1
|
Fischer D, Tapio M, Bitz O, Iso-Touru T, Kause A, Tapio I. Fine-tuning GBS data with comparison of reference and mock genome approaches for advancing genomic selection in less studied farmed species. BMC Genomics 2025; 26:111. [PMID: 39910437 DOI: 10.1186/s12864-025-11296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. The application of the optimization was demonstrated on non-model European whitefish data. RESULTS DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed that using three samples outperformed other building strategies with single or very large number of samples. Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock reference were obtained and showed comparable results with the ones called using an existing reference genome. Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish data repeatability did not exceed earlier observations. CONCLUSIONS The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This user-friendly solution facilitates genotyping for both model and non-model species.
Collapse
Affiliation(s)
- Daniel Fischer
- Applied Statistical Methods, Natural Resources, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.
| | - Miika Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Oliver Bitz
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Terhi Iso-Touru
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Antti Kause
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| |
Collapse
|
2
|
Fraslin C, Robledo D, Kause A, Houston RD. Potential of low-density genotype imputation for cost-efficient genomic selection for resistance to Flavobacterium columnare in rainbow trout (Oncorhynchus mykiss). Genet Sel Evol 2023; 55:59. [PMID: 37580697 PMCID: PMC10424455 DOI: 10.1186/s12711-023-00832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Flavobacterium columnare is the pathogen agent of columnaris disease, a major emerging disease that affects rainbow trout aquaculture. Selective breeding using genomic selection has potential to achieve cumulative improvement of the host resistance. However, genomic selection is expensive partly because of the cost of genotyping large numbers of animals using high-density single nucleotide polymorphism (SNP) arrays. The objective of this study was to assess the efficiency of genomic selection for resistance to F. columnare using in silico low-density (LD) panels combined with imputation. After a natural outbreak of columnaris disease, 2874 challenged fish and 469 fish from the parental generation (n = 81 parents) were genotyped with 27,907 SNPs. The efficiency of genomic prediction using LD panels was assessed for 10 panels of different densities, which were created in silico using two sampling methods, random and equally spaced. All LD panels were also imputed to the full 28K HD panel using the parental generation as the reference population, and genomic predictions were re-evaluated. The potential of prioritizing SNPs that are associated with resistance to F. columnare was also tested for the six lower-density panels. RESULTS The accuracies of both imputation and genomic predictions were similar with random and equally-spaced sampling of SNPs. Using LD panels of at least 3000 SNPs or lower-density panels (as low as 300 SNPs) combined with imputation resulted in accuracies that were comparable to those of the 28K HD panel and were 11% higher than the pedigree-based predictions. CONCLUSIONS Compared to using the commercial HD panel, LD panels combined with imputation may provide a more affordable approach to genomic prediction of breeding values, which supports a more widespread adoption of genomic selection in aquaculture breeding programmes.
Collapse
Affiliation(s)
- Clémence Fraslin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Antti Kause
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
| | - Ross D Houston
- Benchmark Genetics, Edinburgh Technopole, 1 Pioneer Building, Penicuik, EH26 0GB, UK
| |
Collapse
|
3
|
Currey MC, Walker C, Bassham S, Healey HM, Beck EA, Cresko WA. Genome-wide analysis facilitates estimation of the amount of male contribution in meiotic gynogenetic three-spined stickleback (Gasterosteus aculeatus). JOURNAL OF FISH BIOLOGY 2023; 102:844-855. [PMID: 36647901 DOI: 10.1111/jfb.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Gynogenetic embryos - those inheriting only maternal DNA - can be experimentally created by fertilizing eggs with radiation-treated sperm containing inactivated paternal chromosomes. Diploidy in the zygotes can be maintained through prevention of the second meiosis or restored by preventing the first mitosis after the maternal chromosome complement has been replicated. These gynogenetic organisms are useful in many fields including aquaculture, evolutionary biology and genomics. Although gynogenetic organisms have been created in numerous species, the completeness of uni-parental inheritance has often been assumed rather than thoroughly quantified across the genome. Instead, when tests of uni-parental inheritance occur, they typically rely on well-studied genetically determined phenotypes that represent a very small sub-set of the genome. Only assessing small genomic regions for paternal inheritance leaves the question of whether some paternal contributions to offspring might still have occurred. In this study, the authors quantify the efficacy of creating gynogenetic diploid three-spined stickleback fish (Gasterosteus aculeatus). To this end, the authors mirrored previous assessments of paternal contribution using well-studied genetically determined phenotypes including sex and genetically dominant morphological traits but expanded on previous studies using dense restriction site-associated DNA sequencing (RAD-seq) markers in parents and offspring to assess paternal inheritance genome-wide. In the gynogenetic diploids, the authors found no male genotypes underlying their phenotypes of interest - sex and dominant phenotypic traits. Using genome-wide assessments of paternal contribution, nevertheless, the authors found evidence of a small, yet potentially important, amount of paternally "leaked" genetic material. The application of this genome-wide approach identifies the need for more widespread assessment of paternal contributions to gynogenetic animals and promises benefits for many aspects of aquaculture, evolutionary biology and genomics.
Collapse
Affiliation(s)
- Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Charline Walker
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Hope M Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Emily A Beck
- Presidential Initiative in Data Science, University of Oregon, Eugene, Oregon, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
4
|
Bernard M, Dehaullon A, Gao G, Paul K, Lagarde H, Charles M, Prchal M, Danon J, Jaffrelo L, Poncet C, Patrice P, Haffray P, Quillet E, Dupont-Nivet M, Palti Y, Lallias D, Phocas F. Development of a High-Density 665 K SNP Array for Rainbow Trout Genome-Wide Genotyping. Front Genet 2022; 13:941340. [PMID: 35923696 PMCID: PMC9340366 DOI: 10.3389/fgene.2022.941340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Single nucleotide polymorphism (SNP) arrays, also named « SNP chips », enable very large numbers of individuals to be genotyped at a targeted set of thousands of genome-wide identified markers. We used preexisting variant datasets from USDA, a French commercial line and 30X-coverage whole genome sequencing of INRAE isogenic lines to develop an Affymetrix 665 K SNP array (HD chip) for rainbow trout. In total, we identified 32,372,492 SNPs that were polymorphic in the USDA or INRAE databases. A subset of identified SNPs were selected for inclusion on the chip, prioritizing SNPs whose flanking sequence uniquely aligned to the Swanson reference genome, with homogenous repartition over the genome and the highest Minimum Allele Frequency in both USDA and French databases. Of the 664,531 SNPs which passed the Affymetrix quality filters and were manufactured on the HD chip, 65.3% and 60.9% passed filtering metrics and were polymorphic in two other distinct French commercial populations in which, respectively, 288 and 175 sampled fish were genotyped. Only 576,118 SNPs mapped uniquely on both Swanson and Arlee reference genomes, and 12,071 SNPs did not map at all on the Arlee reference genome. Among those 576,118 SNPs, 38,948 SNPs were kept from the commercially available medium-density 57 K SNP chip. We demonstrate the utility of the HD chip by describing the high rates of linkage disequilibrium at 2–10 kb in the rainbow trout genome in comparison to the linkage disequilibrium observed at 50–100 kb which are usual distances between markers of the medium-density chip.
