1
|
Potter S, Moritz C, Piggott MP, Bragg JG, Afonso Silva AC, Bi K, McDonald-Spicer C, Turakulov R, Eldridge MDB. Museum Skins Enable Identification of Introgression Associated with Cytonuclear Discordance. Syst Biol 2024; 73:579-593. [PMID: 38577768 PMCID: PMC11377193 DOI: 10.1093/sysbio/syae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Increased sampling of genomes and populations across closely related species has revealed that levels of genetic exchange during and after speciation are higher than previously thought. One obvious manifestation of such exchange is strong cytonuclear discordance, where the divergence in mitochondrial DNA (mtDNA) differs from that for nuclear genes more (or less) than expected from differences between mtDNA and nuclear DNA (nDNA) in population size and mutation rate. Given genome-scale data sets and coalescent modeling, we can now confidently identify cases of strong discordance and test specifically for historical or recent introgression as the cause. Using population sampling, combining exon capture data from historical museum specimens and recently collected tissues we showcase how genomic tools can resolve complex evolutionary histories in the brachyotis group of rock-wallabies (Petrogale). In particular, applying population and phylogenomic approaches we can assess the role of demographic processes in driving complex evolutionary patterns and assess a role of ancient introgression and hybridization. We find that described species are well supported as monophyletic taxa for nDNA genes, but not for mtDNA, with cytonuclear discordance involving at least 4 operational taxonomic units across 4 species which diverged 183-278 kya. ABC modeling of nDNA gene trees supports introgression during or after speciation for some taxon pairs with cytonuclear discordance. Given substantial differences in body size between the species involved, this evidence for gene flow is surprising. Heterogenous patterns of introgression were identified but do not appear to be associated with chromosome differences between species. These and previous results suggest that dynamic past climates across the monsoonal tropics could have promoted reticulation among related species.
Collapse
Affiliation(s)
- Sally Potter
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Macquarie Park, NSW 2109, Australia
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
| | - Maxine P Piggott
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT 0811, Australia
| | - Jason G Bragg
- National Herbarium of New South Wales, The Royal Botanical Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia
| | | | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Christiana McDonald-Spicer
- Division of Ecology and Evolution, Research School of Biology, 134 Linnaeus Way, The Australian National University, Acton, ACT 2601, Australia
| | - Rustamzhon Turakulov
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
- Earth Sciences, College of Science and Engineering, Flinders University GPO Box 2100, Adelaide, SA 5001, Australia
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney, NSW 2010, Australia
| |
Collapse
|
2
|
Patané JSL, Martins J, Setubal JC. A Guide to Phylogenomic Inference. Methods Mol Biol 2024; 2802:267-345. [PMID: 38819564 DOI: 10.1007/978-1-0716-3838-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole genomes or large fractions of genomes. Phylogenomics has significant applications in fields such as evolutionary biology, systematics, comparative genomics, and conservation genetics, providing valuable insights into the origins and relationships of species and contributing to our understanding of biological diversity and evolution. This chapter surveys phylogenetic concepts and methods aimed at both gene tree and species tree reconstruction while also addressing common pitfalls, providing references to relevant computer programs. A practical phylogenomic analysis example including bacterial genomes is presented at the end of the chapter.
Collapse
Affiliation(s)
- José S L Patané
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração/Heart Institute Hospital das Clínicas - Faculdade de Medicina da Universidade de São Paulo São Paulo, São Paulo, SP, Brazil
| | - Joaquim Martins
- Integrative Omics group, Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - João Carlos Setubal
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Thalén F, Köhne CG, Bleidorn C. Patchwork: Alignment-Based Retrieval and Concatenation of Phylogenetic Markers from Genomic Data. Genome Biol Evol 2023; 15:evad227. [PMID: 38085033 PMCID: PMC10735302 DOI: 10.1093/gbe/evad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Low-coverage whole-genome sequencing (also known as "genome skimming") is becoming an increasingly affordable approach to large-scale phylogenetic analyses. While already routinely used to recover organellar genomes, genome skimming is rather rarely utilized for recovering single-copy nuclear markers. One reason might be that only few tools exist to work with this data type within a phylogenomic context, especially to deal with fragmented genome assemblies. We here present a new software tool called Patchwork for mining phylogenetic markers from highly fragmented short-read assemblies as well as directly from sequence reads. Patchwork is an alignment-based tool that utilizes the sequence aligner DIAMOND and is written in the programming language Julia. Homologous regions are obtained via a sequence similarity search, followed by a "hit stitching" phase, in which adjacent or overlapping regions are merged into a single unit. The novel sliding window algorithm trims away any noncoding regions from the resulting sequence. We demonstrate the utility of Patchwork by recovering near-universal single-copy orthologs within a benchmarking study, and we additionally assess the performance of Patchwork in comparison with other programs. We find that Patchwork allows for accurate retrieval of (putatively) single-copy genes from genome skimming data sets at different sequencing depths with high computational speed, outperforming existing software targeting similar tasks. Patchwork is released under the GNU General Public License version 3. Installation instructions, additional documentation, and the source code itself are all available via GitHub at https://github.com/fethalen/Patchwork.
Collapse
Affiliation(s)
- Felix Thalén
- Department for Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen 37073, Germany
- Cardio-CARE AG, Medizincampus Davos, Davos Wolfgang 7265, Switzerland
| | - Clara G Köhne
- Department for Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen 37073, Germany
| | - Christoph Bleidorn
- Department for Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen 37073, Germany
| |
Collapse
|
4
|
Mcguire JA, Huang X, Reilly SB, Iskandar DT, Wang-Claypool CY, Werning S, Chong RA, Lawalata SZS, Stubbs AL, Frederick JH, Brown RM, Evans BJ, Arifin U, Riyanto A, Hamidy A, Arida E, Koo MS, Supriatna J, Andayani N, Hall R. Species Delimitation, Phylogenomics, and Biogeography of Sulawesi Flying Lizards: A Diversification History Complicated by Ancient Hybridization, Cryptic Species, and Arrested Speciation. Syst Biol 2023; 72:885-911. [PMID: 37074804 PMCID: PMC10405571 DOI: 10.1093/sysbio/syad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023] Open
Abstract
The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island's long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species-9 on Sulawesi proper and 6 on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present. [Genomics; Indonesia; introgression; mitochondria; phylogenetics; phylogeography; population genetics; reptiles.].
Collapse
Affiliation(s)
- Jimmy A Mcguire
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Xiaoting Huang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qindao, Shandong, 266003, PR China
| | - Sean B Reilly
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Djoko T Iskandar
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Cynthia Y Wang-Claypool
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Sarah Werning
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312-4198, USA
| | - Rebecca A Chong
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Shobi Z S Lawalata
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- United in Diversity Foundation, Jalan Hayam Wuruk, Jakarta, Indonesia
| | - Alexander L Stubbs
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Jeffrey H Frederick
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Blvd., University of Kansas, Lawrence, KS 66045, USA
| | - Ben J Evans
- Biology Department, McMaster University, Hamilton, Ontario, Canada
| | - Umilaela Arifin
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
- Center for Taxonomy and Morphology, Zoologisches Museum Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, R230 20146 Hamburg, Germany
| | - Awal Riyanto
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Amir Hamidy
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Evy Arida
- Research Center for Applied Zoology, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Jatna Supriatna
- Department of Biology, Institute for Sustainable Earth and Resources (I-SER), Gedung Laboratorium Multidisiplin, and Research Center for Climate Change (RCCC-UI), Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Noviar Andayani
- Department of Biology, Institute for Sustainable Earth and Resources (I-SER), Gedung Laboratorium Multidisiplin, and Research Center for Climate Change (RCCC-UI), Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Robert Hall
- SE Asia Research Group (SEARG), Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
5
|
Forthman M, Gordon ERL, Kimball RT. Low hybridization temperatures improve target capture success of invertebrate loci: a case study of leaf-footed bugs (Hemiptera: Coreoidea). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230307. [PMID: 37388308 PMCID: PMC10300676 DOI: 10.1098/rsos.230307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Target capture is widely used in phylogenomic, ecological and functional genomic studies. Bait sets that allow capture from a diversity of species can be advantageous, but high-sequence divergence from baits can limit yields. Currently, only four experimental comparisons of a critical target capture parameter, hybridization temperature, have been published. These have been in vertebrates, where bait divergences are typically low, and none include invertebrates where bait-target divergences may be higher. Most invertebrate capture studies use a fixed, high hybridization temperature to maximize the proportion of on-target data, but many report low locus recovery. Using leaf-footed bugs (Hemiptera: Coreoidea), we investigate the effect of hybridization temperature on capture success of ultraconserved elements targeted by (i) baits developed from divergent hemipteran genomes and (ii) baits developed from less divergent coreoid transcriptomes. Lower temperatures generally resulted in more contigs and improved recovery of targets despite a lower proportion of on-target reads, lower read depth and more putative paralogues. Hybridization temperatures had less of an effect when using transcriptome-derived baits, which is probably due to lower bait-target divergences and greater bait tiling density. Thus, accommodating low hybridization temperatures during target capture can provide a cost-effective, widely applicable solution to improve invertebrate locus recovery.
