1
|
Foucher A, Evrard O, Rabiet L, Cerdan O, Landemaine V, Bizeul R, Chalaux-Clergue T, Marescaux J, Debortoli N, Ambroise V, Desprats JF. Uncontrolled deforestation and population growth threaten a tropical island's water and land resources in only 10 years. SCIENCE ADVANCES 2024; 10:eadn5941. [PMID: 39141744 PMCID: PMC11323937 DOI: 10.1126/sciadv.adn5941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Rapid demographic growth in tropical islands can exacerbate conflicts and pressures on natural resources, as illustrated by the French island of Mayotte where resources are limited. In only 10 years, uncontrolled migration and population growth (+80% of population between 2002 and 2021) have led to a pronounced 3600% increase in deforestation rates (2010-2014) and an intensification of agricultural practices, escalating conflicts over limited land, water, and biodiversity resources. Implementing an original multi-proxy approach to sediment cores, our study reveals a staggering 300% acceleration in erosion during the first wave of migration (2011-2015), followed by a further 190% increase (2019-2021) under sustained migratory and demographic pressures. Sedimentary DNA analysis provided insights into increased connectivity and community changes. By 2050, the population of this region will increase by 74 and 103%, in Comoros and Madagascar islands, respectively. Urgent conservation measures are needed to avoid major socio-environmental crises and to protect resources for future generations.
Collapse
Affiliation(s)
- Anthony Foucher
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), UMR 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Olivier Evrard
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), UMR 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Laura Rabiet
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), UMR 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | - Rémi Bizeul
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), UMR 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Thomas Chalaux-Clergue
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), UMR 8212 (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
2
|
Tsuji S, Inui R, Nakao R, Miyazono S, Saito M, Kono T, Akamatsu Y. Quantitative environmental DNA metabarcoding shows high potential as a novel approach to quantitatively assess fish community. Sci Rep 2022; 12:21524. [PMID: 36513686 PMCID: PMC9747787 DOI: 10.1038/s41598-022-25274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The simultaneous conservation of species richness and evenness is important to effectively reduce biodiversity loss and keep ecosystem health. Environmental DNA (eDNA) metabarcoding has been used as a powerful tool for identifying community composition, but it does not necessarily provide quantitative information due to several methodological limitations. Thus, the quantification of eDNA through metabarcoding is an important frontier of eDNA-based biomonitoring. Particularly, the qMiSeq approach has recently been developed as a quantitative metabarcoding method and has attracted much attention due to its usefulness. The aim here was to evaluate the performance of the qMiSeq approach as a quantitative monitoring tool for fish communities by comparing the quantified eDNA concentrations with the results of fish capture surveys. The eDNA water sampling and the capture surveys using the electrical shocker were conducted at a total of 21 sites in four rivers in Japan. As a result, we found significant positive relationships between the eDNA concentrations of each species quantified by qMiSeq and both the abundance and biomass of each captured taxon at each site. Furthermore, for seven out of eleven taxa, a significant positive relationship was observed between quantified DNA concentrations by sample and the abundance and/or biomass. In total, our results demonstrated that eDNA metabarcoding with the qMiSeq approach is a suitable and useful tool for quantitative monitoring of fish communities. Due to the simplicity of the eDNA analysis, the eDNA metabarcoding with qMiSeq approach would promote further growth of quantitative monitoring of biodiversity.