Collapse
Affiliation(s)
- Maria Bernard
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, SIGENAE, Jouy-en-Josas, France
| | - Audrey Dehaullon
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Guangtu Gao
- USDA, REE, ARS, NEA, NCCCWA, Kearneysville, WV, United States
| | - Katy Paul
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Henri Lagarde
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Charles
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, SIGENAE, Jouy-en-Josas, France
| | - Martin Prchal
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, Vodňany, Czechia
| | - Jeanne Danon
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | - Charles Poncet
- INRAE-UCA, Plateforme Gentyane, UMR GDEC, Clermont-Ferrand, France
| | | | | | - Edwige Quillet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Yniv Palti
- USDA, REE, ARS, NEA, NCCCWA, Kearneysville, WV, United States
| | - Delphine Lallias
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florence Phocas
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- *Correspondence: Florence Phocas,
| |
Collapse
|
5
|
Gao G, Magadan S, Waldbieser GC, Youngblood RC, Wheeler PA, Scheffler BE, Thorgaard GH, Palti Y. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3-GENES GENOMES GENETICS 2021; 11:6146524. [PMID: 33616628 DOI: 10.1093/g3journal/jkab052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is shown through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.
Collapse
Affiliation(s)
- Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Susana Magadan
- Centro de Investigaciones Biomédicas, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, España
| | | | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Paul A Wheeler
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA
| | - Brian E Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| |
Collapse
|
6
|
Magadan S, Mondot S, Palti Y, Gao G, Lefranc MP, Boudinot P. Genomic analysis of a second rainbow trout line (Arlee) leads to an extended description of the IGH VDJ gene repertoire. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103998. [PMID: 33450314 DOI: 10.1016/j.dci.2021.103998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing technologies brought a renewed interest for immune repertoires. Fish Ab and B cell repertoires are no exception, and their comprehensive analysis can both provide new insights into poorly understood immune mechanisms, and identify markers of protection after vaccination. However, the lack of genomic description and standardized nomenclature of IG genes hampers accurate annotation of Ig mRNA deep sequencing data. Complete genome sequences of Atlantic salmon and rainbow trout (Swanson line) recently allowed us to establish a comprehensive and coherent annotation of Salmonid IGH genes following IMGT standards. Here we analyzed the IGHV, D, and J genes from the newly released genome of a second rainbow trout line (Arlee). We confirmed the validity of salmonid IGHV subgroups, and extended the description of the rainbow trout IGH gene repertoire with novel sequences, while keeping nomenclature continuity. This work provides an important resource for annotation of high-throughput Ab repertoire sequencing data.
Collapse
Affiliation(s)
- Susana Magadan
- Centro de Investigaciones Biomédicas, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310, Vigo, Spain.
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | - Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | - Marie Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR9002 CNRS, Université de Montpellier, Montpellier, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
7
|
Zhao J, Zhou T, Bai H, Ke Q, Li B, Bai M, Zhou Z, Pu F, Zheng W, Xu P. Genome-Wide Association Analysis Reveals the Genetic Architecture of Parasite (Cryptocaryon irritans) Resistance in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:242-254. [PMID: 33609216 DOI: 10.1007/s10126-021-10019-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Large yellow croaker is an important marine culture species in China. Recently, the large yellow croaker industry is threatened by various disease problems, especially for the white spot disease, which is caused by parasite Cryptocaryon irritans. In the current study, we conducted a genome-wide association study (GWAS) for C. irritans resistance in two large yellow croaker populations (n = 264 and n = 480, respectively). We identified 15 QTL with explained genetic variance ranging from 1 to 8% in the two populations. One QTL on chromosome 23 was shared by the two populations, and three QTL had been reported in the previous study. We identified a lot of biological pathways associated with C. irritans resistance, such as hormone transport, response to bacterium, apoptotic process, acute inflammatory response to antigenic stimulus, and NF-kappa B signaling pathway. The genes casp8 and traf6 involved in regulatory network for apoptosis and inflammation were identified to be candidate genes for C. irritans resistance. Our results showed the complex polygenic architecture of resistance of large yellow croaker against C. irritans. These results would be helpful for the researches of the molecular mechanism of C. irritans resistance and genome-assisted breeding of large yellow croaker.
Collapse
Affiliation(s)
- Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Bijun Li
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mindong Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
| |
Collapse
|
8
|
Liu S, Gao G, Layer RM, Thorgaard GH, Wiens GD, Leeds TD, Martin KE, Palti Y. Identification of High-Confidence Structural Variants in Domesticated Rainbow Trout Using Whole-Genome Sequencing. Front Genet 2021; 12:639355. [PMID: 33732289 PMCID: PMC7959816 DOI: 10.3389/fgene.2021.639355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic structural variants (SVs) are a major source of genetic and phenotypic variation but have not been investigated systematically in rainbow trout (Oncorhynchus mykiss), an important aquaculture species of cold freshwater. The objectives of this study were 1) to identify and validate high-confidence SVs in rainbow trout using whole-genome re-sequencing; and 2) to examine the contribution of transposable elements (TEs) to SVs in rainbow trout. A total of 96 rainbow trout, including 11 homozygous lines and 85 outbred fish from three breeding populations, were whole-genome sequenced with an average genome coverage of 17.2×. Putative SVs were identified using the program Smoove which integrates LUMPY and other associated tools into one package. After rigorous filtering, 13,863 high-confidence SVs were identified. Pacific Biosciences long-reads of Arlee, one of the homozygous lines used for SV detection, validated 98% (3,948 of 4,030) of the high-confidence SVs identified in the Arlee homozygous line. Based on principal component analysis, the 85 outbred fish clustered into three groups consistent with their populations of origin, further indicating that the high-confidence SVs identified in this study are robust. The repetitive DNA content of the high-confidence SV sequences was 86.5%, which is much higher than the 57.1% repetitive DNA content of the reference genome, and is also higher than the repetitive DNA content of Atlantic salmon SVs reported previously. TEs thus contribute substantially to SVs in rainbow trout as TEs make up the majority of repetitive sequences. Hundreds of the high-confidence SVs were annotated as exon-loss or gene-fusion variants, and may have phenotypic effects. The high-confidence SVs reported in this study provide a foundation for further rainbow trout SV studies.