Collapse
Affiliation(s)
- Michael Forthman
- California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Eric R. L. Gordon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Bartoš O, Bohlen J, Šlechtová VB, Kočí J, Röslein J, Janko K. Sequence capture: Obsolete or irreplaceable? A thorough validation across phylogenetic distances and its applicability to hybrids and allopolyploids. Mol Ecol Resour 2023. [PMID: 37122140 DOI: 10.1111/1755-0998.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
As whole-genome sequencing has become pervasive, some have suggested that reduced genomic representation approaches, for example, sequence capture, are becoming obsolete. In the present study, we argue that these techniques still provide excellent tools in terms of price and quality of data as well as in their ability to provide markers with specific features, as required, for example, in phylogenomics. A potential drawback of the wide-scale application of reduced representation approaches could be their drop in efficiency with increasing phylogenetic distance from the reference species. While some studies have focused on the degree and performance of reduced representation techniques in such situations, to our knowledge, none of them evaluated their applicability to inter-specific hybrids and polyploids. This highlights a significant gap in current knowledge since there is increasing evidence for the frequent occurrence of natural hybrids and polyploids, as well as for the major importance of both phenomena in evolution. The main aim of the present study was to carry out a thorough validation of SEQcap applicability to (1) a set of non-model taxa with a wide range of phylogenetic relatedness and (2) inter-specific hybrids of various ploidies and genomic compositions. Considering the latter point, we especially focused on mechanisms causing allelic bias and consequent allelic dropout, as these could have confounding effects with respect to the evolutionary genomic dynamics of hybrids, especially in asexuals, which virtually reproduce as a frozen F1 generation.
Collapse
Affiliation(s)
- Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
| | - Vendula Bohlen Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
| | - Jan Kočí
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Röslein
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
7
|
Ortiz-Sepulveda CM, Genete M, Blassiau C, Godé C, Albrecht C, Vekemans X, Van Bocxlaer B. Target enrichment of long open reading frames and ultraconserved elements to link microevolution and macroevolution in non-model organisms. Mol Ecol Resour 2023; 23:659-679. [PMID: 36349833 DOI: 10.1111/1755-0998.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.
Collapse
Affiliation(s)
| | - Mathieu Genete
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | | - Cécile Godé
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, D-35392 Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
8
|
White LC. Shallow sequencing can mislead when evaluating hybridization capture methods. CONSERV GENET RESOUR 2023. [DOI: 10.1007/s12686-023-01298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Joyce EM, Appelhans MS, Buerki S, Cheek M, de Vos JM, Pirani JR, Zuntini AR, Bachelier JB, Bayly MJ, Callmander MW, Devecchi MF, Pell SK, Groppo M, Lowry PP, Mitchell J, Siniscalchi CM, Munzinger J, Orel HK, Pannell CM, Nauheimer L, Sauquet H, Weeks A, Muellner-Riehl AN, Leitch IJ, Maurin O, Forest F, Nargar K, Thiele KR, Baker WJ, Crayn DM. Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication. FRONTIERS IN PLANT SCIENCE 2023; 14:1063174. [PMID: 36959945 PMCID: PMC10028101 DOI: 10.3389/fpls.2023.1063174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order's spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.
Collapse
Affiliation(s)
- Elizabeth M. Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Munich, Germany
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Marc S. Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants, University of Göttingen, Goettingen, Germany
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Martin Cheek
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jurriaan M. de Vos
- Department of Environmental Sciences, University Basel, Basel, Switzerland
| | - José R. Pirani
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
| | | | | | - Michael J. Bayly
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marcelo F. Devecchi
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
| | - Susan K. Pell
- United States Botanic Garden, Washington, DC, United States
| | - Milton Groppo
- Departamento de Botaênica, Universidade de Saão Paulo, Herbário SPF, Saão Paulo, Brazil
| | - Porter P. Lowry
- Missouri Botanical Garden, St. Louis, MO, United States
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - John Mitchell
- New York Botanical Garden, New York, NY, United States
| | - Carolina M. Siniscalchi
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS, United States
| | - Jérôme Munzinger
- AMAP, Université Montpellier, Institut de Recherche pour le Développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Centre National de la Recherche Scientifique (CNRS), Institut national de la recherche agronomique (INRAE), Montpellier, France
| | - Harvey K. Orel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Caroline M. Pannell
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Biology, Oxford University, Oxford, United Kingdom
- Marine Laboratory, Queen’s University Belfast, Portaferry, United Kingdom
| | - Lars Nauheimer
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Andrea Weeks
- Department of Biology, George Mason University, Fairfax, VA, United States
| | - Alexandra N. Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organization (CSIRO), Canberra, ACT, Australia
| | - Kevin R. Thiele
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | - Darren M. Crayn
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
10
|
Zozaya SM, Teasdale LC, Tedeschi LG, Higgie M, Hoskin CJ, Moritz C. Initiation of speciation across multiple dimensions in a rock-restricted, tropical lizard. Mol Ecol 2023; 32:680-695. [PMID: 36394360 PMCID: PMC10099344 DOI: 10.1111/mec.16787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Population isolation and concomitant genetic divergence, resulting in strong phylogeographical structure, is a core aspect of speciation initiation. If and how speciation then proceeds and ultimately completes depends on multiple factors that mediate reproductive isolation, including divergence in genomes, ecology and mating traits. Here we explored these multiple dimensions in two young (Plio-Pleistocene) species complexes of gekkonid lizards (Heteronotia) from the Kimberley-Victoria River regions of tropical Australia. Using mitochondrial DNA screening and exon capture phylogenomics, we show that the rock-restricted Heteronotia planiceps exhibits exceptional fine-scale phylogeographical structure compared to the codistributed habitat generalist Heteronotia binoei. This indicates pervasive population isolation and persistence in the rock-specialist, and thus a high rate of speciation initiation across this geographically complex region, with levels of genomic divergence spanning the "grey zone" of speciation. Proximal lineages of H. planiceps were often separated by different rock substrates, suggesting a potential role for ecological isolation; however, phylogenetic incongruence and historical introgression were inferred between one such pair. Ecomorphological divergence among lineages within both H. planiceps and H. binoei was limited, except that limestone-restricted lineages of H. planiceps tended to be larger than rock-generalists. By contrast, among-lineage divergence in the chemical composition of epidermal pore secretions (putative mating trait) exceeded ecomorphology in both complexes, but with less trait overlap among lineages in H. planiceps. This system-particularly the rock-specialist H. planiceps-highlights the role of multidimensional divergence during incipient speciation, with divergence in genomes, ecomorphology and chemical signals all at play at very fine spatial scales.
Collapse
Affiliation(s)
- Stephen M Zozaya
- Research School of Biology, Australian National University, Australian Capital Territory, Canberra, Australia
| | - Luisa C Teasdale
- Research School of Biology, Australian National University, Australian Capital Territory, Canberra, Australia.,Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Leonardo G Tedeschi
- Research School of Biology, Australian National University, Australian Capital Territory, Canberra, Australia
| | - Megan Higgie
- College of Science and Engineering, James Cook University, Queensland, Townsville, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Queensland, Townsville, Australia
| | - Craig Moritz
- Research School of Biology, Australian National University, Australian Capital Territory, Canberra, Australia
| |
Collapse
|
11
|
Chai H, Gu Q, Robertson DL, Hughes J. Defining the characteristics of interferon-alpha-stimulated human genes: insight from expression data and machine learning. Gigascience 2022; 11:6833046. [PMID: 36399061 PMCID: PMC9673497 DOI: 10.1093/gigascience/giac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A virus-infected cell triggers a signalling cascade, resulting in the secretion of interferons (IFNs), which in turn induces the upregulation of the IFN-stimulated genes (ISGs) that play a role in antipathogen host defence. Here, we conducted analyses on large-scale data relating to evolutionary gene expression, sequence composition, and network properties to elucidate factors associated with the stimulation of human genes in response to IFN-α. RESULTS We find that ISGs are less evolutionary conserved than genes that are not significantly stimulated in IFN experiments (non-ISGs). ISGs show obvious depletion of GC content in the coding region. This influences the representation of some compositions following the translation process. IFN-repressed human genes (IRGs), downregulated genes in IFN experiments, can have similar properties to the ISGs. Additionally, we design a machine learning framework integrating the support vector machine and novel feature selection algorithm that achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for ISG prediction. Its application in other IFN systems suggests the similarity between the ISGs triggered by type I and III IFNs. CONCLUSIONS ISGs have some unique properties that make them different from the non-ISGs. The representation of some properties has a strong correlation with gene expression following IFN-α stimulation, which can be used as a predictive feature in machine learning. Our model predicts several genes as putative ISGs that so far have shown no significant differential expression when stimulated with IFN-α in the cell/tissue types in the available databases. A web server implementing our method is accessible at http://isgpre.cvr.gla.ac.uk/. The docker image at https://hub.docker.com/r/hchai01/isgpre can be downloaded to reproduce the prediction.
Collapse
Affiliation(s)
- Haiting Chai
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - David L Robertson
- Correspondence address. David L. Robertson, MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK, E-mail:
| | | |
Collapse
|
12
|
Nunes R, Storer C, Doleck T, Kawahara AY, Pierce NE, Lohman DJ. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age.
