1
|
Chen MY, Tu YC, Shyu HY, Lin TA, Juan CP, Wu FC. Using rDNA ITS2 barcoding to identify kratom (Mitragyna speciosa) from the genus Mitragyna and Neolamarckia cadamba. Electrophoresis 2025; 46:192-197. [PMID: 38988182 DOI: 10.1002/elps.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
This study collected 80 samples of suspected kratom plant powder. A polymerase chain reaction sequence analysis was conducted using two sets of DNA barcode primers for plant ribosomal (r)DNA internal transcribed spacers (ITSs), namely, ITS3/ITS4 and ITS-p3/ITS-u4. Among the 80 samples, 40 were analyzed using the ITS3/ITS4 primer pair, and then DNA sequences were subjected to a National Center for Biotechnology Information-Basic Local Alignment Search Tool (NCBI-BLAST) comparison. Results showed that 29 samples had a 100% match (364/364) with Mitragyna speciosa (kratom), and 6 samples had a 99.73% match (363/364) with M. speciosa, whereas 5 samples had disordered and unreadable sequences. The 5 unreadable samples and an additional 40 suspected kratom samples were then analyzed using the ITS-p3/ITS-u4 primer pair, followed by an NCBI-BLAST comparison. Among these, 32 samples had a 100% match (404/404) with M. speciosa, and 11 samples had a 99.75% match (403/404) with M. speciosa. Among the samples with sequences matching M. speciosa, three distinct types were observed (no variance/404, 287M/404, and 287A/404). One sample had a 99.51% match (404/406) with Neolamarckia cadamba, and another sample had a sequencing length of 305 bp, with 25 positions showing mixed base pairs, indicating a mixture of different species. Analysis of the mixed base pair pattern suggested a possible mixture of M. speciosa and N. cadamba. Actually, M. speciosa and N. cadamba have very similar external morphologies. This indicates that the ITS-p3/ITS-u4 primer pair is effective in distinguishing mixtures of M. speciosa and N. cadamba and is thus more suitable than ITS3/ITS4 for identifying and analyzing samples of suspected kratom plant powder.
Collapse
Affiliation(s)
- Meng-Yi Chen
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| | - Yu-Ching Tu
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| | - Hsin-Yi Shyu
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| | - Ting-An Lin
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| | - Chun-Pai Juan
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| | - Fang-Chin Wu
- Department of Forensic Science, Investigation Bureau, Ministry of Justice, New Taipei City, Taiwan
| |
Collapse
|
2
|
Hadrich I, Turki M, Chaari I, Abdelmoula B, Gargouri R, Khemakhem N, Elatoui D, Abid F, Kammoun S, Rekik M, Aloulou S, Sehli M, Mrad AB, Neji S, Feiguin FM, Aloulou J, Abdelmoula NB, Sellami H. Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential. Front Cell Neurosci 2025; 18:1495224. [PMID: 39845646 PMCID: PMC11750820 DOI: 10.3389/fncel.2024.1495224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders. Objective This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy. Methods We summarized recent findings from metagenomic analyses that characterize the diversity and composition of gut mycobiota and discuss how these communities interact with the host and other microorganisms via the gut-brain axis. Key methodologies for studying mycobiota, such as high-throughout sequencing and bioinformatics approaches, were also reviewed to highlight advances in the field. Results Emerging research links gut mycobiota dysbiosis to conditions such as schizophrenia, Alzheimer's disease, autism spectrum disorders, bipolar disorder, and depression. Studies indicate that specific fungal populations, such as Candida and Saccharomyces, may influence neuroinflammation, gut permeability and immune responses, thereby affecting mental health outcomes. Conclusion Understanding the gut mycobiome's role in neuropsychiatric disorders opens new avenues for therapeutic interventions, including antifungal treatments, probiotics, and dietary modifications. Future research should integrate multi-omics approaches to unravel the complex interkingdom interactions within the gut ecosystem, paving the way for personalized medicine in mental health care.
Collapse
Affiliation(s)
- Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mariem Turki
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Department of Pneumology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Abid
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Mohamed Ben Sassi University Hospital of Gabes, Faculty of Medicine, Sfax, Tunisia
| | - Mariem Sehli
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Aymen Ben Mrad
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Sourour Neji
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fabian M. Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jihene Aloulou
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Laboratory - Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Wasti QZ, Sabar MF, Farooq A, Khan MU. Stepping towards pollen DNA metabarcoding: A breakthrough in forensic sciences. Forensic Sci Med Pathol 2024; 20:1464-1474. [PMID: 38147285 DOI: 10.1007/s12024-023-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
This review is engaged in determining the capability of plant pollen as a significant source of evidence for the linkage between suspects and crime location in forensic sciences. Research and review articles were collected from Google Scholar, the Web of Science, and PubMed. Articles were searched using specific keywords such as "Forensic Palynology," "Pollen metabarcoding," "Plant forensics," and "Pollen" AND "criminal investigation." Boolean logic was also utilized to narrow the articles to be included in this review article. Through the literature and exploratory research, it has been observed in the current study that with advancements in technology, forensic palynology has found its application in creating an association between the crime scene and suspected individuals to have a link to it, as pollen DNA is a long-lasting investigative tool that can effectively help forensic investigations. Moreover, the literature shows that the DNA of pollen and spores has helped forensic scientists link suspects to crime scenes, and the introduction of pollen DNA metabarcoding tools has eased the efforts of palynologists to analyze pollen DNA. The introduction of DNA metabarcoding techniques to analyze pollen from plants has helped identify the geological locations of the plants and ultimately identify the culprit.
Collapse
Affiliation(s)
- Qandeel Zaineb Wasti
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Abeera Farooq
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
4
|
Aghdam R, Tang X, Shan S, Lankau R, Solís-Lemus C. Human limits in machine learning: prediction of potato yield and disease using soil microbiome data. BMC Bioinformatics 2024; 25:366. [PMID: 39592933 PMCID: PMC11600749 DOI: 10.1186/s12859-024-05977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The preservation of soil health is a critical challenge in the 21st century due to its significant impact on agriculture, human health, and biodiversity. We provide one of the first comprehensive investigations into the predictive potential of machine learning models for understanding the connections between soil and biological phenotypes. We investigate an integrative framework performing accurate machine learning-based prediction of plant performance from biological, chemical, and physical properties of the soil via two models: random forest and Bayesian neural network. RESULTS Prediction improves when we add environmental features, such as soil properties and microbial density, along with microbiome data. Different preprocessing strategies show that human decisions significantly impact predictive performance. We show that the naive total sum scaling normalization that is commonly used in microbiome research is one of the optimal strategies to maximize predictive power. Also, we find that accurately defined labels are more important than normalization, taxonomic level, or model characteristics. ML performance is limited when humans can't classify samples accurately. Lastly, we provide domain scientists via a full model selection decision tree to identify the human choices that optimize model prediction power. CONCLUSIONS Our study highlights the importance of incorporating diverse environmental features and careful data preprocessing in enhancing the predictive power of machine learning models for soil and biological phenotype connections. This approach can significantly contribute to advancing agricultural practices and soil health management.
Collapse
Affiliation(s)
- Rosa Aghdam
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Xudong Tang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shan Shan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Claudia Solís-Lemus
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Punina EO, Gnutikov AA, Nosov NN, Shneyer VS, Rodionov AV. Hybrid Origin of × Leymotrigia bergrothii (Poaceae) as Revealed by Analysis of the Internal Transcribed Spacer ITS1 and trnL Sequences. Int J Mol Sci 2024; 25:11966. [PMID: 39596035 PMCID: PMC11594234 DOI: 10.3390/ijms252211966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
×Leymotrigia bergrothii is a presumed hybrid of Leymus arenarius and Elytrigia repens. This article investigates the hybrid origin and genome composition of this species. These plants are sterile, do not undergo pollination, and do not produce seeds; occasionally, underdeveloped stamens containing abortive pollen grains form in individual spikelets. The karyotype analysis of root meristem cells revealed a diploid chromosome number of 49 in ×L. bergrothii, reported here for the first time. Subsequently, we examined the intragenomic polymorphism of the transcribed spacer ITS1 in several species of Elytrigia, Elymus, Leymus, Hordeum, and Psathyrostachys, and compared the ribotype patterns of these species with those of ×L. bergrothii. It is shown that the St-ribotype variants found in Elytrigia repens and Elytrigia pseudocaesia, as well as the ribotypes of the La family, which dominate in the genome of Leymus arenarius, correspond to major ribotypes in ×L. bergrothii. The ribotypes of the St and La families are present in the nuclear genome of ×L. bergrothii in almost equal proportions. A comparison of intron and exon sequences of the trnL gene in the chloroplast DNA of Leymus arenarius, Elytrigia repens, and ×L. bergrothii showed that this region in ×L. bergrothii is identical or very close to that of Elytrigia repens, suggesting that Elytrigia repens was the cytoplasmic donor to ×L. bergrothii. Thus, our study confirms the hypothesis that this species represents a sterile first-generation hybrid of Leymus arenarius and Elytrigia repens, reproducing vegetatively.