Collapse
Affiliation(s)
- Sixin Liu
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States.,Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Gary H Thorgaard
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | | | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| |
Collapse
|
9
|
Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide identification of loci associated with growth in rainbow trout. BMC Genomics 2020; 21:209. [PMID: 32138655 PMCID: PMC7059289 DOI: 10.1186/s12864-020-6617-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Growth is a major economic production trait in aquaculture. Improvements in growth performance will reduce time and cost for fish to reach market size. However, genes underlying growth have not been fully explored in rainbow trout. Results A previously developed 50 K gene-transcribed SNP chip, containing ~ 21 K SNPs showing allelic imbalances potentially associated with important aquaculture production traits including body weight, muscle yield, was used for genotyping a total of 789 fish with available phenotypic data for bodyweight gain. Genotyped fish were obtained from two consecutive generations produced in the NCCCWA growth-selection breeding program. Weighted single-step GBLUP (WssGBLUP) was used to perform a genome-wide association (GWA) analysis to identify quantitative trait loci (QTL) associated with bodyweight gain. Using genomic sliding windows of 50 adjacent SNPs, 247 SNPs associated with bodyweight gain were identified. SNP-harboring genes were involved in cell growth, cell proliferation, cell cycle, lipid metabolism, proteolytic activities, chromatin modification, and developmental processes. Chromosome 14 harbored the highest number of SNPs (n = 50). An SNP window explaining the highest additive genetic variance for bodyweight gain (~ 6.4%) included a nonsynonymous SNP in a gene encoding inositol polyphosphate 5-phosphatase OCRL-1. Additionally, based on a single-marker GWA analysis, 33 SNPs were identified in association with bodyweight gain. The highest SNP explaining variation in bodyweight gain was identified in a gene coding for thrombospondin-1 (THBS1) (R2 = 0.09). Conclusion The majority of SNP-harboring genes, including OCRL-1 and THBS1, were involved in developmental processes. Our results suggest that development-related genes are important determinants for growth and could be prioritized and used for genomic selection in breeding programs.
Collapse
Affiliation(s)
- Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV, USA
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Magadan S, Krasnov A, Hadi-Saljoqi S, Afanasyev S, Mondot S, Lallias D, Castro R, Salinas I, Sunyer O, Hansen J, Koop BF, Lefranc MP, Boudinot P. Standardized IMGT® Nomenclature of Salmonidae IGH Genes, the Paradigm of Atlantic Salmon and Rainbow Trout: From Genomics to Repertoires. Front Immunol 2019; 10:2541. [PMID: 31798572 PMCID: PMC6866254 DOI: 10.3389/fimmu.2019.02541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
In teleost fish as in mammals, humoral adaptive immunity is based on B lymphocytes expressing highly diverse immunoglobulins (IG). During B cell differentiation, IG loci are subjected to genomic rearrangements of V, D, and J genes, producing a unique antigen receptor expressed on the surface of each lymphocyte. During the course of an immune response to infections or immunizations, B cell clones specific of epitopes from the immunogen are expanded and activated, leading to production of specific antibodies. Among teleost fish, salmonids comprise key species for aquaculture. Rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) are especially important from a commercial point of view and have emerged as critical models for fish immunology. The growing interest to capture accurate and comprehensive antibody responses against common pathogens and vaccines has resulted in recent efforts to sequence the IG repertoire in these species. In this context, a unified and standardized nomenclature of salmonid IG heavy chain (IGH) genes is urgently required, to improve accuracy of annotation of adaptive immune receptor repertoire dataset generated by high-throughput sequencing (AIRRseq) and facilitate comparisons between studies and species. Interestingly, the assembly of salmonids IGH genomic sequences is challenging due to the presence of two large size duplicated IGH loci and high numbers of IG genes and pseudogenes. We used data available for Atlantic salmon to establish an IMGT standardized nomenclature of IGH genes in this species and then applied the IMGT rules to the rainbow trout IGH loci to set up a nomenclature, which takes into account the specificities of Salmonid loci. This unique, consistent nomenclature for Salmonid IGH genes was then used to construct IMGT sequence reference directories allowing accurate annotation of AIRRseq data. The complex issues raised by the genetic diversity of salmon and trout strains are discussed in the context of IG repertoire annotation.
Collapse
Affiliation(s)
- Susana Magadan
- Immunology Laboratory, Biomedical Research Center, University of Vigo, Vigo, Spain
- Department of Biology, Center of Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Saida Hadi-Saljoqi
- IMGT®, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Stanislas Mondot
- MICALIS, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lallias
- Génétique Animale et Biologie Intégrative (GABI), INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rosario Castro
- Virologie et Immunologie Moléculaires (VIM), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Irene Salinas
- Department of Biology, Center of Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States
| | - Oriol Sunyer
- Pathobiology Department, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Hansen
- Western Fisheries Research Center, U.S. Geological Survey, Seattle, WA, United States
| | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires (VIM), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
11
|
Fraslin C, Brard-Fudulea S, D'Ambrosio J, Bestin A, Charles M, Haffray P, Quillet E, Phocas F. Rainbow trout resistance to bacterial cold water disease: two new quantitative trait loci identified after a natural disease outbreak on a French farm. Anim Genet 2019; 50:293-297. [PMID: 30883847 DOI: 10.1111/age.12777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2019] [Indexed: 12/24/2022]
Abstract
In rainbow trout farming, Flavobacterium psychrophilum, the causative agent of bacterial cold water disease, is responsible for important economic losses. Resistance to F. psychrophilum is heritable, and several quantitative trait loci (QTL) with moderate effects have been detected, opening up promising perspectives for the genetic improvement of resistance. In most studies however, resistance to F. psychrophilum was assessed in experimental infectious challenges using injection as the infection route, which is not representative of natural infection. Indeed, injection bypasses external barriers, such as mucus and skin, that likely play a protective role against the infection. In this study, we aimed at describing the genetic architecture of the resistance to F. psychrophilum after a natural disease outbreak. In a 2000-fish cohort, reared on a French farm, 720 fish were sampled and genotyped using the medium-throughput Axiom™ Trout Genotyping Array. Overall mortality at the end of the outbreak was 25%. Genome-wide association studies were performed under two different models for time to death measured on 706 fish with validated genotypes for 30 060 SNPs. This study confirms the polygenic inheritance of resistance to F. psychrophilum with a few QTL with moderate effects and a large polygenic background, the heritability of the trait being estimated at 0.34. Two new chromosome-wide significant QTL and three suggestive QTL were detected, each of them explaining between 1% and 4% of genetic variance.