Collapse
|
13
|
Li J, Liang D, Zhang P. Simultaneously collecting coding and non-coding phylogenomic data using homemade full-length cDNA probes, tested by resolving the high-level relationships of Colubridae. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.969581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resolving intractable phylogenetic relationships often requires simultaneously analyzing a large number of coding and non-coding orthologous loci. To gather both coding and non-coding data, traditional sequence capture methods require custom-designed commercial probes. Here, we present a cost-effective sequence capture method based on homemade probes, to capture thousands of coding and non-coding orthologous loci simultaneously, suitable for all organisms. This approach, called “FLc-Capture,” synthesizes biotinylated full-length cDNAs from mRNA as capture probes, eliminates the need for costly commercial probe design and synthesis. To demonstrate the utility of FLc-Capture, we prepared full-length cDNA probes from mRNA extracted from a common colubrid snake. We performed capture experiments with these homemade cDNA probes and successfully obtained thousands of coding and non-coding genomic loci from 24 Colubridae species and 12 distantly related snake species of other families. The average capture specificity of FLc-Capture across all tested snake species is 35%, similar to the previously published EecSeq method. We constructed two phylogenomic data sets, one including 1,075 coding loci (∼817,000 bp) and the other including 1,948 non-coding loci (∼1,114,000 bp), to study the phylogeny of Colubridae. Both data sets yielded highly similar and well-resolved trees, with 85% of nodes having >95% bootstrap support. Our experimental tests show that FLc-Capture is a flexible, fast, and cost-effective sequence capture approach for simultaneously gathering coding and non-coding phylogenomic data sets to study intractable phylogenetic questions. We hope that this method will serve as a new data collection tool for evolutionary biologists working in the era of phylogenomics.
Collapse
|
14
|
Nash CM, Lungstrom LL, Hughes LC, Westneat MW. Phylogenomics and body shape morphometrics reveal recent diversification in the goatfishes (Syngnatharia: Mullidae). Mol Phylogenet Evol 2022; 177:107616. [PMID: 35998799 DOI: 10.1016/j.ympev.2022.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Clades of marine fishes exhibit many patterns of diversification, ranging from relatively constant throughout time to rapid changes in the rates of speciation and extinction. The goatfishes (Syngnatharia: Mullidae) are a family of marine, reef associated fishes with a relatively recent origin, distributed globally in tropical and temperate waters. Despite their abundance and economic importance, the goatfishes remain one of the few coral reef families for which the species level relationships have not been examined using genomic techniques. Here we use phylogenomic analysis of ultra-conserved elements (UCE) and exon data to resolve a well-supported, time-calibrated phylogeny for 72 species of goatfishes, supporting a recent crown age of the goatfishes at 21.9 million years ago. We used this framework to test hypotheses about the associations among body shape morphometrics, taxonomy, and phylogeny, as well as to explore relative diversification rates across the phylogeny. Body shape was strongly associated with generic-level taxonomy of goatfishes, with morphometric analyses showing evidence for high phylogenetic signal across all morphotypes. Rates of diversification in this clade reveal a recent sharp increase in lineage accumulation, with 92% of the goatfish species sampled across all clades and major body plans having originated in just the past 5 million years. We suggest that habitat diversity in the early Pliocene oceans and the generalist ecology of goatfishes are key factors in the unusual evolutionary tempo of the family Mullidae.
Collapse
Affiliation(s)
- Chloe M Nash
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, United States; Division of Fishes (IRC), Field Museum of Natural History, Chicago, IL, United States.
| | - Linnea L Lungstrom
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, United States; Division of Fishes (IRC), Field Museum of Natural History, Chicago, IL, United States.
| | - Lily C Hughes
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States.
| | - Mark W Westneat
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, United States; Division of Fishes (IRC), Field Museum of Natural History, Chicago, IL, United States; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
15
|
Mu X, Yang Y, Sun J, Yi liu, Xu M, Shao C, Chu KH, Li W, Liu C, Gu D, Fang M, Zhang C, Liu F, Song H, Wang X, Chen J, Ma KY. FishPIE: a universal phylogenetically informative exon markers set for ray-finned fishes. iScience 2022; 25:105025. [PMID: 36105587 PMCID: PMC9464953 DOI: 10.1016/j.isci.2022.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the evolutionary history of the highly diverse ray-finned fishes has been challenging, and the development of more universal primers for phylogenetic analyses may help overcoming these challenges. We developed FishPIE, a nested PCR primer set of 82 phylogenetically informative exon markers, and tested it on 203 species from 31 orders of Actinopterygii. We combined orthologous sequences of the FishPIE markers obtained from published genomes and transcriptomes and constructed the phylogeny of 710 species belonging to 190 families and 60 orders. The resulting phylogenies had topologies comparable to previous phylogenomic studies. We demonstrated that the FishPIE markers could address phylogenetic questions across broad taxonomic levels. By incorporating the newly sequenced taxa, we were able to shed new light on the phylogeny of the highly diverse Cypriniformes. Thus, FishPIE holds great promise for generating genetic data for broad taxonomic groups and accelerating our understanding of the fish tree of life. FishPIE is a nested PCR primer set of 82 markers for fish phylogenetic analysis The markers can be broadly applied to all orders of ray-finned fishes Their phylogenetic performance is comparable to that of genomic analyses
Collapse
|
16
|
Roycroft E, Moritz C, Rowe KC, Moussalli A, Eldridge MDB, Portela Miguez R, Piggott MP, Potter S. Sequence Capture From Historical Museum Specimens: Maximizing Value for Population and Phylogenomic Studies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.931644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The application of high-throughput, short-read sequencing to degraded DNA has greatly increased the feasibility of generating genomic data from historical museum specimens. While many published studies report successful sequencing results from historical specimens; in reality, success and quality of sequence data can be highly variable. To examine predictors of sequencing quality, and methodological approaches to improving data accuracy, we generated and analyzed genomic sequence data from 115 historically collected museum specimens up to 180 years old. Data span both population genomic and phylogenomic scales, including historically collected specimens from 34 specimens of four species of Australian rock-wallabies (genus Petrogale) and 92 samples from 79 specimens of Australo-Papuan murine rodents (subfamily Murinae). For historical rodent specimens, where the focus was sampling for phylogenomics, we found that regardless of specimen age, DNA sequence libraries prepared from toe pad or bone subsamples performed significantly better than those taken from the skin (in terms of proportion of reads on target, number of loci captured, and data accuracy). In total, 93% of DNA libraries from toe pad or bone subsamples resulted in reliable data for phylogenetic inference, compared to 63% of skin subsamples. For skin subsamples, proportion of reads on target weakly correlated with collection year. Then using population genomic data from rock-wallaby skins as a test case, we found substantial improvement in final data quality by mapping to a high-quality “closest sister” de novo assembly from fresh tissues, compared to mapping to a sample-specific historical de novo assembly. Choice of mapping approach also affected final estimates of the number of segregating sites and Watterson's θ, both important parameters for population genomic inference. The incorporation of accurate and reliable sequence data from historical specimens has important outcomes for evolutionary studies at both population and phylogenomic scales. By assessing the outcomes of different approaches to specimen subsampling, library preparation and bioinformatic processing, our results provide a framework for increasing sequencing success for irreplaceable historical specimens.
Collapse
|
17
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
18
|
Langille BL, Tierney SM, Bertozzi T, Beasley-Hall PG, Bradford TM, Fagan-Jeffries EP, Hyde J, Leijs R, Richardson M, Saint KM, Stringer DN, Villastrigo A, Humphreys WF, Austin AD, Cooper SJB. Parallel decay of vision genes in subterranean water beetles. Mol Phylogenet Evol 2022; 173:107522. [PMID: 35595008 DOI: 10.1016/j.ympev.2022.107522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.
Collapse
Affiliation(s)
- Barbara L Langille
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.
| | - Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Perry G Beasley-Hall
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Tessa M Bradford
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Erinn P Fagan-Jeffries
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Western Australia Department of Biodiversity Conservation and Attractions, Kensington, WA 6151, Australia
| | - Remko Leijs
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Matthew Richardson
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Kathleen M Saint
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Danielle N Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Adrián Villastrigo
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta, 37-49, 08003, Spain
| | - William F Humphreys
- Western Australian Museum, Locked Bag 40, Welshpool DC, WA 6986, Australia; School of Animal Biology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
19
|
Hutter CR, Cobb KA, Portik DM, Travers SL, Wood PL, Brown RM. FrogCap: A modular sequence capture probe-set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales. Mol Ecol Resour 2022; 22:1100-1119. [PMID: 34569723 DOI: 10.1111/1755-0998.13517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/01/2022]
Abstract
Despite the prevalence of high-throughput sequencing in phylogenetics, many relationships remain difficult to resolve because of conflicting signal among genomic regions. Selection of different types of molecular markers from different genomic regions is required to overcome these challenges. For evolutionary studies in frogs, we introduce the publicly available FrogCap suite of genomic resources, which is a large collection of ~15,000 markers that unifies previous genetic sequencing efforts. FrogCap is designed to be modular, such that subsets of markers and SNPs can be selected based on the desired phylogenetic scale. FrogCap uses a variety of marker types that include exons and introns, ultraconserved elements, and previously sequenced Sanger markers, which span up to 10,000 bp in alignment lengths; in addition, we demonstrate potential for SNP-based analyses. We tested FrogCap using 121 samples distributed across five phylogenetic scales, comparing probes designed using a consensus- or exemplar genome-based approach. Using the consensus design is more resilient to issues with sensitivity, specificity, and missing data than picking an exemplar genome sequence. We also tested the impact of different bait kit sizes (20,020 vs. 40,040) on depth of coverage and found triple the depth for the 20,020 bait kit. We observed sequence capture success (i.e., missing data, sequenced markers/bases, marker length, and informative sites) across phylogenetic scales. The incorporation of different marker types is effective for deep phylogenetic relationships and shallow population genetics studies. Having demonstrated FrogCap's utility and modularity, we conclude that these new resources are efficacious for high-throughput sequencing projects across variable timescales.