Collapse
Affiliation(s)
- Elizaveta O. Punina
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Alexander A. Gnutikov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Victoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (A.A.G.); (N.N.N.); (V.S.S.); (A.V.R.)
| |
Collapse
|
6
|
Niessen L, Silva JJ, Frisvad JC, Taniwaki MH. The application of omics tools in food mycology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:423-474. [PMID: 40023565 DOI: 10.1016/bs.afnr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter explores the application of omics technologies in food mycology, emphasizing the significant impact of filamentous fungi on agriculture, medicine, biotechnology and the food industry. The chapter delves into the importance of understanding fungal secondary metabolism due to its implications for human health and industrial use. Several omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are reviewed for their role in studying the genetic potential and metabolic capabilities of food-related fungi. The potential of CRISPR/Cas9 in fungal research is highlighted, showing its ability to unlock the full genetic potential of these organisms. The chapter also addresses the challenges posed by Big Data research in Omics and the need for advanced data processing methods. Through these discussions, the chapter highlights the future benefits and challenges of omics-based research in food mycology and its potential to revolutionize our understanding and utilization of fungi in various domains.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | | | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
7
|
Zhao Y, Kipkoech A, Li ZP, Xu L, Yang JB. Deciphering the Plastome and Molecular Identities of Six Medicinal "Doukou" Species. Int J Mol Sci 2024; 25:9005. [PMID: 39201691 PMCID: PMC11354342 DOI: 10.3390/ijms25169005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The genus Amomum includes over 111 species, 6 of which are widely utilized as medicinal plants and have already undergone taxonomic revision. Due to their morphological similarities, the presence of counterfeit and substandard products remains a challenge. Accurate plant identification is, therefore, essential to address these issues. This study utilized 11 newly sequenced samples and extensive NCBI data to perform molecular identification of the six medicinal "Doukou" species. The plastomes of these species exhibited a typical quadripartite structure with a conserved gene content. However, independent variation shifts of the SC/IR boundaries existed between and within species. The comprehensive set of genetic sequences, including ITS, ITS1, ITS2, complete plastomes, matK, rbcL, psbA-trnH, and ycf1, showed varying discrimination of the six "Doukou" species based on both distance and phylogenetic tree methods. Among these, the ITS, ITS1, and complete plastome sequences demonstrated the highest identification success rate (3/6), followed by ycf1 (2/6), and then ITS2, matK, and psbA-trnH (1/6). In contrast, rbcL failed to identify any species. This research established a basis for a reliable molecular identification method for medicinal "Doukou" plants to protect wild plant resources, promote the sustainable use of medicinal plants, and restrict the exploitation of these resources.
Collapse
Affiliation(s)
- Ying Zhao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (A.K.); (Z.-P.L.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Research Center of Perennial Rice Engineering and Technology, School of Agriculture, Yunnan University, Kunming 650201, China;
| | - Amos Kipkoech
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (A.K.); (Z.-P.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Peng Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (A.K.); (Z.-P.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650091, China
| | - Ling Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Research Center of Perennial Rice Engineering and Technology, School of Agriculture, Yunnan University, Kunming 650201, China;
| | - Jun-Bo Yang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| |
Collapse
|
8
|
Hopkins L, Yim K, Rumora A, Baykus MF, Martinez L, Jimenez L. Genotypic Identification of Trees Using DNA Barcodes and Microbiome Analysis of Rhizosphere Microbial Communities. Genes (Basel) 2024; 15:865. [PMID: 39062644 PMCID: PMC11275894 DOI: 10.3390/genes15070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
DNA barcodes can provide accurate identification of plants. We used previously reported DNA primers targeting the internal transcribed spacer (ITS1) region of the nuclear ribosomal cistron, internal transcribed spacer (ITS2), and chloroplast trnL (UAA) intron to identify four trees at Bergen Community College. Two of the four trees were identified as Acer rubrum and Fagus sylvatica. However, Quercus was only identified at the genus level, and the fourth tree did not show similar identification between barcodes. Next-generation sequencing of 16S rRNA genes showed that the predominant bacterial communities in the rhizosphere mainly consisted of the Pseudomonadota, Actinomycetota, Bacteroidota, and Acidobacteriota. A. rubrum showed the most diverse bacterial community while F. sylvatica was less diverse. The genus Rhodoplanes showed the highest relative bacterial abundance in all trees. Fungal ITS sequence analysis demonstrated that the communities predominantly consisted of the Ascomycota and Basidiomycota. Quercus showed the highest fungi diversity while F. sylvatica showed the lowest. Russula showed the highest abundance of fungi genera. Average similarity values in the rhizosphere for fungi communities at the phylum level were higher than for bacteria. However, at the genus level, bacterial communities showed higher similarities than fungi. Similarity values decreased at lower taxonomical levels for both bacteria and fungi, indicating each tree has selected for specific bacterial and fungal communities. This study confirmed the distinctiveness of the microbial communities in the rhizosphere of each tree and their importance in sustaining and supporting viability and growth but also demonstrating the limitations of DNA barcoding with the primers used in this study to identify genus and species for some of the trees. The optimization of DNA barcoding will require additional DNA sequences to enhance the resolution and identification of trees at the study site.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis Jimenez
- Biology and Horticulture Department, Bergen Community College, 400 Paramus Road, Paramus, NJ 07652, USA; (L.H.); (K.Y.); (A.R.); (M.F.B.); (L.M.)
| |
Collapse
|
9
|
Song G, Shin D, Kim JS. Microbiome changes in Akanthomyces attenuatus JEF-147-infected two-spotted spider mites. J Invertebr Pathol 2024; 204:108102. [PMID: 38604562 DOI: 10.1016/j.jip.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.
Collapse
Affiliation(s)
- Gahyeon Song
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea.
| |
Collapse
|
10
|
Amosova AV, Gnutikov AA, Rodionov AV, Loskutov IG, Nosov NN, Yurkevich OY, Samatadze TE, Zoshchuk SA, Muravenko OV. Genome Variability in Artificial Allopolyploid Hybrids of Avena sativa L. and Avena macrostachya Balansa ex Coss. et Durieu Based on Marker Sequences of Satellite DNA and the ITS1-5.8S rDNA Region. Int J Mol Sci 2024; 25:5534. [PMID: 38791572 PMCID: PMC11122565 DOI: 10.3390/ijms25105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Gnutikov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Igor G. Loskutov
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Carter O, MacWilliams J, Nachappa P. Development of a real-time PCR assay for detection of hemp russet mite (Aculops cannabicola). ENVIRONMENTAL ENTOMOLOGY 2024; 53:34-39. [PMID: 37535869 DOI: 10.1093/ee/nvad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 08/05/2023]
Abstract
Of the many arthropod species affecting hemp (Cannabis sativa L.) cultivation in the United States, one species of particular importance is the hemp russet mite (Aculops cannabicola, HRM). Hemp russet mite is a microscopic arthropod which feeds on all parts of hemp plants. Due to its minute size, HRM can proliferate undetected for a long time, complicating management efforts and causing serious economic losses. DNA sequencing and PCR assays can facilitate accurate identification and early detection of HRM in infested-plants. Therefore, a real-time SYBR Green based species-specific PCR assay (quantitative PCR, qPCR) was developed for the identification of HRM DNA by amplification of a 104 bp Internal Transcribed Spacer 1 (ITS1) sequence. The detection limit was estimated to be approximately 48 copies of the HRM marker gene sequence. The real-time-PCR assay is rapid, detects all life stages of mite under 2 hours. A 10-fold serial dilution of the plasmid DNA containing the ITS1 insert were used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay showed a strong linear relationship with HRM DNA with R2 of 0.96. The assay was tested against several commonly found hemp pests including two-spotted spider mite and western flower thrips to determine specificity of the assay and to show that no non-target species DNA was amplified. The outcomes of this research will have important applications for agricultural biosecurity through accurate identification of HRM, early detection and timely deployment of management tactics to manage and prevent pest outbreaks.
Collapse
Affiliation(s)
- Olivia Carter
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacob MacWilliams
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Onwusereaka CO, Jalaludin J, Oluchi SE, Poh Choo VC. New generation sequencing: molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0004. [PMID: 38214730 DOI: 10.1515/reveh-2023-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The exposure of occupants to indoor air pollutants has increased in recent decades. The aim of this review is to discuss an overview of new approaches that are used to study fungal aerosols. Thus, this motivation was to compensate the gaps caused by the use of only traditional approaches in the study of fungal exposure. CONTENT The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022. SUMMARY AND OUTLOOK A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
Collapse
Affiliation(s)
- Cynthia Oluchi Onwusereaka
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Sampson Emilia Oluchi
- Department of Community Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | | |
Collapse
|
13
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
14
|
Wilson AW, Eberhardt U, Nguyen N, Noffsinger CR, Swenie RA, Loucks JL, Perry BA, Herrera M, Osmundson TW, DeLong-Duhon S, Beker HJ, Mueller GM. Does One Size Fit All? Variations in the DNA Barcode Gaps of Macrofungal Genera. J Fungi (Basel) 2023; 9:788. [PMID: 37623559 PMCID: PMC10455624 DOI: 10.3390/jof9080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The nuclear ribosomal internal transcribed spacer (nrITS) region has been widely used in fungal diversity studies. Environmental metabarcoding has increased the importance of the fungal DNA barcode in documenting fungal diversity and distribution. The DNA barcode gap is seen as the difference between intra- and inter-specific pairwise distances in a DNA barcode. The current understanding of the barcode gap in macrofungi is limited, inhibiting the development of best practices in applying the nrITS region toward research on fungal diversity. This study examined the barcode gap using 5146 sequences representing 717 species of macrofungi from eleven genera, eight orders and two phyla in datasets assembled by taxonomic experts. Intra- and inter-specific pairwise distances were measured from sequence and phylogenetic data. The results demonstrate that barcode gaps are influenced by differences in intra- and inter-specific variance in pairwise distances. In terms of DNA barcode behavior, variance is greater in the ITS1 than ITS2, and variance is greater in both relative to the combined nrITS region. Due to the difference in variance, the barcode gaps in the ITS2 region are greater than in the ITS1. Additionally, the taxonomic approach of "splitting" taxa into numerous taxonomic units produces greater barcode gaps when compared to "lumping". The results show variability in the barcode gaps between fungal taxa, demonstrating a need to understand the accuracy of DNA barcoding in quantifying species richness. For taxonomic studies, variability in nrITS sequence data supports the application of multiple molecular markers to corroborate the taxonomic and systematic delineation of species.