Collapse
Affiliation(s)
- C Fraslin
- SYSAAF Section Aquacole, Campus de Beaulieu, F-35000, Rennes, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - S Brard-Fudulea
- SYSAAF Section Aquacole, Campus de Beaulieu, F-35000, Rennes, France
| | - J D'Ambrosio
- SYSAAF Section Aquacole, Campus de Beaulieu, F-35000, Rennes, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - A Bestin
- SYSAAF Section Aquacole, Campus de Beaulieu, F-35000, Rennes, France
| | - M Charles
- GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - P Haffray
- SYSAAF Section Aquacole, Campus de Beaulieu, F-35000, Rennes, France
| | - E Quillet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - F Phocas
- GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| |
Collapse
|
12
|
Kijas J, Hamilton M, Botwright N, King H, McPherson L, Krsinich A, McWilliam S. Genome Sequencing of Blacklip and Greenlip Abalone for Development and Validation of a SNP Based Genotyping Tool. Front Genet 2019; 9:687. [PMID: 30662453 PMCID: PMC6328477 DOI: 10.3389/fgene.2018.00687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Abalone breeding in southern Australia often involves the production of interspecies hybrids through crossing blacklip (Haliotos rubra) and greenlip (H. laevigata) parental populations. To assist applied breeding and investigate genetic divergence, this study applied genome sequencing and variant detection to develop and validate a SNP genotyping tool. Skim short read Illumina sequencing was performed using 24 individuals from each of the two parental species and a hybrid population. Raw reads were assembled into three population specific pools (each 12–15 fold coverage), before mapping was performed against a draft greenlip abalone reference genome. Variant detection identified 22.4 M raw variants across the three populations (SNP and indels), suggesting they are highly heterozygous. First stage filtering defined a high quality SNP collection of 2.2 M variants independently called in each of the three populations. Second stage filtering identified a much smaller set of variants for assay design and genotyping using a validation set of 191 abalone of known population and pedigree. Comparison of allele frequency data revealed a high proportion of SNP (43%) had divergent allele frequency (< 0.2) between the two parental populations, suggesting they should have utility for parentage assignment. A maximum likelihood approach was used to successfully assign 105 of 105 progeny to their known true parent amongst a set of 86 candidate parents, confirming the genotyping tool has utility for applied breeding. Analysis of pairwise allele sharing successfully discriminated animals into populations, and PCA of genetic distance grouped the hybrid animals with intermediate values between the two parental populations. The findings present a library of DNA polymorphism of utility to breeding and ecological application, and begins to characterize the divergence separating two economically important aquaculture species.
Collapse
Affiliation(s)
- James Kijas
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | | | - Natasha Botwright
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Harry King
- CSIRO Agriculture and Food, Hobart, TAS, Australia
| | - Luke McPherson
- Craig Mostyn Group, Jade Tiger Abalone, Indented Head, VIC, Australia
| | - Anton Krsinich
- Craig Mostyn Group, Jade Tiger Abalone, Indented Head, VIC, Australia
| | - Sean McWilliam
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Fraslin C, Dechamp N, Bernard M, Krieg F, Hervet C, Guyomard R, Esquerré D, Barbieri J, Kuchly C, Duchaud E, Boudinot P, Rochat T, Bernardet JF, Quillet E. Quantitative trait loci for resistance to Flavobacterium psychrophilum in rainbow trout: effect of the mode of infection and evidence of epistatic interactions. Genet Sel Evol 2018; 50:60. [PMID: 30445909 PMCID: PMC6240304 DOI: 10.1186/s12711-018-0431-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023] Open
Abstract
Background Bacterial cold-water disease, which is caused by Flavobacterium psychrophilum, is one of the major diseases that affect rainbow trout (Oncorhynchus mykiss) and a primary concern for trout farming. Better knowledge of the genetic basis of resistance to F. psychrophilum would help to implement this trait in selection schemes and to investigate the immune mechanisms associated with resistance. Various studies have revealed that skin and mucus may contribute to response to infection. However, previous quantitative trait loci (QTL) studies were conducted by using injection as the route of infection. Immersion challenge, which is assumed to mimic natural infection by F. psychrophilum more closely, may reveal different defence mechanisms. Results Two isogenic lines of rainbow trout with contrasting susceptibilities to F. psychrophilum were crossed to produce doubled haploid F2 progeny. Fish were infected with F. psychrophilum either by intramuscular injection (115 individuals) or by immersion (195 individuals), and genotyped for 9654 markers using RAD-sequencing. Fifteen QTL associated with resistance traits were detected and only three QTL were common between the injection and immersion. Using a model that accounted for epistatic interactions between QTL, two main types of interactions were revealed. A “compensation-like” effect was detected between several pairs of QTL for the two modes of infection. An “enhancing-like” interaction effect was detected between four pairs of QTL. Integration of the QTL results with results of a previous transcriptomic analysis of response to F. psychrophilum infection resulted in a list of potential candidate immune genes that belong to four relevant functional categories (bacterial sensors, effectors of antibacterial immunity, inflammatory factors and interferon-stimulated genes). Conclusions These results provide new insights into the genetic determinism of rainbow trout resistance to F. psychrophilum and confirm that some QTL with large effects are involved in this trait. For the first time, the role of epistatic interactions between resistance-associated QTL was evidenced. We found that the infection protocol used had an effect on the modulation of defence mechanisms and also identified relevant immune functional candidate genes. Electronic supplementary material The online version of this article (10.1186/s12711-018-0431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémence Fraslin
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,SYSAAF Section Aquacole, Campus de Beaulieu, 35000, Rennes, France
| | - Nicolas Dechamp
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Maria Bernard
- GABI, SIGENAE, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Francine Krieg
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Caroline Hervet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - René Guyomard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Diane Esquerré
- GeT-PlaGe, Genotoul, INRA US1426, 31320, Castanet-Tolosan Cedex, France
| | - Johanna Barbieri
- GeT-PlaGe, Genotoul, INRA US1426, 31320, Castanet-Tolosan Cedex, France
| | - Claire Kuchly
- GeT-PlaGe, Genotoul, INRA US1426, 31320, Castanet-Tolosan Cedex, France
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tatiana Rochat
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-François Bernardet
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
14
|
Salem M, Al-Tobasei R, Ali A, Lourenco D, Gao G, Palti Y, Kenney B, Leeds TD. Genome-Wide Association Analysis With a 50K Transcribed Gene SNP-Chip Identifies QTL Affecting Muscle Yield in Rainbow Trout. Front Genet 2018; 9:387. [PMID: 30283492 PMCID: PMC6157414 DOI: 10.3389/fgene.2018.00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Detection of coding/functional SNPs that change the biological function of a gene may lead to identification of putative causative alleles within QTL regions and discovery of genetic markers with large effects on phenotypes. This study has two-fold objectives, first to develop, and validate a 50K transcribed gene SNP-chip using RNA-Seq data. To achieve this objective, two bioinformatics pipelines, GATK and SAMtools, were used to identify ~21K transcribed SNPs with allelic imbalances associated with important aquaculture production traits including body weight, muscle yield, muscle fat content, shear force, and whiteness in addition to resistance/susceptibility to bacterial cold-water disease (BCWD). SNPs ere identified from pooled RNA-Seq data collected from ~620 fish, representing 98 families from growth- and 54 families from BCWD-selected lines with divergent phenotypes. In addition, ~29K transcribed SNPs without allelic-imbalances were strategically added to build a 50K Affymetrix SNP-chip. SNPs selected included two SNPs per gene from 14K genes and ~5K non-synonymous SNPs. The SNP-chip was used to genotype 1728 fish. The average SNP calling-rate for samples passing quality control (QC; 1,641 fish) was ≥ 98.5%. The second objective of this study was to test the feasibility of using the new SNP-chip in GWA (Genome-wide association) analysis to identify QTL explaining muscle yield variance. GWA study on 878 fish (representing 197 families from 2 consecutive generations) with muscle yield phenotypes and genotyped for 35K polymorphic markers (passing QC) identified several QTL regions explaining together up to 28.40% of the additive genetic variance for muscle yield in this rainbow trout population. The most significant QTLs were on chromosomes 14 and 16 with 12.71 and 10.49% of the genetic variance, respectively. Many of the annotated genes in the QTL regions were previously reported as important regulators of muscle development and cell signaling. No major QTLs were identified in a previous GWA study using a 57K genomic SNP chip on the same fish population. These results indicate improved detection power of the transcribed gene SNP-chip in the target trait and population, allowing identification of large-effect QTLs for important traits in rainbow trout.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, United States