Collapse
Affiliation(s)
- Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Kerry A Cobb
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Daniel M Portik
- California Academy of Sciences, San Francisco, California, USA
| | - Scott L Travers
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Department of Biological Sciences, Rutgers University-Newark, Newark, New Jersey, USA
| | - Perry L Wood
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
20
|
Ivan J, Moritz C, Potter S, Bragg J, Turakulov R, Hua X. Temperature predicts the rate of molecular evolution in Australian Eugongylinae skinks. Evolution 2022; 76:252-261. [PMID: 34486736 DOI: 10.1111/evo.14342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 01/21/2023]
Abstract
Temperature differences over time and space have been hypothesized to cause variation in the rate of molecular evolution of species, but empirical evidence is mixed. To further test this hypothesis, we utilized a large exon-capture sequence data of Australian Eugongylinae skinks, exemplifying a radiation of temperature-sensitive ectotherms spanning a large latitudinal gradient. The association between temperature (and other species traits) and long-term substitution rate was assessed based on 1268 sequenced exons of 44 species pairs from the Eugongylinae subfamily using regression analyses. Temperature is the strongest, positively correlated predictor of variation in substitution rate across the Australian Eugongylinae. It explains 45% of variation in synonymous substitution rate, and 11% after controlling for all the other factors. Synonymous substitution rate is also negatively associated with body size, with a 6% variation explained by body size after controlling for the effects of temperature. Other factors are not associated with synonymous substitution rate after controlling for temperature. Overall, this study points to temperature as a strong predictor of the molecular evolution rate in the Eugongylinae subfamily, and demonstrates the power of large-scale exonic data to identify correlates of the rate of molecular evolution.
Collapse
Affiliation(s)
- Jeremias Ivan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sally Potter
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jason Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Rust Turakulov
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, United States
| | - Xia Hua
- Mathematical Sciences Institute, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
21
|
Janko K, Bartoš O, Kočí J, Roslein J, Drdová EJ, Kotusz J, Eisner J, Mokrejš M, Štefková-Kašparová E. Genome Fractionation and Loss of Heterozygosity in Hybrids and Polyploids: Mechanisms, Consequences for Selection, and Link to Gene Function. Mol Biol Evol 2021; 38:5255-5274. [PMID: 34410426 PMCID: PMC8662595 DOI: 10.1093/molbev/msab249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C. taenia, and C. tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C. taenia, we found that they preferentially retained C. elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kočí
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Roslein
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kotusz
- Museum of Natural History, University of Wroclaw, Wroclaw, Poland
| | - Jan Eisner
- Department of Mathematics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Martin Mokrejš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- IT4Innovations, VŠB—Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Eva Štefková-Kašparová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Breeding, FAFNR, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
22
|
Potter S, Bragg JG, Turakulov R, Eldridge MDB, Deakin J, Kirkpatrick M, Edwards RJ, Moritz C. Limited introgression between rock-wallabies with extensive chromosomal rearrangements. Mol Biol Evol 2021; 39:6448774. [PMID: 34865126 PMCID: PMC8788226 DOI: 10.1093/molbev/msab333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromosome rearrangements can result in the rapid evolution of hybrid incompatibilities. Robertsonian fusions, particularly those with monobrachial homology, can drive reproductive isolation amongst recently diverged taxa. The recent radiation of rock-wallabies (genus Petrogale) is an important model to explore the role of Robertsonian fusions in speciation. Here, we pursue that goal using an extensive sampling of populations and genomes of Petrogale from north-eastern Australia. In contrast to previous assessments using mitochondrial DNA or nuclear microsatellite loci, genomic data are able to separate the most closely related species and to resolve their divergence histories. Both phylogenetic and population genetic analyses indicate introgression between two species that differ by a single Robertsonian fusion. Based on the available data, there is also evidence for introgression between two species which share complex chromosomal rearrangements. However, the remaining results show no consistent signature of introgression amongst species pairs and where evident, indicate generally low introgression overall. X-linked loci have elevated divergence compared with autosomal loci indicating a potential role for genic evolution to produce reproductive isolation in concert with chromosome change. Our results highlight the value of genome scale data in evaluating the role of Robertsonian fusions and structural variation in divergence, speciation, and patterns of molecular evolution.
Collapse
Affiliation(s)
- Sally Potter
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia.,Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Jason G Bragg
- National Herbarium of New South Wales, The Royal Botanical Gardens and Domain Trust, Sydney, NSW, Australia
| | - Rustamzhon Turakulov
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Janine Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX, United States of America
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
23
|
Yardeni G, Viruel J, Paris M, Hess J, Groot Crego C, de La Harpe M, Rivera N, Barfuss MHJ, Till W, Guzmán-Jacob V, Krömer T, Lexer C, Paun O, Leroy T. Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations. Mol Ecol Resour 2021; 22:927-945. [PMID: 34606683 PMCID: PMC9292372 DOI: 10.1111/1755-0998.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Target capture has emerged as an important tool for phylogenetics and population genetics in nonmodel taxa. Whereas developing taxon‐specific capture probes requires sustained efforts, available universal kits may have a lower power to reconstruct relationships at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly developed target capture set for Bromeliaceae, a large and ecologically diverse plant family with highly variable diversification rates. The set targets 1776 coding regions, including genes putatively involved in key innovations, with the aim to empower testing of a wide range of evolutionary hypotheses. We compare the relative power of this taxon‐specific set, Bromeliad1776, to the universal Angiosperms353 kit. The taxon‐specific set results in higher enrichment success across the entire family; however, the overall performance of both kits to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of universal kits for resolving evolutionary relationships. For more detailed phylogenetic or population genetic analyses, for example the exploration of gene tree concordance, nucleotide diversity or population structure, the taxon‐specific capture set presents clear benefits. We discuss the potential lessons that this comparative study provides for future phylogenetic and population genetic investigations, in particular for the study of evolutionary radiations.
Collapse
Affiliation(s)
- Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Margot Paris
- Unit of Ecology & Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Department of Soil Ecology, Helmholtz Centre for Environmental Research, UFZ, Halle (Saale), Germany
| | - Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Norma Rivera
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Valeria Guzmán-Jacob
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
| | - Thorsten Krömer
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Stringer DN, Bertozzi T, Meusemann K, Delean S, Guzik MT, Tierney SM, Mayer C, Cooper SJB, Javidkar M, Zwick A, Austin AD. Development and evaluation of a custom bait design based on 469 single-copy protein-coding genes for exon capture of isopods (Philosciidae: Haloniscus). PLoS One 2021; 16:e0256861. [PMID: 34534224 PMCID: PMC8448321 DOI: 10.1371/journal.pone.0256861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Transcriptome-based exon capture approaches, along with next-generation sequencing, are allowing for the rapid and cost-effective production of extensive and informative phylogenomic datasets from non-model organisms for phylogenetics and population genetics research. These approaches generally employ a reference genome to infer the intron-exon structure of targeted loci and preferentially select longer exons. However, in the absence of an existing and well-annotated genome, we applied this exon capture method directly, without initially identifying intron-exon boundaries for bait design, to a group of highly diverse Haloniscus (Philosciidae), paraplatyarthrid and armadillid isopods, and examined the performance of our methods and bait design for phylogenetic inference. Here, we identified an isopod-specific set of single-copy protein-coding loci, and a custom bait design to capture targeted regions from 469 genes, and analysed the resulting sequence data with a mapping approach and newly-created post-processing scripts. We effectively recovered a large and informative dataset comprising both short (<100 bp) and longer (>300 bp) exons, with high uniformity in sequencing depth. We were also able to successfully capture exon data from up to 16-year-old museum specimens along with more distantly related outgroup taxa, and efficiently pool multiple samples prior to capture. Our well-resolved phylogenies highlight the overall utility of this methodological approach and custom bait design, which offer enormous potential for application to future isopod, as well as broader crustacean, molecular studies.
Collapse
Affiliation(s)
- Danielle N. Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
- * E-mail:
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Institute for Biology I, University of Freiburg, Freiburg, Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Steven Delean
- School of Biological Sciences and the Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle T. Guzik
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simon M. Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Steven J. B. Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
| | - Mohammad Javidkar
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
| | - Andrew D. Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Museum, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
McLay TGB, Birch JL, Gunn BF, Ning W, Tate JA, Nauheimer L, Joyce EM, Simpson L, Schmidt‐Lebuhn AN, Baker WJ, Forest F, Jackson CJ. New targets acquired: Improving locus recovery from the Angiosperms353 probe set. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311420. [PMID: 34336399 PMCID: PMC8312740 DOI: 10.1002/aps3.11420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Universal target enrichment kits maximize utility across wide evolutionary breadth while minimizing the number of baits required to create a cost-efficient kit. The Angiosperms353 kit has been successfully used to capture loci throughout the angiosperms, but the default target reference file includes sequence information from only 6-18 taxa per locus. Consequently, reads sequenced from on-target DNA molecules may fail to map to references, resulting in fewer on-target reads for assembly, and reducing locus recovery. METHODS We expanded the Angiosperms353 target file, incorporating sequences from 566 transcriptomes to produce a 'mega353' target file, with each locus represented by 17-373 taxa. This mega353 file is a drop-in replacement for the original Angiosperms353 file in HybPiper analyses. We provide tools to subsample the file based on user-selected taxon groups, and to incorporate other transcriptome or protein-coding gene data sets. RESULTS Compared to the default Angiosperms353 file, the mega353 file increased the percentage of on-target reads by an average of 32%, increased locus recovery at 75% length by 49%, and increased the total length of the concatenated loci by 29%. DISCUSSION Increasing the phylogenetic density of the target reference file results in improved recovery of target capture loci. The mega353 file and associated scripts are available at: https://github.com/chrisjackson-pellicle/NewTargets.