Collapse
Affiliation(s)
| | - Ursula Eberhardt
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Nhu Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, 3190 Maile Way, St. John 102, Honolulu, HI 96822, USA
| | - Chance R. Noffsinger
- Department of Ecology and Evolutionary Biology, University of Tennessee, Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
| | - Rachel A. Swenie
- Department of Ecology and Evolutionary Biology, University of Tennessee, Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
| | | | - Brian A. Perry
- Department of Biological Sciences, California State University East Bay, 25800 Carlos Bee Blvd., Hayward, CA 94542, USA
| | - Mariana Herrera
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Todd W. Osmundson
- Biology Department, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | | | - Henry J. Beker
- Royal Holloway College, University of London, London WC1E 7HU, UK
- Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium
| | | |
Collapse
|
15
|
Belair M, Pensec F, Jany JL, Le Floch G, Picot A. Profiling Walnut Fungal Pathobiome Associated with Walnut Dieback Using Community-Targeted DNA Metabarcoding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2383. [PMID: 37376008 DOI: 10.3390/plants12122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Walnut dieback can be caused by several fungal pathogenic species, which are associated with symptoms ranging from branch dieback to fruit necrosis and blight, challenging the one pathogen-one disease concept. Therefore, an accurate and extensive description of the walnut fungal pathobiome is crucial. To this end, DNA metabarcoding represents a powerful approach provided that bioinformatic pipelines are evaluated to avoid misinterpretation. In this context, this study aimed to determine (i) the performance of five primer pairs targeting the ITS region in amplifying genera of interest and estimating their relative abundance based on mock communities and (ii) the degree of taxonomic resolution using phylogenetic trees. Furthermore, our pipelines were also applied to DNA sequences from symptomatic walnut husks and twigs. Overall, our results showed that the ITS2 region was a better barcode than ITS1 and ITS, resulting in significantly higher sensitivity and/or similarity of composition values. The ITS3/ITS4_KYO1 primer set allowed to cover a wider range of fungal diversity, compared to the other primer sets also targeting the ITS2 region, namely, GTAA and GTAAm. Adding an extraction step to the ITS2 sequence influenced both positively and negatively the taxonomic resolution at the genus and species level, depending on the primer pair considered. Taken together, these results suggested that Kyo set without ITS2 extraction was the best pipeline to assess the broadest fungal diversity, with a more accurate taxonomic assignment, in walnut organs with dieback symptoms.
Collapse
Affiliation(s)
- Marie Belair
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| |
Collapse
|
16
|
Zhou W, Zhou X, Cai L, Jiang Q, Zhang R. Temporal and Habitat Dynamics of Soil Fungal Diversity in Gravel-Sand Mulching Watermelon Fields in the Semi-Arid Loess Plateau of China. Microbiol Spectr 2023; 11:e0315022. [PMID: 37139552 PMCID: PMC10269508 DOI: 10.1128/spectrum.03150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
Mulching is an important agricultural management tool for increasing watermelon productivity and land-use efficiency because it helps improve water use efficiency and reduce soil erosion. However, there is relatively little available information regarding the effects of long-term continuous monoculture farming on soil fungal communities and related fungal pathogens in arid and semiarid regions. In this study, we characterized the fungal communities of four treatment groups, including gravel-sand-mulched farmland, gravel-sand-mulched grassland, fallow gravel-sand-mulched grassland, and native grassland, using amplicon sequencing. Our results revealed that the soil fungal communities differed significantly between mulched farmland and mulched grassland as well as the fallow mulched grassland. Gravel-sand mulch significantly impaired the diversity and composition of soil fungal communities. Soil fungal communities were more sensitive to gravel-sand mulch in grassland than in other habitats. Long-term continuous monoculture (more than 10 years) led to decreased abundance of Fusarium species, which contains include agronomically important plant pathogens. In the gravel-mulched cropland, some Penicillium and Mortierella fungi were significantly enriched with increasing mulch duration, suggesting potential beneficial properties of those fungi that could be applied to disease control. We also found that long-term gravel mulching in continuous monoculture farming could potentially form disease-suppressive soils and alter soil microbial biodiversity and fertility. Our study provides insights into the exploration of novel agricultural management strategies along with continuous monoculture practice to control watermelon wilt disease by maintaining a more sustainable and healthier soil environment. IMPORTANCE Gravel-sand mulching is a traditional agricultural practice in arid and semiarid regions, providing a surface barrier for soil and water conservation. However, application of such practice in monocropping systems may lead to outbreaks of several devastating plant diseases, such as watermelon Fusarium wilt. Our results with amplicon sequencing suggest that soil fungal communities differ significantly between mulched farmland and mulched grassland and are more sensitive to gravel-sand mulch in grassland. Under continuous monoculture regimens, long-term gravel mulch is not necessarily detrimental and may result in decreased Fusarium abundance. However, some known beneficial soil fungi may be enriched in the gravel-mulch cropland as mulch duration increases. A possible explanation for the reduction in Fusarium abundance may be the formation of disease-suppressive soils. This study provides insight into the need to explore alternative strategies using beneficial microbes for sustainable watermelon wilt control in continuous monocropping system.
Collapse
Affiliation(s)
- Wenqing Zhou
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, People’s Republic of China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qi Jiang
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, People’s Republic of China
| | - Rong Zhang
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, People’s Republic of China
| |
Collapse
|
17
|
Massa B, Tagliavia M, Buzzetti FM, Fontana P, Carotti G, Bardiani M, Leandri F, Scherini R, Verde GL. A taxonomic revision of the Palaearctic genus Roeseliana (Orthoptera: Tettigoniidae: Tettigoniinae: Platycleidini): a case of ongoing Mediterranean speciation. Zootaxa 2023; 5270:351-400. [PMID: 37518157 DOI: 10.11646/zootaxa.5270.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/01/2023]
Abstract
The genus Roeseliana presently includes 10 specific or subspecific taxa, but following different authors some of them are considered synonyms. However, the authors who have treated these taxa often did not agree with the synonymies, in particular, concerning some taxa, such as R. fedtschenkoi (Saussure, 1874) and R. roeselii (Hagenbach, 1822). The present authors examined hundreds of specimens of different taxa, for the first time were able to obtain the translation from the Russian of the description of R. fedtschenkoi, compared the main morphological characters used to discriminate different taxa, biometrics, bioacoustics and genetics of some taxa. This allowed them to conclude that it is possible to recognize the following taxa: 1) Roeseliana roeselii (Hagenbach, 1822) widespread in the Palaearctic Region and imported in North America; 2) Roeseliana fedtschenkoi (Saussure, 1874) in Uzbekistan and Turkmenistan; 3) Roeseliana pylnovi (Uvarov, 1924) in the Caucasian region; 4) Roeseliana bispina (Bolívar, 1899) in Turkey; 5) Roeseliana azami (Finot, 1892) from the Mediterranean France through Italian peninsula (formerly R. azami minor Nadig, 1961); 6) R. ambitiosa (Uvarov, 1924) on the Balkan peninsula; 7) Roeseliana n. sp. Lemonnier-Darcemont & Darcemont, (in press) on Epirus (Greece and Albania); 8) Roeseliana brunneri Ramme 1951 in north east Italy (Veneto, Friuli and Po Valley); 9) Roeseliana oporina (Bolívar, 1887) in Spain.
Collapse
Affiliation(s)
- Bruno Massa
- Department of Agricultural; Food and Forest Sciences; University of Palermo; Viale delle Scienze; 13; 90128 Palermo; Italy.