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, United States
| |
Collapse
|
15
|
Zhang HY, Zhao ZX, Xu J, Xu P, Bai QL, Yang SY, Jiang LK, Chen BH. Population genetic analysis of aquaculture salmonid populations in China using a 57K rainbow trout SNP array. PLoS One 2018; 13:e0202582. [PMID: 30118517 PMCID: PMC6097679 DOI: 10.1371/journal.pone.0202582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Various salmonid species are cultivated in cold water aquaculture. However, due to limited genomic data resources, specific high-throughput genotyping tools are not available to many of the salmonid species. In this study, a 57K single nucleotide polymorphism (SNP) array for rainbow trout (Oncorhynchus mykiss) was utilized to detect polymorphisms in seven salmonid species, including Hucho taimen, Oncorhynchus masou, Salvelinus fontinalis, Brachymystax lenok, Salvelinus leucomaenis, O. kisutch, and O. mykiss. The number of polymorphic markers per population ranged from 3,844 (O. kisutch) to 53,734 (O. mykiss), indicating that the rainbow trout SNP array was applicable as a universal genotyping tool for other salmonid species. Among the six other salmonid populations from four genera, 28,882 SNPs were shared, whereas 525 SNPs were polymorphic in all four genera. The genetic diversity and population relationships of the seven salmonid species were studied by principal component analysis (PCA). The phylogenetic relationships among populations were analyzed using the maximum likelihood method, which indicated that the shared SNP markers provide reliable genomic information for population genetic analyses in common aquaculture salmonid fishes. Furthermore, this obtained genomic information may be applicable for population genetic evaluation, marker-assisted breeding, and propagative parent selection in fry production.
Collapse
Affiliation(s)
- Han-Yuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zi-Xia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- * E-mail: (ZXZ); (PX)
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- * E-mail: (ZXZ); (PX)
| | - Qing-Li Bai
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shi-Yong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Yaan, China
| | - Li-Kun Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Bao-Hua Chen
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. REVIEWS IN AQUACULTURE 2018; 10:670-682. [PMID: 30220910 PMCID: PMC6128402 DOI: 10.1111/raq.12193] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 05/18/2023]
Abstract
Selective breeding is increasingly recognized as a key component of sustainable production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Christos Palaiokostas
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPadovaItaly
| | - Paulino Martínez
- Department of ZoologyGenetics and Physical AnthropologyFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ross Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
17
|
Gao G, Nome T, Pearse DE, Moen T, Naish KA, Thorgaard GH, Lien S, Palti Y. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing. Front Genet 2018; 9:147. [PMID: 29740479 PMCID: PMC5928233 DOI: 10.3389/fgene.2018.00147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout (Oncorhynchus mykiss), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup, followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.
Collapse
Affiliation(s)
- Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| | - Torfinn Nome
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre of Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, United States
| | | | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre of Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| |
Collapse
|
18
|
Stobie CS, Oosthuizen CJ, Cunningham MJ, Bloomer P. Exploring the phylogeography of a hexaploid freshwater fish by RAD sequencing. Ecol Evol 2018; 8:2326-2342. [PMID: 29468047 PMCID: PMC5817159 DOI: 10.1002/ece3.3821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/17/2017] [Indexed: 12/12/2022] Open
Abstract
The KwaZulu‐Natal yellowfish (Labeobarbus natalensis) is an abundant cyprinid, endemic to KwaZulu‐Natal Province, South Africa. In this study, we developed a single‐nucleotide polymorphism (SNP) dataset from double‐digest restriction site‐associated DNA (ddRAD) sequencing of samples across the distribution. We addressed several hidden challenges, primarily focusing on proper filtering of RAD data and selecting optimal parameters for data processing in polyploid lineages. We used the resulting high‐quality SNP dataset to investigate the population genetic structure of L. natalensis. A small number of mitochondrial markers present in these data had disproportionate influence on the recovered genetic structure. The presence of singleton SNPs also confounded genetic structure. We found a well‐supported division into northern and southern lineages, with further subdivision into five populations, one of which reflects north–south admixture. Approximate Bayesian Computation scenario testing supported a scenario where an ancestral population diverged into northern and southern lineages, which then diverged to yield the current five populations. All river systems showed similar levels of genetic diversity, which appears unrelated to drainage system size. Nucleotide diversity was highest in the smallest river system, the Mbokodweni, which, together with adjacent small coastal systems, should be considered as a key catchment for conservation.
Collapse
Affiliation(s)
- Cora Sabriel Stobie
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| | - Carel J Oosthuizen
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| | - Michael J Cunningham
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme Department of Genetics University of Pretoria Pretoria South Africa
| |
Collapse
|
19
|
Using Linkage Maps as a Tool To Determine Patterns of Chromosome Synteny in the Genus Salvelinus. G3-GENES GENOMES GENETICS 2017; 7:3821-3830. [PMID: 28963166 PMCID: PMC5677171 DOI: 10.1534/g3.117.300317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Next generation sequencing techniques have revolutionized the collection of genome and transcriptome data from nonmodel organisms. This manuscript details the application of restriction site-associated DNA sequencing (RADseq) to generate a marker-dense genetic map for Brook Trout (Salvelinus fontinalis). The consensus map was constructed from three full-sib families totaling 176 F1 individuals. The map consisted of 42 linkage groups with a total female map size of 2502.5 cM, and a total male map size of 1863.8 cM. Synteny was confirmed with Atlantic Salmon for 38 linkage groups, with Rainbow Trout for 37 linkage groups, Arctic Char for 36 linkage groups, and with a previously published Brook Trout linkage map for 39 linkage groups. Comparative mapping confirmed the presence of 8 metacentric and 34 acrocentric chromosomes in Brook Trout. Six metacentric chromosomes seem to be conserved with Arctic Char suggesting there have been at least two species-specific fusion and fission events within the genus Salvelinus. In addition, the sex marker (sdY; sexually dimorphic on the Y chromosome) was mapped to Brook Trout BC35, which is homologous with Atlantic Salmon Ssa09qa, Rainbow Trout Omy25, and Arctic Char AC04q. Ultimately, this linkage map will be a useful resource for studies on the genome organization of Salvelinus, and facilitates comparisons of the Salvelinus genome with Salmo and Oncorhynchus.