Collapse
Affiliation(s)
- Satsuki Tsuji
- grid.258799.80000 0004 0372 2033Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto, 606–8502 Japan ,grid.268397.10000 0001 0660 7960Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755–8611 Japan
| | - Ryutei Inui
- grid.418051.90000 0000 8774 3245Faculty of Socio-Environmental Studies, Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-Ku, Fukuoka, 811–0295 Japan
| | - Ryohei Nakao
- grid.268397.10000 0001 0660 7960Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755–8611 Japan
| | - Seiji Miyazono
- grid.268397.10000 0001 0660 7960Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755–8611 Japan
| | - Minoru Saito
- grid.268397.10000 0001 0660 7960Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755–8611 Japan ,grid.452611.50000 0001 2107 8171Fisheries Division, Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki 305–8686 Japan
| | - Takanori Kono
- grid.268397.10000 0001 0660 7960Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755–8611 Japan ,grid.472015.50000 0000 9513 8387Aqua Restoration Research Center, Public Works Research Institute, National Research and Development Agency, Kawashima, Kasada-Machi, Kakamigahara, Gifu, 501–6021 Japan
| | - Yoshihisa Akamatsu
- grid.268397.10000 0001 0660 7960Graduate School of Science and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755–8611 Japan
| |
Collapse
|
3
|
Ip YCA, Chang JJM, Lim KKP, Jaafar Z, Wainwright BJ, Huang D. Seeing through sedimented waters: environmental DNA reduces the phantom diversity of sharks and rays in turbid marine habitats. BMC Ecol Evol 2021; 21:166. [PMID: 34488638 PMCID: PMC8422768 DOI: 10.1186/s12862-021-01895-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sharks and rays are some of the most threatened marine taxa due to the high levels of bycatch and significant demand for meat and fin-related products in many Asian communities. At least 25% of shark and ray species are considered to be threatened with extinction. In particular, the density of reef sharks in the Pacific has declined to 3-10% of pre-human levels. Elasmobranchs are thought to be sparse in highly urbanised and turbid environments. Low visibility coupled with the highly elusive behaviour of sharks and rays pose a challenge to diversity estimation and biomonitoring efforts as sightings are limited to chance encounters or from carcasses ensnared in nets. Here we utilised an eDNA metabarcoding approach to enhance the precision of elasmobranch diversity estimates in urbanised marine environments. RESULTS We applied eDNA metabarcoding on seawater samples to detect elasmobranch species in the hyper-urbanised waters off Singapore. Two genes-vertebrate 12S and elasmobranch COI-were targeted and amplicons subjected to Illumina high-throughput sequencing. With a total of 84 water samples collected from nine localities, we found 47 shark and ray molecular operational taxonomic units, of which 16 had species-level identities. When data were compared against historical collections and contemporary sightings, eDNA detected 14 locally known species as well as two potential new records. CONCLUSIONS Local elasmobranch richness uncovered by eDNA is greater than the seven species sighted over the last two decades, thereby reducing phantom diversity. Our findings demonstrate that eDNA metabarcoding is effective in detecting shark and ray species despite the challenges posed by the physical environment, granting a more consistent approach to monitor these highly elusive and threatened species.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Kelvin K P Lim
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| |
Collapse
|
4
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
5
|
Pearman JK, Chust G, Aylagas E, Villarino E, Watson JR, Chenuil A, Borja A, Cahill AE, Carugati L, Danovaro R, David R, Irigoien X, Mendibil I, Moncheva S, Rodríguez-Ezpeleta N, Uyarra MC, Carvalho S. Pan-regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding Autonomous Reef Monitoring Structures. Mol Ecol 2020; 29:4882-4897. [PMID: 33063375 DOI: 10.1111/mec.15692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023]
Abstract
Autonomous Reef Monitoring Structures (ARMS) have been applied worldwide to characterize the critical yet frequently overlooked biodiversity patterns of marine benthic organisms. In order to disentangle the relevance of environmental factors in benthic patterns, here, through standardized metabarcoding protocols, we analyse sessile and mobile (<2 mm) organisms collected using ARMS deployed across six regions with different environmental conditions (3 sites × 3 replicates per region): Baltic, Western Mediterranean, Adriatic, Black and Red Seas, and the Bay of Biscay. A total of 27,473 Amplicon Sequence Variants (ASVs) were observed ranging from 1,404 in the Black Sea to 9,958 in the Red Sea. No ASVs were shared among all regions. The highest number of shared ASVs was between the Western Mediterranean and the Adriatic Sea (116) and Bay of Biscay (115). Relatively high numbers of ASVs (103), mostly associated with the genus Amphibalanus, were also shared between the lower salinity seas (Baltic and Black Seas). We found that compositional differences in spatial patterns of rocky-shore benthos are determined slightly more by dispersal limitation than environmental filtering. Dispersal limitation was similar between sessile and mobile groups, while the sessile group had a larger environmental niche breadth than the mobile group. Further, our study can provide a foundation for future evaluations of biodiversity patterns in the cryptobiome, which can contribute up to 70% of the local biodiversity.