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR); Via Ugo La Malfa 153; 90146 Palermo; Italy.
| | - Filippo Maria Buzzetti
- Fondazione Museo Civico di Rovereto; Zoology Section; Borgo Santa Caterina 41; 38068 Rovereto (Trento); Italy.
| | - Paolo Fontana
- Fondazione Edmund Mach di San Michele all'Adige-Centro Trasferimento Tecnologico; Via E. Mach; 39098 Trento; Italy.
| | | | - Marco Bardiani
- Centro Nazionale Carabinieri Biodiversità; Bosco Fontana; Strada Mantova 29; 46045 Marmirolo (Mantova); Italy.
| | - Fausto Leandri
- World Biodiversity Association onlus c/o Museo Civico di Storia Naturale Lungadige Porta Vittoria; 9; 37129 Verona; Italy.
| | | | - Gabriella Lo Verde
- Department of Agricultural; Food and Forest Sciences; University of Palermo; Viale delle Scienze; 13; 90128 Palermo; Italy.
| |
Collapse
|
18
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
19
|
Prudnikow L, Pannicke B, Wünschiers R. A primer on pollen assignment by nanopore-based DNA sequencing. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The possibility to identify plants based on the taxonomic information coming from their pollen grains offers many applications within various biological disciplines. In the past and depending on the application or research in question, pollen origin was analyzed by microscopy, usually preceded by chemical treatment methods. This procedure for identification of pollen grains is both time-consuming and requires expert knowledge of morphological features. Additionally, these microscopically recognizable features usually have a low resolution at species-level. Since a few decades, DNA has been used for the identification of pollen taxa, as sequencing technologies evolved both in their handling and affordability. We discuss advantages and challenges of pollen DNA analyses compared to traditional methods. With readers with little experience in this field in mind, we present a hands-on primer for genetic pollen analysis by nanopore sequencing. As our lab mainly works with pollen collected within agroecological research projects, we focus on pollen collected by pollinating insects. We briefly consider sample collection, storage and processing in the laboratory as well as bioinformatic aspects. Currently, pollen metabarcoding is mostly conducted with next-generation sequencing methods that generate short sequence reads (<1 kb). Increasingly, however, pollen DNA analysis is carried out using the long-read generating (several kb), low-budget and mobile MinION nanopore sequencing platform by Oxford Nanopore Technologies. Therefore, we are focusing on aspects for palynology with the MinION DNA sequencing device.
Collapse
|
20
|
Belyakov EA, Mikhaylova YV, Machs EM, Zhurbenko PM, Rodionov AV. Hybridization and diversity of aquatic macrophyte Sparganium L. (Typhaceae) as revealed by high-throughput nrDNA sequencing. Sci Rep 2022; 12:21610. [PMID: 36517537 PMCID: PMC9750990 DOI: 10.1038/s41598-022-25954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Sparganium is an emergent aquatic macrophyte widely spread in temperate and subtropical zones. Taxa of this genus feature high phenotypic plasticity and can produce interspecific hybrids. By means of high-throughput sequencing of the internal transcribed spacer (ITS1) of 35S rDNA, the status of 15 Eurasian Sparganium species and subspecies was clarified and the role of hybridization events in the recent evolution of the genus was investigated. It has been shown that a number of species such as S. angustifolium, S. fallax and S. subglobosum have homogenized rDNA represented by one major ribotype. The rDNA of other taxa is represented by two or more major ribotypes. Species with high rDNA heterogeneity are apparently of hybrid origin. Based on the differences in rDNA patterns, intraspecific diversity was identified in S. probatovae and S. emersum. Thus, we have concluded that Sparganium has extensive interspecific hybridization at the subgenus level, and there may also be occasional hybridization between species from different subgenera.
Collapse
Affiliation(s)
- Evgeny A. Belyakov
- grid.464570.40000 0001 1092 3616Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Nekouz District, 109, Borok, Russia 152742 ,grid.446199.70000 0000 8543 3323Cherepovets State University, Lunacharsky Ave., 5, Cherepovets, Russia 162600
| | - Yulia V. Mikhaylova
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Eduard M. Machs
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Peter M. Zhurbenko
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| | - Aleksandr V. Rodionov
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| |
Collapse
|
21
|
Lack of ITS sequence homogenization in Erysimum species (Brassicaceae) with different ploidy levels. Sci Rep 2022; 12:16907. [PMID: 36207443 PMCID: PMC9546898 DOI: 10.1038/s41598-022-20194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The internal transcribed spacers (ITS) exhibit concerted evolution by the fast homogenization of these sequences at the intragenomic level. However, the rate and extension of this process are unclear and might be conditioned by the number and divergence of the different ITS copies. In some cases, such as hybrid species and polyploids, ITS sequence homogenization appears incomplete, resulting in multiple haplotypes within the same organism. Here, we studied the dynamics of concerted evolution in 85 individuals of seven plant species of the genus Erysimum (Brassicaceae) with multiple ploidy levels. We estimated the rate of concerted evolution and the degree of sequence homogenization separately for ITS1 and ITS2 and whether these varied with ploidy. Our results showed incomplete sequence homogenization, especially for polyploid samples, indicating a lack of concerted evolution in these taxa. Homogenization was usually higher in ITS2 than in ITS1, suggesting that concerted evolution operates more efficiently on the former. Furthermore, the hybrid origin of several species appears to contribute to the maintenance of high haplotype diversity, regardless of the level of ploidy. These findings indicate that sequence homogenization of ITS is a dynamic and complex process that might result in varying intra- and inter-genomic diversity levels.
Collapse
|
22
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Gnutikov AA, Nosov NN, Loskutov IG, Blinova EV, Shneyer VS, Probatova NS, Rodionov AV. New Insights into the Genomic Structure of Avena L.: Comparison of the Divergence of A-Genome and One C-Genome Oat Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:1103. [PMID: 35567104 PMCID: PMC9102028 DOI: 10.3390/plants11091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We used next-generation sequencing analysis of the 3′-part of 18S rDNA, ITS1, and a 5′-part of the 5.8S rDNA region to understand genetic variation among seven diploid A-genome Avena species. We used 4−49 accessions per species that represented the As genome (A. atlantica, A. hirtula, and wiestii), Ac genome (A. canariensis), Ad genome (A. damascena), Al genome (A. longiglumis), and Ap genome (A. prostrata). We also took into our analysis one C-genome species, A. clauda, which previously was found to be related to A-genome species. The sequences of 169 accessions revealed 156 haplotypes of which seven haplotypes were shared by two to five species. We found 16 ribotypes that consisted of a unique sequence with a characteristic pattern of single nucleotide polymorphisms and deletions. The number of ribotypes per species varied from one in A. longiglumis to four in A. wiestii. Although most ribotypes were species-specific, we found two ribotypes shared by three species (one for A. damascena, A. hirtula, and A. wiestii, and the second for A. longiglumis, A. atlantica, and A. wiestii), and a third ribotype shared between A. atlantica and A. wiestii. A characteristic feature of the A. clauda ribotype, a diploid C-genome species, is that two different families of ribotypes have been found in this species. Some of these ribotypes are characteristic of Cc-genome species, whereas others are closely related to As-genome ribotypes. This means that A. clauda can be a hybrid between As- and C-genome oats.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| | - Igor G. Loskutov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Elena V. Blinova
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Viktoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| | - Nina S. Probatova
- Laboratory of Botany, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| |
Collapse
|
24
|
Sokołowska J, Fuchs H, Celiński K. Assessment of ITS2 Region Relevance for Taxa Discrimination and Phylogenetic Inference among Pinaceae. PLANTS 2022; 11:plants11081078. [PMID: 35448806 PMCID: PMC9029031 DOI: 10.3390/plants11081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The internal transcribed spacer 2 (ITS2) is one of the best-known universal DNA barcode regions. This short nuclear region is commonly used not only to discriminate taxa, but also to reconstruct phylogenetic relationships. However, the efficiency of using ITS2 in these applications depends on many factors, including the family under study. Pinaceae represents the largest family of extant gymnosperms, with many species of great ecological, economic, and medical importance. Moreover, many members of this family are representatives of rare, protected, or endangered species. A simple method for the identification of Pinaceae species based on DNA is necessary for their effective protection, authentication of products containing Pinaceae representatives, or phylogenetic inference. In this study, for the first time, we conducted a comprehensive study summarizing the legitimacy of using the ITS2 region for these purposes. A total of 368 sequences representing 71 closely and distantly related taxa of the seven genera and three subfamilies of Pinaceae were characterized for genetic variability and divergence. Intra- and interspecies distances of ITS2 sequences as well as rates of sequence identification and taxa discrimination among Pinaceae at various taxonomic levels, i.e., the species complex, genus, subfamily, and family, were also determined. Our study provides a critical assessment of the suitability of the ITS2 nuclear DNA region for taxa discrimination among Pinaceae. The obtained results clearly show that its usefulness for this purpose is limited.
Collapse
Affiliation(s)
- Joanna Sokołowska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| | - Konrad Celiński
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, School of Natural Sciences, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
- Correspondence:
| |
Collapse
|
25
|
Yang JH, Oh SY, Kim W, Hur JS. Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum. MYCOBIOLOGY 2022; 50:55-65. [PMID: 35291596 PMCID: PMC8890557 DOI: 10.1080/12298093.2022.2040112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 05/31/2023]
Abstract
Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture- and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.
Collapse
Affiliation(s)
- Ji Ho Yang
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
26
|
Study of the diversity of 16S-23S rDNA internal transcribed spacer (ITS) typing of Escherichia coli strains isolated from various biotopes in Tunisia. Arch Microbiol 2021; 204:32. [PMID: 34923609 DOI: 10.1007/s00203-021-02684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
We investigated the 16S-23S rRNA intergenic spacer region (ISR)-PCR and the phylogenetic PCR analyses of 150 Escherichia coli isolates as tools to explore their diversity, according to their sampling origins, and their relative dominance in these sampling sources. These genetic markers are used to explore phylogenetic and genetic relationships of these 150 E. coli isolates recovered from different environmental sources (water, food, animal, human and vegetables). These isolates are tested for their biochemical pattern and later genotyped through the 16S-23S rRNA intergenic spacer PCR amplification and their polymorphism investigation of PCR-amplified 16S-23S rDNA ITS. The main results of the pattern band profile revealed one to four DNA fragments. Distributing 150 E. coli isolates according to their ITS and using RS-PCR, revealed four genotypes and four subtypes. The DNA fragment size ranged from 450 to 550 bp. DNA band patterns analysis revealed considerable genetic diversity in interspecies. Thus, the 450 and 550 bp sizes of the common bands in all E. coli isolates are highly diversified. Genotype I appeared as the most frequent with 77.3% (116 isolates), genotype II with 12% (18 isolates); genotype III with 9.7% (14 isolates), and the IV rarely occurred with 4% (2 isolates). Distributing the E. coli phylogroups showed 84 isolates (56%) of group A, 35 isolates (23.3%) of group B1, 28 isolates (18.7%) of group B2 and only three isolates (2%) of group D.