Collapse
|
20
|
Vallejo RL, Liu S, Gao G, Fragomeni BO, Hernandez AG, Leeds TD, Parsons JE, Martin KE, Evenhuis JP, Welch TJ, Wiens GD, Palti Y. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations. Front Genet 2017; 8:156. [PMID: 29109734 PMCID: PMC5660510 DOI: 10.3389/fgene.2017.00156] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.
Collapse
Affiliation(s)
- Roger L. Vallejo
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Sixin Liu
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Breno O. Fragomeni
- Animal and Dairy Science Department, University of Georgia, Athens, GA, United States
| | - Alvaro G. Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | | | | | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States
| |
Collapse
|
21
|
Al-Tobasei R, Ali A, Leeds TD, Liu S, Palti Y, Kenney B, Salem M. Identification of SNPs associated with muscle yield and quality traits using allelic-imbalance analyses of pooled RNA-Seq samples in rainbow trout. BMC Genomics 2017; 18:582. [PMID: 28784089 PMCID: PMC5547479 DOI: 10.1186/s12864-017-3992-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
Background Coding/functional SNPs change the biological function of a gene and, therefore, could serve as “large-effect” genetic markers. In this study, we used two bioinformatics pipelines, GATK and SAMtools, for discovering coding/functional SNPs with allelic-imbalances associated with total body weight, muscle yield, muscle fat content, shear force, and whiteness. Phenotypic data were collected for approximately 500 fish, representing 98 families (5 fish/family), from a growth-selected line, and the muscle transcriptome was sequenced from 22 families with divergent phenotypes (4 low- versus 4 high-ranked families per trait). Results GATK detected 59,112 putative SNPs; of these SNPs, 4798 showed allelic imbalances (>2.0 as an amplification and <0.5 as loss of heterozygosity). SAMtools detected 87,066 putative SNPs; and of them, 4962 had allelic imbalances between the low- and high-ranked families. Only 1829 SNPs with allelic imbalances were common between the two datasets, indicating significant differences in algorithms. The two datasets contained 7930 non-redundant SNPs of which 4439 mapped to 1498 protein-coding genes (with 6.4% non-synonymous SNPs) and 684 mapped to 295 lncRNAs. Validation of a subset of 92 SNPs revealed 1) 86.7–93.8% success rate in calling polymorphic SNPs and 2) 95.4% consistent matching between DNA and cDNA genotypes indicating a high rate of identifying SNPs with allelic imbalances. In addition, 4.64% SNPs revealed random monoallelic expression. Genome distribution of the SNPs with allelic imbalances exhibited high density for all five traits in several chromosomes, especially chromosome 9, 20 and 28. Most of the SNP-harboring genes were assigned to important growth-related metabolic pathways. Conclusion These results demonstrate utility of RNA-Seq in assessing phenotype-associated allelic imbalances in pooled RNA-Seq samples. The SNPs identified in this study were included in a new SNP-Chip design (available from Affymetrix) for genomic and genetic analyses in rainbow trout. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3992-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Timothy D Leeds
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, 25430, USA
| | - Sixin Liu
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, 25430, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, 25430, USA
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Mohamed Salem
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA. .,Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
22
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
23
|
Garvin MR, Templin WD, Gharrett AJ, DeCovich N, Kondzela CM, Guyon JR, McPhee MV. Potentially adaptive mitochondrial haplotypes as a tool to identify divergent nuclear loci. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Garvin
- Oregon State University Ringgold Standard Institution ‐ Integrative Biology 3029 Cordley Hall, 2701 SW Campus Way Corvallis OR 97331‐4501 USA
| | - William D. Templin
- Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage AK 99518 USA
| | - Anthony J. Gharrett
- University of Alaska Fairbanks College Fisheries and Ocean Sciences Juneau AK 99821 USA
| | - Nick DeCovich
- Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage AK 99518 USA
| | - Christine M. Kondzela
- Auke Bay Laboratories Alaska Fisheries Science Center National Oceanic and Atmospheric Administration National Marine Fisheries Service 17109 Point Lena Loop Road Juneau AK 99801 USA
| | - Jeffrey R. Guyon
- Auke Bay Laboratories Alaska Fisheries Science Center National Oceanic and Atmospheric Administration National Marine Fisheries Service 17109 Point Lena Loop Road Juneau AK 99801 USA
| | - Megan V. McPhee
- University of Alaska Fairbanks College Fisheries and Ocean Sciences Juneau AK 99821 USA
| |
Collapse
|
24
|
Vallejo RL, Leeds TD, Fragomeni BO, Gao G, Hernandez AG, Misztal I, Welch TJ, Wiens GD, Palti Y. Evaluation of Genome-Enabled Selection for Bacterial Cold Water Disease Resistance Using Progeny Performance Data in Rainbow Trout: Insights on Genotyping Methods and Genomic Prediction Models. Front Genet 2016; 7:96. [PMID: 27303436 PMCID: PMC4883007 DOI: 10.3389/fgene.2016.00096] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/13/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic breeding values (GEBVs) for BCWD resistance in 10 families from the first generation of the NCCCWA BCWD resistance breeding line, compared the predictive ability (PA) of GEBVs to pedigree-based estimated breeding values (EBVs), and compared the impact of two SNP genotyping methods on the accuracy of GEBV predictions. The BCWD phenotypes survival days (DAYS) and survival status (STATUS) had been recorded in training fish (n = 583) subjected to experimental BCWD challenge. Training fish, and their full sibs without phenotypic data that were used as parents of the subsequent generation, were genotyped using two methods: restriction-site associated DNA (RAD) sequencing and the Rainbow Trout Axiom® 57 K SNP array (Chip). Animal-specific GEBVs were estimated using four GS models: BayesB, BayesC, single-step GBLUP (ssGBLUP), and weighted ssGBLUP (wssGBLUP). Family-specific EBVs were estimated using pedigree and phenotype data in the training fish only. The PA of EBVs and GEBVs was assessed by correlating mean progeny phenotype (MPP) with mid-parent EBV (family-specific) or GEBV (animal-specific). The best GEBV predictions were similar to EBV with PA values of 0.49 and 0.46 vs. 0.50 and 0.41 for DAYS and STATUS, respectively. Among the GEBV prediction methods, ssGBLUP consistently had the highest PA. The RAD genotyping platform had GEBVs with similar PA to those of GEBVs from the Chip platform. The PA of ssGBLUP and wssGBLUP methods was higher with the Chip, but for BayesB and BayesC methods it was higher with the RAD platform. The overall GEBV accuracy in this study was low to moderate, likely due to the small training sample used. This study explored the potential of GS for improving resistance to BCWD in rainbow trout using, for the first time, progeny testing data to assess the accuracy of GEBVs, and it provides the basis for further investigation on the implementation of GS in commercial rainbow trout populations.