Collapse
Affiliation(s)
- Todd G. B. McLay
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
- Centre for Australian National Biodiversity ResearchCSIROCanberraAustralia
| | - Joanne L. Birch
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
| | - Bee F. Gunn
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
| | - Weixuan Ning
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Jennifer A. Tate
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Lars Nauheimer
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | - Elizabeth M. Joyce
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | - Lalita Simpson
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | | | | | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Chris J. Jackson
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
| |
Collapse
|
26
|
Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. Proc Natl Acad Sci U S A 2021; 118:2021390118. [PMID: 34183409 DOI: 10.1073/pnas.2021390118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Australia has the highest historically recorded rate of mammalian extinction in the world, with 34 terrestrial species declared extinct since European colonization in 1788. Among Australian mammals, rodents have been the most severely affected by these recent extinctions; however, given a sparse historical record, the scale and timing of their decline remain unresolved. Using museum specimens up to 184 y old, we generate genomic-scale data from across the entire assemblage of Australian hydromyine rodents (i.e., eight extinct species and their 42 living relatives). We reconstruct a phylogenomic tree for these species spanning ∼5.2 million years, revealing a cumulative total of 10 million years (>10%) of unique evolutionary history lost to extinction within the past ∼150 y. We find no evidence for reduced genetic diversity in extinct species just prior to or during decline, indicating that their extinction was extremely rapid. This suggests that populations of extinct Australian rodents were large prior to European colonization, and that genetic diversity does not necessarily protect species from catastrophic extinction. In addition, comparative analyses suggest that body size and biome interact to predict extinction and decline, with larger species more likely to go extinct. Finally, we taxonomically resurrect a species from extinction, Gould's mouse (Pseudomys gouldii Waterhouse, 1839), which survives as an island population in Shark Bay, Western Australia (currently classified as Pseudomys fieldi Waite, 1896). With unprecedented sampling across a radiation of extinct and living species, we unlock a previously inaccessible historical perspective on extinction in Australia. Our results highlight the capacity of collections-based research to inform conservation and management of persisting species.
Collapse
|
27
|
Phylogenomic reconstruction addressing the Peltigeralean backbone (Lecanoromycetes, Ascomycota). FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00476-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Guerra-García A, Gioia T, von Wettberg E, Logozzo G, Papa R, Bitocchi E, Bett KE. Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well-Represented Collections. Curr Protoc 2021; 1:e134. [PMID: 34004055 DOI: 10.1002/cpz1.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic characterization of crops allows us to elucidate their evolutionary and domestication history, the genetic basis of important traits, and the use of variation present in landraces and wild relatives to enhance resilience. In this context, we aim to provide an overview of the main genetic resources developed for lentil and their main outcomes, and to suggest protocols for continued work on this important crop. Lens culinaris is the third-most-important cool-season grain and its use is increasing as a quick-cooking, nutritious, plant-based source of protein. L. culinaris was domesticated in the Fertile Crescent, and six additional wild taxa (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) are recognized. Numerous genetic diversity studies have shown that wild relatives present high levels of genetic variation and provide a reservoir of alleles that can be used for breeding programs. Furthermore, the integration of genetics/genomics and breeding techniques has resulted in identification of quantitative trait loci and genes related to attributes of interest. Genetic maps, massive genotyping, marker-assisted selection, and genomic selection are some of the genetic resources generated and applied in lentil. In addition, despite its size (∼4 Gbp) and complexity, the L. culinaris genome has been assembled, allowing a deeper understanding of its architecture. Still, major knowledge gaps exist in lentil, and a deeper understanding and characterization of germplasm resources, including wild relatives, is critical to lentil breeding and improvement. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Recording of lentil seed descriptors Basic Protocol 2: Lentil seed imaging Basic Protocol 3: Lentil seed increase Basic Protocol 4: Recording of primary lentil seed INCREASE descriptors.
Collapse
Affiliation(s)
- Azalea Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tania Gioia
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Eric von Wettberg
- Department of Plant and Soil Sciences and Gund Institute for the Environment, University of Vermont, Burlington, Vermont
| | - Giuseppina Logozzo
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Duchen P, Salamin N. A Cautionary Note on the Use of Genotype Callers in Phylogenomics. Syst Biol 2021; 70:844-854. [PMID: 33084875 PMCID: PMC8208803 DOI: 10.1093/sysbio/syaa081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Next-generation-sequencing genotype callers are commonly used in studies to call variants from newly sequenced species. However, due to the current availability of genomic resources, it is still common practice to use only one reference genome for a given genus, or even one reference for an entire clade of a higher taxon. The problem with traditional genotype callers, such as the one from GATK, is that they are optimized for variant calling at the population level. However, when these callers are used at the phylogenetic level, the consequences for downstream analyses can be substantial. Here, we performed simulations to compare the performance between the genotype callers of GATK and ATLAS, and present their differences at various phylogenetic scales. We show that the genotype caller of GATK substantially underestimates the number of variants at the phylogenetic level, but not at the population level. We also found that the accuracy of heterozygote calls declines with increasing distance to the reference genome. We quantified this decline and found that it is very sharp in GATK, while ATLAS maintains high accuracy even at moderately divergent species from the reference. We further suggest that efforts should be taken towards acquiring more reference genomes per species, before pursuing high-scale phylogenomic studies. [ATLAS; efficiency of SNP calling; GATK; heterozygote calling; next-generation sequencing; reference genome; variant calling.].
Collapse
Affiliation(s)
- Pablo Duchen
- Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol Ecol Resour 2021; 21:1118-1140. [PMID: 33453072 DOI: 10.1111/1755-0998.13327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.
Collapse
Affiliation(s)
- Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia
| | - Monica Ruibal
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
31
|
Roa-Varón A, Dikow RB, Carnevale G, Tornabene L, Baldwin CC, Li C, Hilton EJ. Confronting Sources of Systematic Error to Resolve Historically Contentious Relationships: A Case Study Using Gadiform Fishes (Teleostei, Paracanthopterygii, Gadiformes). Syst Biol 2020; 70:739-755. [PMID: 33346841 PMCID: PMC8561434 DOI: 10.1093/sysbio/syaa095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Reliable estimation of phylogeny is central to avoid inaccuracy in downstream macroevolutionary inferences. However, limitations exist in the implementation of concatenated and summary coalescent approaches, and Bayesian and full coalescent inference methods may not yet be feasible for computation of phylogeny using complicated models and large data sets. Here, we explored methodological (e.g., optimality criteria, character sampling, model selection) and biological (e.g., heterotachy, branch length heterogeneity) sources of systematic error that can result in biased or incorrect parameter estimates when reconstructing phylogeny by using the gadiform fishes as a model clade. Gadiformes include some of the most economically important fishes in the world (e.g., Cods, Hakes, and Rattails). Despite many attempts, a robust higher-level phylogenetic framework was lacking due to limited character and taxonomic sampling, particularly from several species-poor families that have been recalcitrant to phylogenetic placement. We compiled the first phylogenomic data set, including 14,208 loci (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}2.8 M bp) from 58 species representing all recognized gadiform families, to infer a time-calibrated phylogeny for the group. Data were generated with a gene-capture approach targeting coding DNA sequences from single-copy protein-coding genes. Species-tree and concatenated maximum-likelihood (ML) analyses resolved all family-level relationships within Gadiformes. While there were a few differences between topologies produced by the DNA and the amino acid data sets, most of the historically unresolved relationships among gadiform lineages were consistently well resolved with high support in our analyses regardless of the methodological and biological approaches used. However, at deeper levels, we observed inconsistency in branch support estimates between bootstrap and gene and site coefficient factors (gCF, sCF). Despite numerous short internodes, all relationships received unequivocal bootstrap support while gCF and sCF had very little support, reflecting hidden conflict across loci. Most of the gene-tree and species-tree discordance in our study is a result of short divergence times, and consequent lack of informative characters at deep levels, rather than incomplete lineage sorting. We use this phylogeny to establish a new higher-level classification of Gadiformes as a way of clarifying the evolutionary diversification of the order. We recognize 17 families in five suborders: Bregmacerotoidei, Gadoidei, Ranicipitoidei, Merluccioidei, and Macrouroidei (including two subclades). A time-calibrated analysis using 15 fossil taxa suggests that Gadiformes evolved \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}79.5 Ma in the late Cretaceous, but that most extant lineages diverged after the Cretaceous–Paleogene (K-Pg) mass extinction (66 Ma). Our results reiterate the importance of examining phylogenomic analyses for evidence of systematic error that can emerge as a result of unsuitable modeling of biological factors and/or methodological issues, even when data sets are large and yield high support for phylogenetic relationships. [Branch length heterogeneity; Codfishes; commercial fish species; Cretaceous-Paleogene (K-Pg); heterotachy; systematic error; target enrichment.]