Collapse
|
27
|
Islam SMR, Tanzina AY, Foysal MJ, Hoque MN, Rumi MH, Siddiki AMAMZ, Tay ACY, Hossain MJ, Bakar MA, Mostafa M, Mannan A. Insights into the nutritional properties and microbiome diversity in sweet and sour yogurt manufactured in Bangladesh. Sci Rep 2021; 11:22667. [PMID: 34811394 PMCID: PMC8608820 DOI: 10.1038/s41598-021-01852-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Yogurt is one of the most frequently consumed dairy products for nutritional benefits. Although yogurt is enriched with probiotics, it is susceptible to spoilage because of the presence of pathogenic microbes. Spoiled yogurt if consumed can cause food-borne diseases. This study aimed to assess the nutritional composition and microbiome diversity in yogurt manufactured in Bangladesh. Microbial diversity was analyzed through high-throughput sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region. From nutritional analysis, significantly (P < 0.05) higher pH, fat, moisture, total solid and solid-non-fat contents (%) were observed in sweet yogurt. Following the classification of Illumina sequences, 84.86% and 72.14% of reads were assigned to bacterial and fungal genera, respectively, with significantly higher taxonomic richness in sour yogurt prepared from buffalo. A significant difference in bacterial (Ppermanova = 0.001) and fungal (Ppermanova = 0.013) diversity between sweet and sour yogurt was recorded. A total of 76 bacterial and 70 fungal genera were detected across these samples which were mostly represented by Firmicutes (92.89%) and Ascomycota (98%) phyla, respectively. This is the first study that accentuates nutritional profiles and microbiome diversity of Bangladeshi yogurt which are crucial in determining both active and passive health effects of yogurt consumption in individuals.
Collapse
Affiliation(s)
- S M Rafiqul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh.
| | - Afsana Yeasmin Tanzina
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Meheadi Hasan Rumi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, The Marshall Centre, University of Western Australia, Perth, WA, 6009, Australia
| | - M Jakir Hossain
- Forest Chemistry Division, Bangladesh Forest Research Institute, Chattogram, 4211, Bangladesh
| | - Muhammad Abu Bakar
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Chattogram, 4220, Bangladesh
| | - Mohammad Mostafa
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Chattogram, 4220, Bangladesh
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, 4331, Bangladesh.
| |
Collapse
|
28
|
Velez P, Tapia-Torres Y, García-Oliva F, Gasca-Pineda J. Small-scale variation in a pristine montane cloud forest: evidence on high soil fungal diversity and biogeochemical heterogeneity. PeerJ 2021; 9:e11956. [PMID: 34447634 PMCID: PMC8364316 DOI: 10.7717/peerj.11956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
Montane cloud forests are fragile biodiversity hotspots. To attain their conservation, disentangling diversity patterns at all levels of ecosystem organization is mandatory. Biotic communities are regularly structured by environmental factors even at small spatial scales. However, studies at this scale have received less attention with respect to larger macroscale explorations, hampering the robust view of ecosystem functioning. In this sense, fungal small-scale processes remain poorly understood in montane cloud forests, despite their relevance. Herein, we analyzed soil fungal diversity and ecological patterns at the small-scale (within a 10 m triangular transect) in a pristine montane cloud forest of Mexico, using ITS rRNA gene amplicon Illumina sequencing and biogeochemical profiling. We detected a taxonomically and functionally diverse fungal community, dominated by few taxa and a large majority of rare species (81%). Undefined saprotrophs represented the most abundant trophic guild. Moreover, soil biogeochemical data showed an environmentally heterogeneous setting with patchy clustering, where enzymatic activities suggest distinctive small-scale soil patterns. Our results revealed that in this system, deterministic processes largely drive the assemblage of fungal communities at the small-scale, through multifactorial environmental filtering.
Collapse
Affiliation(s)
- Patricia Velez
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yunuen Tapia-Torres
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - Jaime Gasca-Pineda
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| |
Collapse
|
29
|
Yung L, Bertheau C, Tafforeau F, Zappelini C, Valot B, Maillard F, Selosse MA, Viotti C, Binet P, Chiapusio G, Chalot M. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146692. [PMID: 33838361 DOI: 10.1016/j.scitotenv.2021.146692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-mycorhizal plant and its capacity to adapt to TM-contaminated environments remains unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known endophytic taxa and from the supposedly saprotrophic genus Kotlabaea (which was the most abundant). Several ectomycorrhizal fungi such as Inocybe (Agaricomycetes) and Tuber (Pezizomycetes) species were associated with the poplar roots. Most of the Pezizomycetes taxa were present in the highly TM-contaminated area whereas Agaricomycetes tended to be reduced. Despite being a known non-mycorrhizal plant, nettle was associated with a significant proportion of ectomycorrhizal OTU (9.7%), suggesting some connexions between the poplar and the nettle root mycobiomes. Finally, our study raised the interest in reconsidering the fungal networking beyond known mycorrhizal interactions.
Collapse
Affiliation(s)
- Loïc Yung
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France.
| | - Coralie Bertheau
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Flavien Tafforeau
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Cyril Zappelini
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Benoit Valot
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - François Maillard
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversite (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséeum national d'Histoire naturelle, 75000 Paris, France; Faculty of Biology, University of Gdan sk, ul. Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Chloé Viotti
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Philippe Binet
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Geneviève Chiapusio
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Michel Chalot
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, 54000 Nancy, France
| |
Collapse
|
30
|
Dellière S, Dannaoui E, Fieux M, Bonfils P, Gricourt G, Demontant V, Podglajen I, Woerther PL, Angebault C, Botterel F. Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza? J Fungi (Basel) 2021; 7:550. [PMID: 34356929 PMCID: PMC8305266 DOI: 10.3390/jof7070550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Fungal ball (FB) rhinosinusitis (RS) is the main type of non-invasive fungal RS. Despite positive direct examination (DE) of biopsies, culture remains negative in more than 60% of cases. The aim of the study was to evaluate the performance/efficacy of targeted metagenomics (TM) to analyze microbiota and mycobiota in FB and find microbial associations. Forty-five sinus biopsies from patients who underwent surgery for chronic RS were included. After DE and culture, DNA was extracted, then fungal ITS1-ITS2 and bacterial V3-V4 16S rDNA loci were sequenced (MiSeqTM Illumina). Operational taxonomic units (OTUs) were defined via QIIME and assigned to SILVA (16S) and UNITE (ITS) databases. Statistical analyses were performed using SHAMAN. Thirty-eight patients had FB and seven had non-fungal rhinosinusitis (NFRS). DE and culture of FB were positive for fungi in 97.3 and 31.6% of patients, respectively. TM analysis of the 38 FB yielded more than one fungal genus in 100% of cases, with Aspergillus in 89.5% (34/38). Haemophilus was over-represented in FB with >1000 reads/sample in 47.3% (18/38) compared to NFRS (p < 0.001). TM allowed fungal identification in biopsies with negative culture. Haemophilus was associated with FB. Pathogenesis could result from fungi-bacteria interactions in a mixed biofilm-like structure.
Collapse
Affiliation(s)
- Sarah Dellière
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- Unité de Parasitologie-Mycologie, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris, Université de Paris, 75010 Paris, France
| | - Eric Dannaoui
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
- Unité de Parasitologie-Mycologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France
| | - Maxime Fieux
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
- Service d’Otorhinolaryngologie, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Pierre Bonfils
- Département d’Otorhinolaryngologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France; (M.F.); (P.B.)
| | - Guillaume Gricourt
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Vanessa Demontant
- Plate-Forme Genomiques, APHP-IMRB, GHU Hôpitaux Universitaires Henri-Mondor, UPEC, 94010 Créteil, France; (G.G.); (V.D.)
| | - Isabelle Podglajen
- Unité de Bactériologie, Département de Microbiologie, Hôpital Européen George Pompidou, APHP, Université de Paris, 75015 Paris, France;
| | - Paul-Louis Woerther
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- Unité de Bactériologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France
| | - Cécile Angebault
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, APHP, GHU Hôpitaux Universitaires Henri-Mondor, 94010 Créteil, France; (S.D.); (C.A.)
- UR DYNAMiC 7380, Faculté de Santé, Université Paris-Est Créteil, 94010 Créteil, France; (E.D.); (P.-L.W.)