Collapse
Affiliation(s)
- Roger L. Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of AgricultureKearneysville, WV, USA
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of AgricultureKearneysville, WV, USA
| | - Breno O. Fragomeni
- Animal and Dairy Science Department, University of GeorgiaAthens, GA, USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of AgricultureKearneysville, WV, USA
| | - Alvaro G. Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Ignacy Misztal
- Animal and Dairy Science Department, University of GeorgiaAthens, GA, USA
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of AgricultureKearneysville, WV, USA
| | - Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of AgricultureKearneysville, WV, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of AgricultureKearneysville, WV, USA
| |
Collapse
|
25
|
Abstract
Recent improvements in next-generation sequencing technology have made it possible to do whole genome sequencing, on even non-model eukaryote species with no available reference genomes. However, de novo assembly of diploid genomes is still a big challenge because of allelic variation. The aim of this study was to determine the feasibility of utilizing the genome of haploid fish larvae for de novo assembly of whole-genome sequences. We compared the efficiency of assembly using the haploid genome of yellowtail (Seriola quinqueradiata) with that using the diploid genome obtained from the dam. De novo assembly from the haploid and the diploid sequence reads (100 million reads per each datasets) generated by the Ion Proton sequencer (200 bp) was done under two different assembly algorithms, namely overlap-layout-consensus (OLC) and de Bruijn graph (DBG). This revealed that the assembly of the haploid genome significantly reduced (approximately 22% for OLC, 9% for DBG) the total number of contigs (with longer average and N50 contig lengths) when compared to the diploid genome assembly. The haploid assembly also improved the quality of the scaffolds by reducing the number of regions with unassigned nucleotides (Ns) (total length of Ns; 45,331,916 bp for haploids and 67,724,360 bp for diploids) in OLC-based assemblies. It appears clear that the haploid genome assembly is better because the allelic variation in the diploid genome disrupts the extension of contigs during the assembly process. Our results indicate that utilizing the genome of haploid larvae leads to a significant improvement in the de novo assembly process, thus providing a novel strategy for the construction of reference genomes from non-model diploid organisms such as fish.
Collapse
|
26
|
Liu S, Vallejo RL, Palti Y, Gao G, Marancik DP, Hernandez AG, Wiens GD. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front Genet 2015; 6:298. [PMID: 26442114 PMCID: PMC4585308 DOI: 10.3389/fgene.2015.00298] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 11/13/2022] Open
Abstract
Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellites on chromosome Omy19 associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. Recently, SNPs (single nucleotide polymorphism) have become the markers of choice for genetic analyses in rainbow trout as they are highly abundant, cost-effective and are amenable for high throughput genotyping. The objective of this study was to identify SNP markers associated with BCWD resistance and spleen size using both genome-wide association studies (GWAS) and linkage-based QTL mapping approaches. A total of 298 offspring from the two half-sib families used in our previous study to validate the significant BCWD QTL on chromosome Omy19 were genotyped with RAD-seq (restriction-site-associated DNA sequencing), and 7,849 informative SNPs were identified. Based on GWAS, 18 SNPs associated with BCWD resistance and 20 SNPs associated with spleen size were identified. Linkage-based QTL mapping revealed three significant QTL for BCWD resistance. In addition to the previously validated dam-derived QTL on chromosome Omy19, two significant BCWD QTL derived from the sires were identified on chromosomes Omy8 and Omy25, respectively. A sire-derived significant QTL for spleen size on chromosome Omy2 was detected. The SNP markers reported in this study will facilitate fine mapping to identify positional candidate genes for BCWD resistance in rainbow trout.
Collapse
Affiliation(s)
- Sixin Liu
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Roger L Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - David P Marancik
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Alvaro G Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| |
Collapse
|
27
|
Detection and Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow Trout Using Restriction-Site Associated DNA Sequencing. PLoS One 2015; 10:e0138435. [PMID: 26376182 PMCID: PMC4574402 DOI: 10.1371/journal.pone.0138435] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/31/2015] [Indexed: 12/01/2022] Open
Abstract
Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. Using microsatellite markers in a genome scan, we previously detected significant and suggestive QTL affecting phenotypic variation in survival following challenge with Flavobacterium psychrophilum, the causative agent of BCWD in rainbow trout. In this study, we performed selective genotyping of SNPs from restriction-site associated DNA (RAD) sequence data from two pedigreed families (2009070 and 2009196) to validate the major QTL from the previous work and to detect new QTL. The use of RAD SNPs in the genome scans increased the number of mapped markers from ~300 to ~5,000 per family. The significant QTL detected in the microsatellites scan on chromosome Omy8 in family 2009070 was validated explaining up to 58% of the phenotypic variance in that family, and in addition, a second QTL was also detected on Omy8. Two novel QTL on Omy11 and 14 were also detected, and the previously suggestive QTL on Omy1, 7 and 25 were also validated in family 2009070. In family 2009196, the microsatellite significant QTL on Omy6 and 12 were validated and a new QTL on Omy8 was detected, but none of the previously detected suggestive QTL were validated. The two Omy8 QTL from family 2009070 and the Omy12 QTL from family 2009196 were found to be co-localized with handling and confinement stress response QTL that our group has previously identified in a separate pedigreed family. With the currently available data we cannot determine if the co-localized QTL are the result of genes with pleiotropic effects or a mere physical proximity on the same chromosome segment. The genetic markers linked to BCWD resistance QTL were used to query the scaffolds of the rainbow trout reference genome assembly and the QTL-positive scaffold sequences were found to include 100 positional candidate genes. Several of the candidate genes located on or near the two Omy8 QTL detected in family 2009070 suggest potential linkages between stress response and the regulation of immune response in rainbow trout.