Collapse
Affiliation(s)
- John K Pearman
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Guillem Chust
- AZTI, Basque Research and Technology Alliance (BRTA)-Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain
| | - Eva Aylagas
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ernesto Villarino
- AZTI, Basque Research and Technology Alliance (BRTA)-Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain.,College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA.,Scripps Institution of Oceanography and Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, USA
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Anne Chenuil
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Angel Borja
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Laura Carugati
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Danovaro
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Romain David
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Xabier Irigoien
- AZTI, Basque Research and Technology Alliance (BRTA)-Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Iñaki Mendibil
- AZTI, Basque Research and Technology Alliance (BRTA)-Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain
| | | | - Naiara Rodríguez-Ezpeleta
- AZTI, Basque Research and Technology Alliance (BRTA)-Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain
| | - Maria C Uyarra
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Susana Carvalho
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P, Boggero A, Borja A, Bouchez A, Cordier T, Domaizon I, Feio MJ, Filipe AF, Fornaroli R, Graf W, Herder J, van der Hoorn B, Iwan Jones J, Sagova-Mareckova M, Moritz C, Barquín J, Piggott JJ, Pinna M, Rimet F, Rinkevich B, Sousa-Santos C, Specchia V, Trobajo R, Vasselon V, Vitecek S, Zimmerman J, Weigand A, Leese F, Kahlert M. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1295-1310. [PMID: 29801222 DOI: 10.1016/j.scitotenv.2018.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 05/05/2023]
Abstract
The bioassessment of aquatic ecosystems is currently based on various biotic indices that use the occurrence and/or abundance of selected taxonomic groups to define ecological status. These conventional indices have some limitations, often related to difficulties in morphological identification of bioindicator taxa. Recent development of DNA barcoding and metabarcoding could potentially alleviate some of these limitations, by using DNA sequences instead of morphology to identify organisms and to characterize a given ecosystem. In this paper, we review the structure of conventional biotic indices, and we present the results of pilot metabarcoding studies using environmental DNA to infer biotic indices. We discuss the main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices. We present some future developments to fully exploit the potential of metabarcoding data and improve the accuracy and precision of their analysis. We also propose some recommendations for the future integration of DNA metabarcoding to routine biomonitoring programs.
Collapse
Affiliation(s)
- Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland.
| | - Mary Kelly-Quinn
- School of Biology & Environmental Science, University College Dublin, Ireland
| | - Florian Altermatt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland(;) Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Pedro Beja
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-601 Vairão, Portugal; CEABN/InBIO-Centro de Estudos Ambientais 'Prof. Baeta Neves', Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Angela Boggero
- LifeWatch, Italy and CNR-Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Angel Borja
- AZTI, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain
| | - Agnès Bouchez
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Tristan Cordier
- Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland
| | - Isabelle Domaizon
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Maria Joao Feio
- Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Department of Life Sciences, University of Coimbra, Portugal
| | - Ana Filipa Filipe
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-601 Vairão, Portugal; CEABN/InBIO-Centro de Estudos Ambientais 'Prof. Baeta Neves', Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Riccardo Fornaroli
- University of Milano Bicocca, Department of Earth and Environmental Sciences(DISAT), Piazza della Scienza 1,20126 Milano, Italy
| | - Wolfram Graf
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), 1180 Vienna, Austria
| | - Jelger Herder
- RAVON, Postbus 1413, Nijmegen 6501 BK, The Netherlands
| | | | - J Iwan Jones
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Marketa Sagova-Mareckova
- Crop Research Institute, Epidemiology and Ecology of Microorganisms, Drnovska 507, 16106 Praha 6, Czechia
| | - Christian Moritz
- ARGE Limnologie GesmbH, Hunoldstraße 14, 6020 Innsbruck, Austria
| | - Jose Barquín
- Environmental Hydraulics Institute "IHCantabria", Universidad de Cantabria, C/ Isabel Torres n°15, Parque Científico y Tecnológico de Cantabria, 39011 Santander, Spain
| | - Jeremy J Piggott
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland; Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Maurizio Pinna
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Frederic Rimet
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Buki Rinkevich
- Israel Oceanographic and Limnological Research, Tel- Shikmona, Haifa 31080, Israel
| | - Carla Sousa-Santos
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Rosa Trobajo
- IRTA, Institute of Agriculture and Food Research and Technology, Marine and Continental Waters Program, Carretera Poble Nou Km 5.5, E-43540 St. Carles de la Ràpita, Catalonia, Spain
| | - Valentin Vasselon
- INRA, UMR42 CARRTEL, 75bis Avenue de Corzent, 74203 Thonon les Bains Cedex, France
| | - Simon Vitecek
- Department of Limnology and Bio-Oceanography, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jonas Zimmerman
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany
| | - Alexander Weigand
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitaetsstrasse 5, 45141 Essen, Germany; Musée National d'Histoire Naturelle, 25 Rue Münster, 2160 Luxembourg, Luxembourg
| | - Florian Leese
- University of Duisburg-Essen, Aquatic Ecosystem Research, Universitaetsstrasse 5, 45141 Essen, Germany
| | - Maria Kahlert
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, PO Box 7050, SE - 750 07 Uppsala, Sweden
| |
Collapse
|
7
|
Bakker J, Wangensteen OS, Chapman DD, Boussarie G, Buddo D, Guttridge TL, Hertler H, Mouillot D, Vigliola L, Mariani S. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci Rep 2017; 7:16886. [PMID: 29203793 PMCID: PMC5715122 DOI: 10.1038/s41598-017-17150-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/19/2017] [Indexed: 01/27/2023] Open
Abstract
Sharks are charismatic predators that play a key role in most marine food webs. Their demonstrated vulnerability to exploitation has recently turned them into flagship species in ocean conservation. Yet, the assessment and monitoring of the distribution and abundance of such mobile species in marine environments remain challenging, often invasive and resource-intensive. Here we pilot a novel, rapid and non-invasive environmental DNA (eDNA) metabarcoding approach specifically targeted to infer shark presence, diversity and eDNA read abundance in tropical habitats. We identified at least 21 shark species, from both Caribbean and Pacific Coral Sea water samples, whose geographical patterns of diversity and read abundance coincide with geographical differences in levels of anthropogenic pressure and conservation effort. We demonstrate that eDNA metabarcoding can be effectively employed to study shark diversity. Further developments in this field have the potential to drastically enhance our ability to assess and monitor elusive oceanic predators, and lead to improved conservation strategies.