- UR DYNAMiC 7380, Ecole Nationale Vétérinaire d’Alfort, USC Anses, 94700 Maison-Alfort, France
| |
Collapse
|
31
|
Tangaro M, Defazio G, Fosso B, Licciulli VF, Grillo G, Donvito G, Lavezzo E, Baruzzo G, Pesole G, Santamaria M. ITSoneWB: profiling global taxonomic diversity of eukaryotic communities on Galaxy. Bioinformatics 2021; 37:4253-4254. [PMID: 34117876 PMCID: PMC9502156 DOI: 10.1093/bioinformatics/btab431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
Summary ITSoneWB (ITSone WorkBench) is a Galaxy-based bioinformatic environment where comprehensive and high-quality reference data are connected with established pipelines and new tools in an automated and easy-to-use service targeted at global taxonomic analysis of eukaryotic communities based on Internal Transcribed Spacer 1 variants high-throughput sequencing. Availability and implementation ITSoneWB has been deployed on the INFN-Bari ReCaS cloud facility and is freely available on the web at http://itsonewb.cloud.ba.infn.it/galaxy. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marco Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy
| | - Giuseppe Defazio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari 'A. Moro', Bari 70126, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy
| | - Vito Flavio Licciulli
- Institute of Biomedical Technologies, National Research Council, Bari Unit, 70126 Bari, Italy
| | - Giorgio Grillo
- Institute of Biomedical Technologies, National Research Council, Bari Unit, 70126 Bari, Italy
| | - Giacinto Donvito
- National Institute for Nuclear Physics (INFN), Section of Bari, Bari 70126, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, 35131, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari 'A. Moro', Bari 70126, Italy
| | - Monica Santamaria
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy
| |
Collapse
|
32
|
Abstract
Seagrasses are marine flowering plants that provide critical ecosystem services in coastal environments worldwide. Marine fungi are often overlooked in microbiome and seagrass studies, despite terrestrial fungi having critical functional roles as decomposers, pathogens, or endophytes in global ecosystems. Here, we characterize the distribution of fungi associated with the seagrass Zostera marina, using leaves, roots, and rhizosphere sediment from 16 locations across its full biogeographic range. Using high-throughput sequencing of the ribosomal internal transcribed spacer (ITS) region and 18S rRNA gene, we first measured fungal community composition and diversity. We then tested hypotheses of neutral community assembly theory and the degree to which deviations suggested that amplicon sequence variants (ASVs) were plant selected or dispersal limited. Finally, we identified a core mycobiome and investigated the global distribution of differentially abundant ASVs. We found that the fungal community is significantly different between sites and that the leaf mycobiome follows a weak but significant pattern of distance decay in the Pacific Ocean. Generally, there was evidence for both deterministic and stochastic factors contributing to community assembly of the mycobiome, with most taxa assembling through stochastic processes. The Z. marina core leaf and root mycobiomes were dominated by unclassified Sordariomycetes spp., unclassified Chytridiomycota lineages (including Lobulomycetaceae spp.), unclassified Capnodiales spp., and Saccharomyces sp. It is clear from the many unclassified fungal ASVs and fungal functional guilds that knowledge of marine fungi is still rudimentary. Further studies characterizing seagrass-associated fungi are needed to understand the roles of these microorganisms generally and when associated with seagrasses. IMPORTANCE Fungi have important functional roles when associated with land plants, yet very little is known about the roles of fungi associated with marine plants, like seagrasses. In this study, we report the results of a global effort to characterize the fungi associated with the seagrass Zostera marina across its full biogeographic range. Although we defined a putative global core fungal community, it is apparent from the many fungal sequences and predicted functional guilds that had no matches to existing databases that general knowledge of seagrass-associated fungi and marine fungi is lacking. This work serves as an important foundational step toward future work investigating the functional ramifications of fungi in the marine ecosystem.
Collapse
|
33
|
Mlaga KD, Mathieu A, Beauparlant CJ, Ott A, Khodr A, Perin O, Droit A. HCK and ABAA: A Newly Designed Pipeline to Improve Fungi Metabarcoding Analysis. Front Microbiol 2021; 12:640693. [PMID: 34025601 PMCID: PMC8134036 DOI: 10.3389/fmicb.2021.640693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The fungi ITS sequence length dissimilarity, non-specific amplicons, including chimaera formed during Polymerase Chain Reaction (PCR), added to sequencing errors, create bias during similarity clustering and abundance estimation in the downstream analysis. To overcome these challenges, we present a novel approach, Hierarchical Clustering with Kraken (HCK), to classify ITS1 amplicons and Abundance-Base Alternative Approach (ABAA) pipeline to detect and filter non-specific amplicons in fungi metabarcoding sequencing datasets. Materials and Methods We compared the performances of both pipelines against QIIME, KRAKEN, and DADA2 using publicly available fungi ITS mock community datasets and using BLASTn as a reference. We calculated the Precision, Recall, F-score using the True-Positive, False-positive, and False-negative estimation. Alpha diversity (Chao1 and Shannon metrics) was also used to evaluate the diversity estimation of our method. Results The analysis shows that ABAA reduced the number of false-positive with all metabarcoding methods tested, and HCK increases precision and recall. HCK, coupled with ABAA, improves the F-score and bring alpha diversity metric value close to that of the BLASTn alpha diversity values when compared to QIIME, KRAKEN, and DADA2. Conclusion The developed HCK-ABAA approach allows better identification of the fungi community structures while avoiding use of a reference database for non-specific amplicons filtration. It results in a more robust and stable methodology over time. The software can be downloaded on the following link: https://bitbucket.org/GottySG36/hck/src/master/.
Collapse
Affiliation(s)
- Kodjovi D Mlaga
- Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | - Alban Mathieu
- Department of Molecular Medicine, Laval University, Quebec, QC, Canada.,Centre de Recherche du CHU de Québec, Quebec, QC, Canada
| | - Charles Joly Beauparlant
- Department of Molecular Medicine, Laval University, Quebec, QC, Canada.,Centre de Recherche du CHU de Québec, Quebec, QC, Canada
| | - Alban Ott
- Research and Innovation, L'Oreal, Paris, France
| | - Ahmad Khodr
- Research and Innovation, L'Oreal, Paris, France
| | | | - Arnaud Droit
- Department of Molecular Medicine, Laval University, Quebec, QC, Canada.,Centre de Recherche du CHU de Québec, Quebec, QC, Canada
| |
Collapse
|
34
|
Soil Metabarcoding Offers a New Tool for the Investigation and Hunting of Truffles in Northern Thailand. J Fungi (Basel) 2021; 7:jof7040293. [PMID: 33924673 PMCID: PMC8069821 DOI: 10.3390/jof7040293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
Truffles (Tuber spp.) are well-known as edible ectomycorrhizal mushrooms, and some species are one of the most expensive foods in the world. During the fruiting process, truffles produce hypogeous ascocarps; a trained pig or dog is needed to locate the ascocarps under the ground. Truffles in northern Thailand have been recorded in association with Betulaalnoides and Carpinus poilanei. In this study, we investigated the soil mycobiota diversity of soil samples from both of these truffle host plants in native forests using environmental DNA metabarcoding to target the internal transcribed spacer 1 (ITS1) region of the rDNA gene for the purposes of investigation of truffle diversity and locating truffles during the non-fruiting phase. In this study, a total of 38 soil samples were collected from different locations. Of these, truffles had been found at three of these locations. Subsequently, a total of 1341 putative taxonomic units (OTUs) were obtained. The overall fungal community was dominated by phylum-level sequences assigned to Ascomycota (57.63%), Basidiomycota (37.26%), Blastocladiomycota (0.007%), Chytridiomycota (0.21%), Glomeromycota (0.01%), Kickxellomycota (0.01%), Mortierellomycota (2.08%), Mucoromycota (0.24%), Rozellomycota (0.01%), Zoopagomycota (0.003%), and unidentified (2.54%). The results revealed that six OTUs were determined to be representative and belonged to the genus Tuber. OTU162, OTU187, OTU447, and OTU530 belonged to T. thailandicum, T. lannaense, T. bomiense, and T. magnatum, whereas OTU105 and OTU720 were acknowledged as unrecognized Tuber species. From 38 locations, OTUs of truffles were found in 33 locations (including three previously known truffle locations). Thus, 30 collection sites were considered new locations for T. thailandicum, T. bomiense, and other unrecognized Tuber species. Interestingly, at 16 new locations, mature ascocarps of truffles that were undergoing the fruiting phase were located underground. All 16 truffle samples were identified as T. thailandicum based on morphological characteristics and molecular phylogenetic analysis. However, ascocarps of other truffle species were not found at the new OTUs representative locations. The knowledge gained from this study can be used to lead researchers to a better understanding of the occurrence of truffles using soil mycobiota diversity investigation. The outcomes of this study will be particularly beneficial with respect to the search and hunt for truffles without the need for trained animals. In addition, the findings of this study will be useful for the management and conservation of truffle habitats in northern Thailand.
Collapse
|
35
|
Choudhary P, Singh BN, Chakdar H, Saxena AK. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 2021; 37:54. [PMID: 33604719 DOI: 10.1007/s11274-021-03019-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.
