentazione; Università di Padova; I-35124 Padova Italy
| | - Eoin MacAoidh
- Joint Research Centre; Institute for the Protection and Security of the Citizen; European Commission; Maritime Affairs Unit (G.03) - TP051 (Bldg. 51), Via Enrico Fermi nr. 2749 I-21027 Ispra Italy
| | - Bruno Guinand
- Institut des Sciences de l'Evolution de Montpellier; Université de Montpellier; UMR CNRS 5554, Place Eugène Bataillon - cc63 F-34095 Montpellier Cedex 5 France
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione; Università di Padova; I-35124 Padova Italy
| | - Dimitry A. Chistiakov
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University Research Center; Ulitsa Ostrovityanova 1 117997 Moscow Russia
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione; Università di Padova; I-35124 Padova Italy
| | - François Bonhomme
- Institut des Sciences de l'Evolution de Montpellier; Université de Montpellier; UMR CNRS 5554, Place Eugène Bataillon - cc63 F-34095 Montpellier Cedex 5 France
| | - Jann T. Martinsohn
- Joint Research Centre; Institute for the Protection and Security of the Citizen; European Commission; Maritime Affairs Unit (G.03) - TP051 (Bldg. 51), Via Enrico Fermi nr. 2749 I-21027 Ispra Italy
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 - PO Box 2439 B-3000 Leuven Belgium
- Department of Biological and Environmental Sciences; CeMEB; University of Gothenburg; Box 463 SE-405 30 Gothenburg Sweden
| |
Collapse
|
25
|
Bérénos C, Ellis PA, Pilkington JG, Lee SH, Gratten J, Pemberton JM. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol Ecol 2015; 24:1810-30. [PMID: 25753777 PMCID: PMC4405094 DOI: 10.1111/mec.13146] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/15/2023]
Abstract
Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free-living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations.
Collapse
Affiliation(s)
| | | | | | - S. Hong Lee
- Queensland Brain InstituteThe University of QueenslandBrisbaneQld4072Australia
| | - Jake Gratten
- Queensland Brain InstituteThe University of QueenslandBrisbaneQld4072Australia
| | | |
Collapse
|
26
|
Thirty years of tick population genetics: A comprehensive review. INFECTION GENETICS AND EVOLUTION 2015; 29:164-79. [DOI: 10.1016/j.meegid.2014.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
|
27
|
Malenfant RM, Coltman DW, Davis CS. Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour 2014; 15:587-600. [DOI: 10.1111/1755-0998.12327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- René M. Malenfant
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - David W. Coltman
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - Corey S. Davis
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| |
Collapse
|
28
|
Kawakami T, Backström N, Burri R, Husby A, Olason P, Rice AM, Ålund M, Qvarnström A, Ellegren H. Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array. Mol Ecol Resour 2014; 14:1248-60. [PMID: 24784959 PMCID: PMC4368375 DOI: 10.1111/1755-0998.12270] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
Abstract
With the access to draft genome sequence assemblies and whole-genome resequencing data from population samples, molecular ecology studies will be able to take truly genome-wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single-nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10-fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later-generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ekblom R, Wennekes P, Horsburgh GJ, Burke T. Characterization of the house sparrow (Passer domesticus) transcriptome: a resource for molecular ecology and immunogenetics. Mol Ecol Resour 2014; 14:636-46. [PMID: 24345231 DOI: 10.1111/1755-0998.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-75236, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
30
|
Bourgeois YXC, Lhuillier E, Cézard T, Bertrand JAM, Delahaie B, Cornuault J, Duval T, Bouchez O, Milá B, Thébaud C. Mass production of
SNP
markers in a nonmodel passerine bird through
RAD
sequencing and contig mapping to the zebra finch genome. Mol Ecol Resour 2013; 13:899-907. [DOI: 10.1111/1755-0998.12137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Yann X. C. Bourgeois
- Laboratoire Évolution et Diversité Biologique UMR 5174 CNRS ‐ Université Paul Sabatier – ENFA 118 route de Narbonne, Bâtiment 4R1 F‐31062 Toulouse Cedex 9 France
| | - Emeline Lhuillier
- INRA UAR 1209 Département de Génétique Animale INRA Auzeville F‐31326 Castanet‐Tolosan France
- GeT‐PlaGe Genotoul INRA Auzeville F‐31326 Castanet‐Tolosan France
| | - Timothée Cézard
- The GenePool Ashworth Laboratories The University of Edinburgh The King's Building Edinburgh EH9 3JT UK
| | - Joris A. M. Bertrand
- Laboratoire Évolution et Diversité Biologique UMR 5174 CNRS ‐ Université Paul Sabatier – ENFA 118 route de Narbonne, Bâtiment 4R1 F‐31062 Toulouse Cedex 9 France
| | - Boris Delahaie
- Laboratoire Évolution et Diversité Biologique UMR 5174 CNRS ‐ Université Paul Sabatier – ENFA 118 route de Narbonne, Bâtiment 4R1 F‐31062 Toulouse Cedex 9 France
| | - Josselin Cornuault
- Laboratoire Évolution et Diversité Biologique UMR 5174 CNRS ‐ Université Paul Sabatier – ENFA 118 route de Narbonne, Bâtiment 4R1 F‐31062 Toulouse Cedex 9 France
| | - Thomas Duval
- Société Calédonienne d'Ornithologie Nord BP 236 F‐98822 Poindimié Nouvelle Calédonie France
| | - Olivier Bouchez
- GeT‐PlaGe Genotoul INRA Auzeville F‐31326 Castanet‐Tolosan France
- INRA UMR 444 Laboratoire de Génétique Cellulaire INRA Auzeville F‐31326 Castanet‐Tolosan France
| | - Borja Milá
- Museo Nacional de Ciencias Naturales CSIC José Gutiérrez Abascal 2 Madrid 28006 Spain
| | - Christophe Thébaud
- Laboratoire Évolution et Diversité Biologique UMR 5174 CNRS ‐ Université Paul Sabatier – ENFA 118 route de Narbonne, Bâtiment 4R1 F‐31062 Toulouse Cedex 9 France
| |
Collapse
|