Collapse
|
28
|
Liu S, Vallejo RL, Gao G, Palti Y, Weber GM, Hernandez A, Rexroad CE. Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:328-337. [PMID: 25652693 DOI: 10.1007/s10126-015-9621-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Understanding stress responses is essential for improving animal welfare and increasing agriculture production efficiency. Previously, we reported microsatellite markers associated with quantitative trait loci (QTL) affecting plasma cortisol response to crowding in rainbow trout. In this study, our main objectives were to identify single-nucleotide polymorphism (SNP) markers associated with cortisol response to crowding in rainbow trout using both GWAS (genome-wide association studies) and QTL mapping methods and to employ rapidly expanding genomic resources for rainbow trout toward the identification of candidate genes affecting this trait. A three-generation F2 mapping family (2008052) was genotyped using RAD-seq (restriction-site-associated DNA sequencing) to identify 4874 informative SNPs. GWAS identified 26 SNPs associated with cortisol response to crowding whereas QTL mapping revealed two significant QTL on chromosomes Omy8 and Omy12, respectively. Positional candidate genes were identified using marker sequences to search the draft genome assembly of rainbow trout. One of the genes in the QTL interval on Omy12 is a putative serine/threonine protein kinase gene that was differentially expressed in the liver in response to handling and confinement stress in our previous study. A homologue of this gene was differentially expressed in zebrafish embryos exposed to diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) and an environmental toxicant. NSAIDs have been shown to affect the cortisol response in rainbow trout; therefore, this gene is a good candidate based on its physical position and expression. However, the reference genome resources currently available for rainbow trout require continued improvement as demonstrated by the unmapped SNPs and the putative assembly errors detected in this study.
Collapse
Affiliation(s)
- Sixin Liu
- USDA/ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd, Kearneysville, WV, 25430, USA,
| | | | | | | | | | | | | |
Collapse
|
29
|
Allendorf FW, Bassham S, Cresko WA, Limborg MT, Seeb LW, Seeb JE. Effects of crossovers between homeologs on inheritance and population genomics in polyploid-derived salmonid fishes. J Hered 2015; 106:217-27. [PMID: 25838153 DOI: 10.1093/jhered/esv015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between homeologous chromosomes. Nearly 20% of loci in the salmonid genome are duplicated and share the same alleles (isoloci), apparently due to homeologous recombination. Half-tetrad analysis revealed that isoloci tend to be telomeric. These results suggested that residual tetrasomic inheritance of isoloci results from homeologous recombination near chromosome ends and that continued disomic inheritance resulted from homologous pairing of centromeric regions. Many current genetic maps of salmonids are based on single nucleotide polymorphisms and microsatellites that are no longer duplicated. Therefore, long sections of chromosomes on these maps are poorly represented, especially telomeric regions. In addition, preferential multivalent pairing of homeologs from the same species in F1 hybrids results in an excess of nonparental gametes (so-called pseudolinkage). We consider how not including duplicated loci has affected our understanding of population and evolutionary genetics of salmonids, and we discuss how incorporating these loci will benefit our understanding of population genomics.
Collapse
Affiliation(s)
- Fred W Allendorf
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb).
| | - Susan Bassham
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - William A Cresko
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - Morten T Limborg
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - Lisa W Seeb
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - James E Seeb
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| |
Collapse
|
30
|
Salem M, Paneru B, Al-Tobasei R, Abdouni F, Thorgaard GH, Rexroad CE, Yao J. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS One 2015; 10:e0121778. [PMID: 25793877 PMCID: PMC4368115 DOI: 10.1371/journal.pone.0121778] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
- * E-mail:
| | - Bam Paneru
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Fatima Abdouni
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, United States of America
| | - Caird E. Rexroad
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Leetown, West Virginia 25430, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States of America
| |
Collapse
|
31
|
Waples RK, Seeb LW, Seeb JE. Linkage mapping with paralogs exposes regions of residual tetrasomic inheritance in chum salmon (Oncorhynchus keta). Mol Ecol Resour 2015; 16:17-28. [DOI: 10.1111/1755-0998.12394] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- R. K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| | - L. W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| | - J. E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| |
Collapse
|
32
|
Narum S, Vines T, Gow J. Technology in the field of molecular ecology continues to advance rapidly. Introduction. Mol Ecol Resour 2014; 15:1-7. [PMID: 25515301 DOI: 10.1111/1755-0998.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Yáñez JM, Houston RD, Newman S. Genetics and genomics of disease resistance in salmonid species. Front Genet 2014; 5:415. [PMID: 25505486 PMCID: PMC4245001 DOI: 10.3389/fgene.2014.00415] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 11/15/2022] Open
Abstract
Infectious and parasitic diseases generate large economic losses in salmon farming. A feasible and sustainable alternative to prevent disease outbreaks may be represented by genetic improvement for disease resistance. To include disease resistance into the breeding goal, prior knowledge of the levels of genetic variation for these traits is required. Furthermore, the information from the genetic architecture and molecular factors involved in resistance against diseases may be used to accelerate the genetic progress for these traits. In this regard, marker assisted selection and genomic selection are approaches which incorporate molecular information to increase the accuracy when predicting the genetic merit of selection candidates. In this article we review and discuss key aspects related to disease resistance in salmonid species, from both a genetic and genomic perspective, with emphasis in the applicability of disease resistance traits into breeding programs in salmonids.
Collapse
Affiliation(s)
- José M Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile Santiago, Chile ; Aquainnovo, Puerto Montt Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Midlothian, UK
| | | |
Collapse
|
34
|
Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, Rexroad CE, Moen T. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour 2014; 15:662-72. [PMID: 25294387 DOI: 10.1111/1755-0998.12337] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
Abstract
In this study, we describe the development and characterization of the first high-density single nucleotide polymorphism (SNP) genotyping array for rainbow trout. The SNP array is publically available from a commercial vendor (Affymetrix). The SNP genotyping quality was high, and validation rate was close to 90%. This is comparable to other farm animals and is much higher than previous smaller scale SNP validation studies in rainbow trout. High quality and integrity of the genotypes are evident from sample reproducibility and from nearly 100% agreement in genotyping results from other methods. The array is very useful for rainbow trout aquaculture populations with more than 40 900 polymorphic markers per population. For wild populations that were confounded by a smaller sample size, the number of polymorphic markers was between 10 577 and 24 330. Comparison between genotypes from individual populations suggests good potential for identifying candidate markers for populations' traceability. Linkage analysis and mapping of the SNPs to the reference genome assembly provide strong evidence for a wide distribution throughout the genome with good representation in all 29 chromosomes. A total of 68% of the genome scaffolds and contigs were anchored through linkage analysis using the SNP array genotypes, including ~20% of the genome assembly that has not been previously anchored to chromosomes.
Collapse
Affiliation(s)
- Y Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ali A, Rexroad CE, Thorgaard GH, Yao J, Salem M. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front Genet 2014; 5:348. [PMID: 25352861 PMCID: PMC4196580 DOI: 10.3389/fgene.2014.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to "organismal systems" with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Department of Zoology, Faculty of Science, Benha University Benha, Egypt
| | - Caird E Rexroad
- The National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture Agricultural Research Service Leetown, WV USA
| | - Gary H Thorgaard
- School of Biological Sciences, Washington State University Pullman, WA, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| |
Collapse
|