Collapse
Affiliation(s)
- Adela Roa-Varón
- National Systematics Laboratory of the National Oceanic Atmospheric Administration Fisheries Service, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA.,Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35, 10125 Torino, Italy
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA
| | - Chenhong Li
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, 999 Hucheng Ring Rd, Pudong, Shanghai, China
| | - Eric J Hilton
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
32
|
Grewe F, Ametrano C, Widhelm TJ, Leavitt S, Distefano I, Polyiam W, Pizarro D, Wedin M, Crespo A, Divakar PK, Lumbsch HT. Using target enrichment sequencing to study the higher-level phylogeny of the largest lichen-forming fungi family: Parmeliaceae (Ascomycota). IMA Fungus 2020; 11:27. [PMID: 33317627 PMCID: PMC7734834 DOI: 10.1186/s43008-020-00051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/29/2020] [Indexed: 11/10/2022] Open
Abstract
Parmeliaceae is the largest family of lichen-forming fungi with a worldwide distribution. We used a target enrichment data set and a qualitative selection method for 250 out of 350 genes to infer the phylogeny of the major clades in this family including 81 taxa, with both subfamilies and all seven major clades previously recognized in the subfamily Parmelioideae. The reduced genome-scale data set was analyzed using concatenated-based Bayesian inference and two different Maximum Likelihood analyses, and a coalescent-based species tree method. The resulting topology was strongly supported with the majority of nodes being fully supported in all three concatenated-based analyses. The two subfamilies and each of the seven major clades in Parmelioideae were strongly supported as monophyletic. In addition, most backbone relationships in the topology were recovered with high nodal support. The genus Parmotrema was found to be polyphyletic and consequently, it is suggested to accept the genus Crespoa to accommodate the species previously placed in Parmotrema subgen. Crespoa. This study demonstrates the power of reduced genome-scale data sets to resolve phylogenetic relationships with high support. Due to lower costs, target enrichment methods provide a promising avenue for phylogenetic studies including larger taxonomic/specimen sampling than whole genome data would allow.
Collapse
Affiliation(s)
- Felix Grewe
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA.
| | - Claudio Ametrano
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Todd J Widhelm
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Steven Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Isabel Distefano
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Wetchasart Polyiam
- Lichen Research Unit, Biology Department, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 Road, Bangkok, 10240, Thailand
| | - David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - H Thorsten Lumbsch
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| |
Collapse
|
33
|
McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, Dos Reis M, Struebig M, Deaville R, Jepson PD, Jarman S, Polanowski A, Morin PA, Rossiter SJ. Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Syst Biol 2020; 69:479-501. [PMID: 31633766 PMCID: PMC7164366 DOI: 10.1093/sysbio/syz068] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$>$\end{document}38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.]
Collapse
Affiliation(s)
- Michael R McGowen
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Ave. NW, Washington DC 20560, USA
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sandra Álvarez-Carretero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Robert Deaville
- Institute of Zoology, Zoological Society of London, Outer Circle, London NW1 4RY, UK
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, Outer Circle, London NW1 4RY, UK
| | - Simon Jarman
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| | - Andrea Polanowski
- Australian Antarctic Division, 203 Channel Highway, Kingston TAS 7050, Australia
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr., La Jolla CA 92037 USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
34
|
Shen XX, Li Y, Hittinger CT, Chen XX, Rokas A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat Commun 2020; 11:6096. [PMID: 33257660 PMCID: PMC7705714 DOI: 10.1038/s41467-020-20005-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Phylogenetic trees are essential for studying biology, but their reproducibility under identical parameter settings remains unexplored. Here, we find that 3515 (18.11%) IQ-TREE-inferred and 1813 (9.34%) RAxML-NG-inferred maximum likelihood (ML) gene trees are topologically irreproducible when executing two replicates (Run1 and Run2) for each of 19,414 gene alignments in 15 animal, plant, and fungal phylogenomic datasets. Notably, coalescent-based ASTRAL species phylogenies inferred from Run1 and Run2 sets of individual gene trees are topologically irreproducible for 9/15 phylogenomic datasets, whereas concatenation-based phylogenies inferred twice from the same supermatrix are reproducible. Our simulations further show that irreproducible phylogenies are more likely to be incorrect than reproducible phylogenies. These results suggest that a considerable fraction of single-gene ML trees may be irreproducible. Increasing reproducibility in ML inference will benefit from providing analyses’ log files, which contain typically reported parameters (e.g., program, substitution model, number of tree searches) but also typically unreported ones (e.g., random starting seed number, number of threads, processor type). Replicate runs of maximum likelihood phylogenetic analyses can generate different tree topologies due to differences in parameters, such as random seeds. Here, Shen et al. demonstrate that replicate runs can generate substantially different tree topologies even with identical data and parameters.
Collapse
Affiliation(s)
- Xing-Xing Shen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310058, Hangzhou, China. .,Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310058, Hangzhou, China.,Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
35
|
Layton KKS, Carvajal JI, Wilson NG. Mimicry and mitonuclear discordance in nudibranchs: New insights from exon capture phylogenomics. Ecol Evol 2020; 10:11966-11982. [PMID: 33209263 PMCID: PMC7664011 DOI: 10.1002/ece3.6727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Abstract
Phylogenetic inference and species delimitation can be challenging in taxonomic groups that have recently radiated and where introgression produces conflicting gene trees, especially when species delimitation has traditionally relied on mitochondrial data and color pattern. Chromodoris, a genus of colorful and toxic nudibranch in the Indo-Pacific, has been shown to have extraordinary cryptic diversity and mimicry, and has recently radiated, ultimately complicating species delimitation. In these cases, additional genome-wide data can help improve phylogenetic resolution and provide important insights about evolutionary history. Here, we employ a transcriptome-based exon capture approach to resolve Chromodoris phylogeny with data from 2,925 exons and 1,630 genes, derived from 15 nudibranch transcriptomes. We show that some previously identified mimics instead show mitonuclear discordance, likely deriving from introgression or mitochondrial capture, but we confirm one "pure" mimic in Western Australia. Sister-species relationships and species-level entities were recovered with high support in both concatenated maximum likelihood (ML) and summary coalescent phylogenies, but the ML topologies were highly variable while the coalescent topologies were consistent across datasets. Our work also demonstrates the broad phylogenetic utility of 149 genes that were previously identified from eupulmonate gastropods. This study is one of the first to (a) demonstrate the efficacy of exon capture for recovering relationships among recently radiated invertebrate taxa, (b) employ genome-wide nuclear markers to test mimicry hypotheses in nudibranchs and (c) provide evidence for introgression and mitochondrial capture in nudibranchs.
Collapse
Affiliation(s)
- Kara K. S. Layton
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
- School of Biological Sciences, Zoology BuildingUniversity of AberdeenAberdeenUK
| | - Jose I. Carvajal
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| | - Nerida G. Wilson
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
| |
Collapse
|
36
|
Hung TH, So T, Sreng S, Thammavong B, Boounithiphonh C, Boshier DH, MacKay JJ. Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia. Sci Rep 2020; 10:17749. [PMID: 33082403 PMCID: PMC7576600 DOI: 10.1038/s41598-020-74814-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the first reference transcriptomes for 6 Dalbergia species with different geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Thea So
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Syneath Sreng
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Bansa Thammavong
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - Chaloun Boounithiphonh
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - David H Boshier
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
37
|
Owen CL, Stern DB, Hilton SK, Crandall KA. Hemiptera phylogenomic resources: Tree‐based orthology prediction and conserved exon identification. Mol Ecol Resour 2020; 20:1346-1360. [DOI: 10.1111/1755-0998.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher L. Owen
- Computational Biology Institute George Washington University Washington DC USA
- Systematic Entomology Laboratory USDA‐ARS Beltsville MD USA
| | - David B. Stern
- Computational Biology Institute George Washington University Washington DC USA
- Department of Integrative Biology University of Wisconsin ‐ Madison Madison WI USA
| | - Sarah K. Hilton
- Computational Biology Institute George Washington University Washington DC USA
- Department of Genome Sciences University of Washington Washington DC USA
| | - Keith A. Crandall
- Computational Biology Institute George Washington University Washington DC USA
| |
Collapse
|
38
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Brown RM. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana). Mol Phylogenet Evol 2020; 151:106899. [PMID: 32590046 DOI: 10.1016/j.ympev.2020.106899] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Using FrogCap, a recently-developed sequence-capture protocol, we obtained >12,000 highly informative exons, introns, and ultraconserved elements (UCEs), which we used to illustrate variation in evolutionary histories of these classes of markers, and to resolve long-standing systematic problems in Southeast Asian Golden-backed frogs of the genus-complex Hylarana. We also performed a comprehensive suite of analyses to assess the relative performance of different genetic markers, data filtering strategies, tree inference methods, and different measures of branch support. To reduce gene tree estimation error, we filtered the data using different thresholds of taxon completeness (missing data) and parsimony informative sites (PIS). We then estimated species trees using concatenated datasets and Maximum Likelihood (IQ-TREE) in addition to summary (ASTRAL-III), distance-based (ASTRID), and site-based (SVDQuartets) multispecies coalescent methods. Topological congruence and branch support were examined using traditional bootstrap, local posterior probabilities, gene concordance factors, quartet frequencies, and quartet scores. Our results did not yield a single concordant topology. Instead, introns, exons, and UCEs clearly possessed different phylogenetic signals, resulting in conflicting, yet strongly-supported phylogenetic estimates. However, a combined analysis comprising the most informative introns, exons, and UCEs converged on a similar topology across all analyses, with the exception of SVDQuartets. Bootstrap values were consistently high despite high levels of incongruence and high proportions of gene trees supporting conflicting topologies. Although low bootstrap values did indicate low heuristic support, high bootstrap support did not necessarily reflect congruence or support for the correct topology. This study reiterates findings of some previous studies, which demonstrated that traditional bootstrap values can produce positively misleading measures of support in large phylogenomic datasets. We also showed a remarkably strong positive relationship between branch length and topological congruence across all datasets, implying that very short internodes remain a challenge to resolve, even with orders of magnitude more data than ever before. Overall, our results demonstrate that more data from unfiltered or combined datasets produced superior results. Although data filtering reduced gene tree incongruence, decreased amounts of data also biased phylogenetic estimation. A point of diminishing returns was evident, at which higher congruence (from more stringent filtering) at the expense of amount of data led to topological error as assessed by comparison to more complete datasets across different genomic markers. Additionally, we showed that applying a parameter-rich model to a partitioned analysis of concatenated data produces better results compared to unpartitioned, or even partitioned analysis using model selection. Despite some lingering uncertainties, a combined analysis of our genomic data and sequences supplemented from GenBank (on the basis of a few gene regions) revealed highly supported novel systematic arrangements. Based on these new findings, we transfer Amnirana nicobariensis into the genus Indosylvirana; and I. milleti and Hylarana celebensis to the genus Papurana. We also provisionally place H. attigua in the genus Papurana pending verification from positively identified (voucher substantiated) samples.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377, Singapore.