Collapse
Affiliation(s)
- Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Bansh Narayan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| |
Collapse
|
36
|
Réblová M, Nekvindová J, Kolařík M, Hernández-Restrepo M. Delimitation and phylogeny of Dictyochaeta, and introduction of Achrochaeta and Tubulicolla, genera nova. Mycologia 2021; 113:390-433. [PMID: 33595417 DOI: 10.1080/00275514.2020.1822095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dictyochaeta (Chaetosphaeriaceae) is a phialidic dematiaceous hyphomycete with teleomorphs classified in Chaetosphaeria. It is associated with significant variability of asexual morphological traits, which led to its broad delimitation. In the present study, six loci: nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), nuc 18S rDNA (18S), nuc 28S rDNA (28S), DNA-directed RNA polymerase II second largest subunit gene (RPB2), translation elongation factor 1-α (TEF1-α), and β-tubulin (TUB2), along with comparative morphological and cultivation studies, are used to reevaluate the concept of Dictyochaeta and establish species boundaries. Based on revised species, morphological characteristics of conidia (shape, septation, absence or presence of setulae), collarettes (shape), and setae (presence or absence) and an extension of the conidiogenous cell proved to be important at the generic level. The dual DNA barcoding using ITS and TEF1-α, together with TUB2, facilitated accurate identification of Dictyochaeta species. Thirteen species are accepted, of which seven are characterized in this study; an identification key is provided. It was revealed that D. fuegiana, the type species, is a complex of three distinct species including D. querna and the newly described D. stratosa. Besides, a new species, D. detriticola, and two new combinations, D. callimorpha and D. montana, are proposed. An epitype of D. montana is selected. Dictyochaeta includes saprobes on decaying wood, bark, woody fruits, and fallen leaves. Dictyochaeta is shown to be distantly related to the morphologically similar Codinaea, which is resolved as paraphyletic. Chaetosphaeria talbotii with a Dictyochaeta anamorph represents a novel lineage in the Chaetosphaeriaceae; it is segregated from Dictyochaeta, and a new genus Achrochaeta is proposed. Multigene phylogenetic analysis revealed that D. cylindrospora belongs to the Vermiculariopsiellales, and a new genus Tubulicolla is introduced.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jana Nekvindová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | | |
Collapse
|
37
|
Francioli D, Lentendu G, Lewin S, Kolb S. DNA Metabarcoding for the Characterization of Terrestrial Microbiota-Pitfalls and Solutions. Microorganisms 2021; 9:361. [PMID: 33673098 PMCID: PMC7918050 DOI: 10.3390/microorganisms9020361] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Soil-borne microbes are major ecological players in terrestrial environments since they cycle organic matter, channel nutrients across trophic levels and influence plant growth and health. Therefore, the identification, taxonomic characterization and determination of the ecological role of members of soil microbial communities have become major topics of interest. The development and continuous improvement of high-throughput sequencing platforms have further stimulated the study of complex microbiota in soils and plants. The most frequently used approach to study microbiota composition, diversity and dynamics is polymerase chain reaction (PCR), amplifying specific taxonomically informative gene markers with the subsequent sequencing of the amplicons. This methodological approach is called DNA metabarcoding. Over the last decade, DNA metabarcoding has rapidly emerged as a powerful and cost-effective method for the description of microbiota in environmental samples. However, this approach involves several processing steps, each of which might introduce significant biases that can considerably compromise the reliability of the metabarcoding output. The aim of this review is to provide state-of-the-art background knowledge needed to make appropriate decisions at each step of a DNA metabarcoding workflow, highlighting crucial steps that, if considered, ensures an accurate and standardized characterization of microbiota in environmental studies.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland;
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| |
Collapse
|
38
|
Dada N, Jupatanakul N, Minard G, Short SM, Akorli J, Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. MICROBIOME 2021; 9:36. [PMID: 33522965 PMCID: PMC7849159 DOI: 10.1186/s40168-020-00987-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 05/17/2023]
Abstract
In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract.
Collapse
Affiliation(s)
- Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
| | - Natapong Jupatanakul
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Neung, Thailand
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, USA
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
39
|
The Effect of a High-Grain Diet on the Rumen Microbiome of Goats with a Special Focus on Anaerobic Fungi. Microorganisms 2021; 9:microorganisms9010157. [PMID: 33445538 PMCID: PMC7827659 DOI: 10.3390/microorganisms9010157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.
Collapse
|
40
|
Besse P, Da Silva D, Grisoni M. Plant DNA Barcoding Principles and Limits: A Case Study in the Genus Vanilla. Methods Mol Biol 2021; 2222:131-148. [PMID: 33301092 DOI: 10.1007/978-1-0716-0997-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Powerful DNA barcodes have been much more difficult to define in plants than in animals. In 2009, the international Consortium for the Barcoding Of Life (CBOL) chose the combination of the chloroplast genes (rbcL + matK) as the proposed official barcode for plants. However, this system has got important limits. First, any barcode system will only be useful if there is a clear barcode gap and if species are monophyletic. Second, chloroplast and mitochondrial (COI gene used for animals) barcodes will not be usable for discriminating hybrid species. Moreover, it was also shown that, using chloroplast regions, maximum species discrimination would be around 70% and very variable among plant groups. This is why many authors have more recently advocated for the addition of the nuclear ITS region to this barcode because it reveals more variations and allows the resolution of hybrid or closely related species. We tested different chloroplast genes (rbcL, matK, psaB, psbC) and the nuclear ITS region in the genus Vanilla, a taxonomically complex group and therefore a good model to test for the efficiency of different barcode systems. We found that the CBOL official barcode system performed relatively poorly in Vanilla (76% species discrimination), and we demonstrate that adding ITS to this barcode system allows to increase resolution (for closely related species and to the subspecies level) and to identify hybrid species. The best species discrimination attained was 96.2% because of one paraphyletic species that could not be resolved.
Collapse
Affiliation(s)
- Pascale Besse
- UMR PVBMT, Universite de la Reunion, St Pierre, Réunion, France.
| | - Denis Da Silva
- Université de La Réunion, UMR PVBMT, St Pierre, La Réunion, France
| | | |
Collapse
|
41
|
Difficulties in DNA barcoding-based authentication of snapper products due to ambiguous nucleotide sequences in public databases. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Fryssouli V, Zervakis GI, Polemis E, Typas MA. A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys 2020; 75:71-143. [PMID: 33304123 PMCID: PMC7723883 DOI: 10.3897/mycokeys.75.59872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/16/2023] Open
Abstract
Ganoderma P. Karst. is a cosmopolitan genus of white-rot fungi which comprises species with highly-prized pharmaceutical properties, valuable biotechnological applications and of significant phytopathological interest. However, the status of the taxonomy within the genus is still highly controversial and ambiguous despite the progress made through molecular approaches. A metadata analysis of 3908 nuclear ribosomal internal transcribed spacer (ITS) rDNA sequences obtained from GenBank/ENA/DDBJ and UNITE was performed by targeting sequences annotated as Ganoderma, but also sequences from environmental samples and from material examined for the first time. Ganoderma taxa segregated into five main lineages (Clades A to E). Clade A corresponds to the core of laccate species and includes G. shanxiense and three major well-supported clusters: Cluster A.1 ('G. lucidum sensu lato') consists of taxa from Eurasia and North America, Cluster A.2 of material with worldwide occurrence including G. resinaceum and Cluster A.3 is composed of species originating from all continents except Europe and comprises G. lingzhi. Clade B includes G. applanatum and allied species with a Holarctic distribution. Clade C comprises taxa from Asia and Africa only. Clade D consists of laccate taxa with tropical/subtropical occurrence, while clade E harbours the highest number of non-laccate species with a cosmopolitan distribution. The 92 Ganoderma-associated names, initially used for sequences labelling, correspond to at least 80 taxa. Amongst them, 21 constitute putatively new phylospecies after our application of criteria relevant to the robustness/support of the terminal clades, intra- and interspecific genetic divergence and available biogeographic data. Moreover, several other groups or individual sequences seem to represent distinct taxonomic entities and merit further investigation. A particularly large number of the public sequences was revealed to be insufficiently and/or incorrectly identified, for example, 87% and 78% of entries labelled as G. australe and G. lucidum, respectively. In general, ITS demonstrated high efficacy in resolving relationships amongst most of the Ganoderma taxa; however, it was not equally useful at elucidating species barriers across the entire genus and such cases are outlined. Furthermore, we draw conclusions on biogeography by evaluating species occurrence on a global scale in conjunction with phylogenetic structure/patterns. The sequence variability assessed in ITS spacers could be further exploited for diagnostic purposes.
Collapse
Affiliation(s)
- Vassiliki Fryssouli
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece
| | - Georgios I. Zervakis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece
| | - Elias Polemis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece
| | - Milton A. Typas
- National and Kapodistrian University of Athens, Department of Genetics and Biotechnology, Faculty of Biology, Panepistemiopolis, Athens 15701, Greece
| |
Collapse
|
43
|
Gunderina LI, Katokhin AV. Variability of Nucleotide Sequences in the ITS1–5.8S rRNA–ITS2a–2S rRNA–ITS2 Region of rRNA Gene Cluster in Species of the Family Chironomidae. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Most ZM, Lieu T, Filkins L, Nicolaides R, Rakheja D, Gelfand A, Kahn J. Disseminated Nannizziopsis Infection in an Adolescent With a STAT1 Mutation. Open Forum Infect Dis 2020; 7:ofaa390. [PMID: 33005702 PMCID: PMC7518371 DOI: 10.1093/ofid/ofaa390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
An adolescent with failure to thrive developed cuboid bone osteomyelitis and brain abscesses. Mold isolated from both locations was identified by universal genetic sequencing as Nannizziopsis spp, which is typically a pathogen of reptiles. The patient was subsequently diagnosed with a STAT1 mutation and was successfully treated.