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L Wood
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92505, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
39
|
Quek RZB, Jain SS, Neo ML, Rouse GW, Huang D. Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Ecol Resour 2020; 20:807-818. [PMID: 32077619 PMCID: PMC7468246 DOI: 10.1111/1755-0998.13150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Despite the ecological and economic significance of stony corals (Scleractinia), a robust understanding of their phylogeny remains elusive due to patchy taxonomic and genetic sampling, as well as the limited availability of informative markers. To increase the number of genetic loci available for phylogenomic analyses in Scleractinia, we designed 15,919 DNA enrichment baits targeting 605 orthogroups (mean 565 ± SD 366 bp) over 1,139 exon regions. A further 236 and 62 barcoding baits were designed for COI and histone H3 genes respectively for quality and contamination checks. Hybrid capture using these baits was performed on 18 coral species spanning the presently understood scleractinian phylogeny, with two corallimorpharians as outgroup. On average, 74% of all loci targeted were successfully captured for each species. Barcoding baits were matched unambiguously to their respective samples and revealed low levels of cross-contamination in accordance with expectation. We put the data through a series of stringent filtering steps to ensure only scleractinian and phylogenetically informative loci were retained, and the final probe set comprised 13,479 baits, targeting 452 loci (mean 531 ± SD 307 bp) across 865 exon regions. Maximum likelihood, Bayesian and species tree analyses recovered maximally supported, topologically congruent trees consistent with previous phylogenomic reconstructions. The phylogenomic method presented here allows for consistent capture of orthologous loci among divergent coral taxa, facilitating the pooling of data from different studies and increasing the phylogenetic sampling of scleractinians in the future.
Collapse
Affiliation(s)
- Randolph Z. B. Quek
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Sudhanshi S. Jain
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Mei Lin Neo
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Greg W. Rouse
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCAUSA
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
40
|
Karin BR, Gamble T, Jackman TR. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol Biol Evol 2020; 37:904-922. [PMID: 31710677 PMCID: PMC7038749 DOI: 10.1093/molbev/msz263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA
| |
Collapse
|
41
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
42
|
Choo LQ, Bal TMP, Choquet M, Smolina I, Ramos-Silva P, Marlétaz F, Kopp M, Hoarau G, Peijnenburg KTCA. Novel genomic resources for shelled pteropods: a draft genome and target capture probes for Limacina bulimoides, tested for cross-species relevance. BMC Genomics 2020; 21:11. [PMID: 31900119 PMCID: PMC6942316 DOI: 10.1186/s12864-019-6372-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pteropods are planktonic gastropods that are considered as bio-indicators to monitor impacts of ocean acidification on marine ecosystems. In order to gain insight into their adaptive potential to future environmental changes, it is critical to use adequate molecular tools to delimit species and population boundaries and to assess their genetic connectivity. We developed a set of target capture probes to investigate genetic variation across their large-sized genome using a population genomics approach. Target capture is less limited by DNA amount and quality than other genome-reduced representation protocols, and has the potential for application on closely related species based on probes designed from one species. RESULTS We generated the first draft genome of a pteropod, Limacina bulimoides, resulting in a fragmented assembly of 2.9 Gbp. Using this assembly and a transcriptome as a reference, we designed a set of 2899 genome-wide target capture probes for L. bulimoides. The set of probes includes 2812 single copy nuclear targets, the 28S rDNA sequence, ten mitochondrial genes, 35 candidate biomineralisation genes, and 41 non-coding regions. The capture reaction performed with these probes was highly efficient with 97% of the targets recovered on the focal species. A total of 137,938 single nucleotide polymorphism markers were obtained from the captured sequences across a test panel of nine individuals. The probes set was also tested on four related species: L. trochiformis, L. lesueurii, L. helicina, and Heliconoides inflatus, showing an exponential decrease in capture efficiency with increased genetic distance from the focal species. Sixty-two targets were sufficiently conserved to be recovered consistently across all five species. CONCLUSION The target capture protocol used in this study was effective in capturing genome-wide variation in the focal species L. bulimoides, suitable for population genomic analyses, while providing insights into conserved genomic regions in related species. The present study provides new genomic resources for pteropods and supports the use of target capture-based protocols to efficiently characterise genomic variation in small non-model organisms with large genomes.
Collapse
Affiliation(s)
- Le Qin Choo
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| | - Thijs M P Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Marvin Choquet
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Paula Ramos-Silva
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Martina Kopp
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Katja T C A Peijnenburg
- Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Simon C, Gordon ERL, Moulds MS, Cole JA, Haji D, Lemmon AR, Lemmon EM, Kortyna M, Nazario K, Wade EJ, Meister RC, Goemans G, Chiswell SM, Pessacq P, Veloso C, McCutcheon JP, Łukasik P. Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric R L Gordon
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - M S Moulds
- Australian Museum Research Institute, Sydney, NSW, Australia
| | - Jeffrey A Cole
- Natural Sciences Division, Pasadena City College, Pasadena, CA, USA
| | - Diler Haji
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Kortyna
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Katherine Nazario
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Elizabeth J Wade
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Department of Natural Sciences and Mathematics, Curry College, Milton, MA, USA
| | - Russell C Meister
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Geert Goemans
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, Esquel, Chubut, Argentina
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
44
|
Roycroft EJ, Moussalli A, Rowe KC. Phylogenomics Uncovers Confidence and Conflict in the Rapid Radiation of Australo-Papuan Rodents. Syst Biol 2019; 69:431-444. [DOI: 10.1093/sysbio/syz044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The estimation of robust and accurate measures of branch support has proven challenging in the era of phylogenomics. In data sets of potentially millions of sites, bootstrap support for bifurcating relationships around very short internal branches can be inappropriately inflated. Such overestimation of branch support may be particularly problematic in rapid radiations, where phylogenetic signal is low and incomplete lineage sorting severe. Here, we explore this issue by comparing various branch support estimates under both concatenated and coalescent frameworks, in the recent radiation Australo-Papuan murine rodents (Muridae: Hydromyini). Using nucleotide sequence data from 1245 independent loci and several phylogenomic inference methods, we unequivocally resolve the majority of genus-level relationships within Hydromyini. However, at four nodes we recover inconsistency in branch support estimates both within and among concatenated and coalescent approaches. In most cases, concatenated likelihood approaches using standard fast bootstrap algorithms did not detect any uncertainty at these four nodes, regardless of partitioning strategy. However, we found this could be overcome with two-stage resampling, that is, across genes and sites within genes (using -bsam GENESITE in IQ-TREE). In addition, low confidence at recalcitrant nodes was recovered using UFBoot2, a recent revision to the bootstrap protocol in IQ-TREE, but this depended on partitioning strategy. Summary coalescent approaches also failed to detect uncertainty under some circumstances. For each of four recalcitrant nodes, an equivalent (or close to equivalent) number of genes were in strong support ($>$ 75% bootstrap) of both the primary and at least one alternative topological hypothesis, suggesting notable phylogenetic conflict among loci not detected using some standard branch support metrics. Recent debate has focused on the appropriateness of concatenated versus multigenealogical approaches to resolving species relationships, but less so on accurately estimating uncertainty in large data sets. Our results demonstrate the importance of employing multiple approaches when assessing confidence and highlight the need for greater attention to the development of robust measures of uncertainty in the era of phylogenomics.
Collapse
Affiliation(s)
- Emily J Roycroft
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Adnan Moussalli
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| |
Collapse
|
45
|
Identifying genetic markers for a range of phylogenetic utility-From species to family level. PLoS One 2019; 14:e0218995. [PMID: 31369563 PMCID: PMC6675087 DOI: 10.1371/journal.pone.0218995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/13/2019] [Indexed: 12/03/2022] Open
Abstract
Resolving the phylogenetic relationships of closely related species using a small set of loci is challenging as sufficient information may not be captured from a limited sample of the genome. Relying on few loci can also be problematic when conflict between gene-trees arises from incomplete lineage sorting and/or ongoing hybridization, problems especially likely in recently diverged lineages. Here, we developed a method using limited genomic resources that allows identification of many low copy candidate loci from across the nuclear and chloroplast genomes, design probes for target capture and sequence the captured loci. To validate our method we present data from Eucalyptus and Melaleuca, two large and phylogenetically problematic genera within the Myrtaceae family. With one annotated genome, one transcriptome and two whole-genome shotgun sequences of one Eucalyptus and four Melaleuca species, respectively, we identified 212 loci representing 263 kbp for targeted sequence capture and sequencing. Of these, 209 were successfully tested from 47 samples across five related genera of Myrtaceae. The average percentage of reads mapped back to the reference was 57.6% with coverage of more than 20 reads per position across 83.5% of the data. The methods developed here should be applicable across a large range of taxa across all kingdoms. The core methods are very flexible, providing a platform for various genomic resource availabilities and are useful from shallow to deep phylogenies.