Collapse
Affiliation(s)
- Zachary M Most
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Infectious Disease, Dallas, Texas, USA
| | - Tiffany Lieu
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Hospital Medicine, Dallas, Texas, USA
| | - Laura Filkins
- University of Texas Southwestern Medical Center, Department of Pathology, Dallas, Texas, USA
| | - Rory Nicolaides
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Allergy and Immunology, Dallas, Texas, USA
| | - Dinesh Rakheja
- University of Texas Southwestern Medical Center, Department of Pathology, Dallas, Texas, USA
| | - Andrew Gelfand
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Respiratory Medicine, Dallas, Texas, USA
| | - Jeffrey Kahn
- University of Texas Southwestern Medical Center, Department of Pediatrics, Division of Infectious Disease, Dallas, Texas, USA.,University of Texas Southwestern Medical Center, Department of Microbiology, Dallas, Texas, USA
| |
Collapse
|
45
|
Mir RA, Bhat KA, Rashid G, Ebinezer LB, Masi A, Rakwal R, Shah AA, Zargar SM. DNA barcoding: a way forward to obtain deep insights about the realistic diversity of living organisms. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
46
|
Procopio N, Ghignone S, Voyron S, Chiapello M, Williams A, Chamberlain A, Mello A, Buckley M. Soil Fungal Communities Investigated by Metabarcoding Within Simulated Forensic Burial Contexts. Front Microbiol 2020; 11:1686. [PMID: 32793158 PMCID: PMC7393272 DOI: 10.3389/fmicb.2020.01686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Decomposition of animal bodies in the burial environment plays a key role in the biochemistry of the soil, altering the balance of the local microbial populations present before the introduction of the carcass. Despite the growing number of studies on decomposition and soil bacterial populations, less is known on its effects on fungal communities. Shifts in the fungal populations at different post-mortem intervals (PMIs) could provide insights for PMI estimation and clarify the role that specific fungal taxa have at specific decomposition stages. In this study, we buried pig carcasses over a period of 1- to 6-months, and we sampled the soil in contact with each carcass at different PMIs. We performed metabarcoding analysis of the mycobiome targeting both the internal transcribed spacer (ITS) 1 and 2, to elucidate which one was more suitable for this purpose. Our results showed a decrease in the fungal taxonomic richness associated with increasing PMIs, and the alteration of the soil fungal signature even after 6 months post-burial, showing the inability of soil communities to restore their original composition within this timeframe. The results highlighted taxonomic trends associated with specific PMIs, such as the increase of the Mortierellomycota after 4- and 6-months and of Ascomycota particularly after 2 months, and the decrease of Basidiomycota from the first to the last time point. We have found a limited number of taxa specifically associated with the carrion and not present in the control soil, showing that the major contributors to the recorded changes are originated from the soil and were not introduced by the carrion. As this is the first study conducted on burial graves, it sets the baseline for additional studies to investigate the role of fungal communities on prolonged decomposition periods and to identify fungal biomarkers to improve the accuracy of PMI prediction for forensic applications.
Collapse
Affiliation(s)
- Noemi Procopio
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Stefano Ghignone
- Istituto per la Protezione Sostenibile delle Piante, CNR, Turin, Italy
| | - Samuele Voyron
- Istituto per la Protezione Sostenibile delle Piante, CNR, Turin, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Turin, Italy
| | - Marco Chiapello
- Istituto per la Protezione Sostenibile delle Piante, CNR, Turin, Italy
| | - Anna Williams
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Andrew Chamberlain
- School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Antonietta Mello
- Istituto per la Protezione Sostenibile delle Piante, CNR, Turin, Italy
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Kolter A, Gemeinholzer B. Plant DNA barcoding necessitates marker-specific efforts to establish more comprehensive reference databases. Genome 2020; 64:265-298. [PMID: 32649839 DOI: 10.1139/gen-2019-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The problem of low species-level identification rates in plants by DNA barcoding is exacerbated by the fact that reference databases are far from being comprehensive. We investigate the impact of increased sampling depth on identification success by analyzing the efficacy of established plant barcode marker sequences (rbcL, matK, trnL-trnF, psbA-trnH, ITS). Adding sequences of the same species to the reference database led to an increase in correct species assignment of +10.9% for rbcL and +19.0% for ITS. Simultaneously, erroneous identification dropped from ∼40% to ∼12.5%. Despite its evolutionary constraints, ITS showed the highest identification rate and identification gain by increased sampling effort, which makes it a very suitable marker in the planning phase of a barcode study. The limited sequence availability of trnL-trnF is problematic for an otherwise very promising plastid plant barcoding marker. Future developments in machine learning algorithms have the potential to give new impetus to plant barcoding, but are dependent on extensive reference databases. We expect that our results will be incorporated into future plans for the development of DNA barcoding reference databases and will lead to these being developed with greater depth and taxonomic coverage.
Collapse
Affiliation(s)
- Andreas Kolter
- Justus Liebig University Giessen, Systematic Botany, Heinrich-Buff-Ring 38, Giessen, Hessen, DE 35390, Germany.,Justus Liebig University Giessen, Systematic Botany, Heinrich-Buff-Ring 38, Giessen, Hessen, DE 35390, Germany
| | - Birgit Gemeinholzer
- Justus Liebig University Giessen, Systematic Botany, Heinrich-Buff-Ring 38, Giessen, Hessen, DE 35390, Germany.,Justus Liebig University Giessen, Systematic Botany, Heinrich-Buff-Ring 38, Giessen, Hessen, DE 35390, Germany
| |
Collapse
|
48
|
Zambounis A, Ganopoulos I, Tsaftaris A, Valasiadis D, Madesis P. Metagenomics analysis of fungal communities associated with postharvest diseases in pear fruits under the effect of management practices. Arch Microbiol 2020; 202:2391-2400. [PMID: 32588084 DOI: 10.1007/s00203-020-01960-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
Abstract
An amplicon metagenomic approach based on the ITS1 region of fungal rDNA was employed to identify the composition of fungal communities associated with diseases of pear fruits during postharvest storage. The sampled fruits were harvested at an orchard using routine management practices involving treatments with various chemical fungicides and were transferred to a storage packinghouse. Effective tags of reading sequences clustered into 53 OTUs whereas Ascomycota was the dominant phylum (83.4%) followed by Basidiomycota (15.8%). Our results revealed that four genera, Penicillium, Rhodotorula, Alternaria and Cladosporium were the most abundant representing 59-95% of the relative abundance per sample. The interruption of chemical treatments during the last month before harvest altered the structure of the fungal community of fruits among untreated and treated samples, mainly in cases of relative abundance of Penicillium and Rhodotorula genera. We hypothesize that various antagonistic interactions might occur on fruit surfaces among the detected fungal genera whose relative abundances were affected by fungicide treatments. Interestingly, some common pre- and postharvest pear fungal pathogens were either less present (such as Moniliana), or undetected (such as Aspergillus, Venturia and Septoria) in untreated and treated samples.
Collapse
Affiliation(s)
- Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, Department of Deciduous Fruit Trees, ELGO-DEMETER, 59035, Naoussa, Greece.
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Thermi, 57001, Thessaloniki, Greece
| | | | | | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thermi, 57001, Thessaloniki, Greece
| |
Collapse
|
49
|
Mittal P, Saxena R, Gupta A, Mahajan S, Sharma VK. The Gene Catalog and Comparative Analysis of Gut Microbiome of Big Cats Provide New Insights on Panthera Species. Front Microbiol 2020; 11:1012. [PMID: 32582053 PMCID: PMC7287027 DOI: 10.3389/fmicb.2020.01012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Majority of metagenomic studies in the last decade have focused on revealing the gut microbiomes of humans, rodents, and ruminants; however, the gut microbiome and genic information (gene catalog) of large felids such as Panthera species are largely unknown to date. In this study, the gut bacterial, fungal, and viral metagenomic composition was assessed from three Panthera species (lion, leopard, and tiger) of Indian origin, which were consuming the same diet and belonged to the same geographical location. A non-redundant bacterial gene catalog of the Panthera gut consisting of 1,507,035 putative genes was constructed from 27 Panthera individuals, which revealed a higher abundance of purine metabolism genes correlating with their purine-rich dietary intake. Analysis with Carbohydrate Active enZyme (CAZy) and MEROPS databases identified enrichment of glycoside hydrolases (GHs), glycoside-transferases, and collagenases in the gut, which are important for nutrient acquisition from animal biomass. The bacterial, fungal, and viral community analysis provided the first comprehensive insights into the Panthera-specific microbial community. The Panthera gene catalog and the largest comparative study of the gut bacterial composition of 68 individuals of Carnivora species from different geographical locations and diet underscore the role of diet and geography in shaping the Panthera gut microbiome, which is significant for the health and conservation management of these highly endangered species.
Collapse
Affiliation(s)
- Parul Mittal
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | - Shruti Mahajan
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
50
|
Spatz M, Richard ML. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front Cell Infect Microbiol 2020; 10:201. [PMID: 32528901 PMCID: PMC7265801 DOI: 10.3389/fcimb.2020.00201] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia is the most prevalent fungus identified in the human skin microbiota; originally described at the end of the nineteenth century, this genus is composed of at least 14 species. The role of Malassezia on the skin remains controversial because this genus has been associated with both healthy skin and pathologies (dermatitis, eczema, etc.). However, with the recent development of next-generation sequencing methods, allowing the description of the fungal diversity of various microbiota, Malassezia has also been identified as a resident fungus of diverse niches such as the gut or breast milk. A potential role for Malassezia in gut inflammation and cancer has also been suggested by recent studies. The aim of this review is to describe the findings on Malassezia in these unusual niches, to investigate what is known of the adaptation of Malassezia to the gut environment and to speculate on the role of this yeast in the host physiology specifically related to the gastrointestinal tract.
Collapse
Affiliation(s)
- Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|