Collapse
|
46
|
Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Mol Biol Evol 2019; 35:2582-2584. [PMID: 30165589 PMCID: PMC6188553 DOI: 10.1093/molbev/msy159] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sequence alignment is a prerequisite for many evolutionary analyses. Multiple Alignment of Coding Sequences (MACSE) is a multiple sequence alignment program that explicitly accounts for the underlying codon structure of protein-coding nucleotide sequences. Its unique characteristic allows building reliable codon alignments even in the presence of frameshifts. This facilitates downstream analyses such as selection pressure estimation based on the ratio of nonsynonymous to synonymous substitutions. Here, we present MACSE v2, a major update with an improved version of the initial algorithm enriched with a complete toolkit to handle multiple alignments of protein-coding sequences. A graphical interface now provides user-friendly access to the different subprograms.
Collapse
Affiliation(s)
- Vincent Ranwez
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Cédric Cambon
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Nathalie Chantret
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
47
|
White LC, Fontsere C, Lizano E, Hughes DA, Angedakin S, Arandjelovic M, Granjon AC, Hans JB, Lester JD, Rabanus-Wallace MT, Rowney C, Städele V, Marques-Bonet T, Langergraber KE, Vigilant L. A roadmap for high-throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture. Mol Ecol Resour 2019; 19:609-622. [PMID: 30637963 DOI: 10.1111/1755-0998.12993] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%-3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.
Collapse
Affiliation(s)
- Lauren C White
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Claudia Fontsere
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Spain
| | - David A Hughes
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Samuel Angedakin
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne-Céline Granjon
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jörg B Hans
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jack D Lester
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Carolyn Rowney
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Veronika Städele
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona.,Institute of Human Origins, Arizona State University, Tempe, Arizona
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
48
|
Romeiras MM, Pena AR, Menezes T, Vasconcelos R, Monteiro F, Paulo OS, Moura M. Shortcomings of Phylogenetic Studies on Recent Radiated Insular Groups: A Meta-Analysis Using Cabo Verde Biodiversity. Int J Mol Sci 2019; 20:E2782. [PMID: 31174340 PMCID: PMC6600550 DOI: 10.3390/ijms20112782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
Over the previous decades, numerous studies focused on how oceanic islands have contributed to determine the phylogenetic relationships and times of origin and diversification of different endemic lineages. The Macaronesian Islands (i.e., Azores, Madeira, Selvagens, Canaries, and Cabo Verde), harbour biotas with exceptionally high levels of endemism. Within the region, the vascular plants and reptiles constitute two of the most important radiations. In this study we compare relevant published phylogenetic data and diversification rates retrieved within Cabo Verde endemic lineages and discuss the importance of choosing appropriate phylogeny-based methods to investigate diversification dynamics on islands. From this selective literature-based review, we summarize the software packages used in Macaronesian studies and discuss their adequacy considering the published data to obtain well-supported phylogenies in the target groups. We further debate the importance of Next Generation Sequencing (NGS), to investigate the evolutionary processes of diversification in the Macaronesian Islands. Analysis of genomic data provides phylogenetic resolution for rapidly evolving species radiations, suggesting a great potential to improve the phylogenetic signal and divergence time estimates in insular lineages. The most important Macaronesian reptile radiations provide good case-studies to compare classical phylogenetic methods with new tools, such as phylogenomics, revealing a high value for research on this hotspot area.
Collapse
Affiliation(s)
- Maria M Romeiras
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Ana Rita Pena
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Tiago Menezes
- CIBIO, Research Centre in Biodiversity and Genetic Resources, Azores Group, InBIO Associate Laboratory, Universidade dos Açores, 9501-855 Ponta Delgada, Azores, Portugal.
| | - Raquel Vasconcelos
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associate Laboratory, Universidade do Porto, 4485-661 Vairão, Portugal.
| | - Filipa Monteiro
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Mónica Moura
- CIBIO, Research Centre in Biodiversity and Genetic Resources, Azores Group, InBIO Associate Laboratory, Universidade dos Açores, 9501-855 Ponta Delgada, Azores, Portugal.
| |
Collapse
|
49
|
Blom MPK, Matzke NJ, Bragg JG, Arida E, Austin CC, Backlin AR, Carretero MA, Fisher RN, Glaw F, Hathaway SA, Iskandar DT, McGuire JA, Karin BR, Reilly SB, Rittmeyer EN, Rocha S, Sanchez M, Stubbs AL, Vences M, Moritz C. Habitat preference modulates trans-oceanic dispersal in a terrestrial vertebrate. Proc Biol Sci 2019; 286:20182575. [PMID: 31161911 DOI: 10.1098/rspb.2018.2575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The importance of long-distance dispersal (LDD) in shaping geographical distributions has been debated since the nineteenth century. In terrestrial vertebrates, LDD events across large water bodies are considered highly improbable, but organismal traits affecting dispersal capacity are generally not taken into account. Here, we focus on a recent lizard radiation and combine a summary-coalescent species tree based on 1225 exons with a probabilistic model that links dispersal capacity to an evolving trait, to investigate whether ecological specialization has influenced the probability of trans-oceanic dispersal. Cryptoblepharus species that occur in coastal habitats have on average dispersed 13 to 14 times more frequently than non-coastal species and coastal specialization has, therefore, led to an extraordinarily widespread distribution that includes multiple continents and distant island archipelagoes. Furthermore, their presence across the Pacific substantially predates the age of human colonization and we can explicitly reject the possibility that these patterns are solely shaped by human-mediated dispersal. Overall, by combining new analytical methods with a comprehensive phylogenomic dataset, we use a quantitative framework to show how coastal specialization can influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.
Collapse
Affiliation(s)
- Mozes P K Blom
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,2 Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung , Berlin , Germany
| | - Nicholas J Matzke
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,3 School of Biological Sciences, University of Auckland , Auckland , New Zealand
| | - Jason G Bragg
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| | - Evy Arida
- 4 Research Center for Biology, The Indonesian Institute of Sciences , Cibinong , Indonesia
| | | | - Adam R Backlin
- 6 U.S. Geological Survey, Western Ecological Research Center , Santa Ana, CA , USA
| | | | - Robert N Fisher
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Frank Glaw
- 9 Department of Herpetology, Zoologische Staatssamlung Münich , Munich , Germany
| | - Stacie A Hathaway
- 8 U.S. Geological Survey, Western Ecological Research Center , San Diego, CA , USA
| | - Djoko T Iskandar
- 10 School of Life Sciences and Technology, Institut Teknologi , Bandung , Indonesia
| | - Jimmy A McGuire
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Benjamin R Karin
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Sean B Reilly
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Eric N Rittmeyer
- 1 Research School of Biology, The Australian National University , Canberra , Australia.,5 Museum of Natural Science, Louisiana State University , Baton Rouge, LA , USA
| | - Sara Rocha
- 12 Department of Biochemistry, Genetics and Immunology & Biomedical Research Center (CINBIO), University of Vigo , Vigo , Spain
| | | | - Alexander L Stubbs
- 11 Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley , Berkeley, CA , USA
| | - Miguel Vences
- 14 Zoological Institute, Technische Universität Braunschweig , Braunschweig , Germany
| | - Craig Moritz
- 1 Research School of Biology, The Australian National University , Canberra , Australia
| |
Collapse
|
50
|
Li J, Zeng Z, Wang Y, Liang D, Zhang P. Sequence capture using AFLP-generated baits: A cost-effective method for high-throughput phylogenetic and phylogeographic analysis. Ecol Evol 2019; 9:5925-5937. [PMID: 31161009 PMCID: PMC6540676 DOI: 10.1002/ece3.5176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
Target sequence capture is an efficient technique to enrich specific genomic regions for high-throughput sequencing in ecological and evolutionary studies. In recent years, many sequence capture approaches have been proposed, but most of them rely on commercial synthetic baits which make the experiment expensive. Here, we present a novel sequence capture approach called AFLP-based genome sequence capture (AFLP Capture). This method uses the AFLP (amplified fragment length polymorphism) technique to generate homemade capture baits without the need for prior genome information, thus is applicable to any organisms. In this approach, biotinylated AFLP fragments representing a random fraction of the genome are used as baits to capture the homologous fragments from genomic shotgun sequencing libraries. In a trial study, by using AFLP Capture, we successfully obtained 511 orthologous loci (>700,000 bp in total length) from 11 Odorrana species and more than 100,000 single nucleotide polymorphisms (SNPs) in four analyzed individuals of an Odorrana species. This result shows that our method can be used to address questions of various evolutionary depths (from interspecies level to intraspecies level). We also discuss the flexibility in bait preparation and how the sequencing data are analyzed. In summary, AFLP Capture is a rapid and flexible tool and can significantly reduce the experimental cost for phylogenetic studies that require analyzing genome-scale data (hundreds or thousands of loci).
Collapse
Affiliation(s)
- Jia‐Xuan Li
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zhao‐Chi Zeng
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Ying‐Yong Wang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|