Collapse
Affiliation(s)
- Judith Bakker
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Owen S Wangensteen
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Demian D Chapman
- Department of Biological Sciences, Florida International University, 11200 S.W., 8th Street, Miami, Florida, 33199, USA
| | - Germain Boussarie
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, Languedoc-Roussillon, 34095, Montpellier Cedex, France
- IRD (Institut de Recherche pour le Développement), Laboratoire d'Excellence Labex Corail, UMR IRD-UR-CNRS ENTROPIE, Centre IRD de Noumea, BP A5, 98800, Noumea Cedex, New Caledonia, France
| | - Dayne Buddo
- University of the West Indies, Discovery Bay Marine Laboratory and Field Station, P.O. Box 35, Discovery Bay, St. Ann, Jamaica
| | | | - Heidi Hertler
- The SFS Centre for Marine Resource Studies, Turks and Caicos Islands, UK
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, Languedoc-Roussillon, 34095, Montpellier Cedex, France
| | - Laurent Vigliola
- IRD (Institut de Recherche pour le Développement), Laboratoire d'Excellence Labex Corail, UMR IRD-UR-CNRS ENTROPIE, Centre IRD de Noumea, BP A5, 98800, Noumea Cedex, New Caledonia, France
| | - Stefano Mariani
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
8
|
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol 2017; 26:5872-5895. [PMID: 28921802 DOI: 10.1111/mec.14350] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-throughput sequencing ("HTS") platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed "environmental DNA" or "eDNA"). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called "eDNA metabarcoding" and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.
Collapse
Affiliation(s)
- Kristy Deiner
- Atkinson Center for a Sustainable Future, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Holly M Bik
- Department of Nematology, University of California, Riverside, CA, USA
| | - Elvira Mächler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Mathew Seymour
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK
| | | | - Florian Altermatt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK
| | - Iliana Bista
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales Building, Bangor University, Bangor, Gwynedd, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - David M Lodge
- Atkinson Center for a Sustainable Future, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Natasha de Vere
- Conservation and Research Department, National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes. PLoS One 2016; 11:e0165252. [PMID: 27851757 PMCID: PMC5112899 DOI: 10.1371/journal.pone.0165252] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022] Open
Abstract
Remote polar and deepwater fish faunas are under pressure from ongoing climate change and increasing fishing effort. However, these fish communities are difficult to monitor for logistic and financial reasons. Currently, monitoring of marine fishes largely relies on invasive techniques such as bottom trawling, and on official reporting of global catches, which can be unreliable. Thus, there is need for alternative and non-invasive techniques for qualitative and quantitative oceanic fish surveys. Here we report environmental DNA (eDNA) metabarcoding of seawater samples from continental slope depths in Southwest Greenland. We collected seawater samples at depths of 188–918 m and compared seawater eDNA to catch data from trawling. We used Illumina sequencing of PCR products to demonstrate that eDNA reads show equivalence to fishing catch data obtained from trawling. Twenty-six families were found with both trawling and eDNA, while three families were found only with eDNA and two families were found only with trawling. Key commercial fish species for Greenland were the most abundant species in both eDNA reads and biomass catch, and interpolation of eDNA abundances between sampling sites showed good correspondence with catch sizes. Environmental DNA sequence reads from the fish assemblages correlated with biomass and abundance data obtained from trawling. Interestingly, the Greenland shark (Somniosus microcephalus) showed high abundance of eDNA reads despite only a single specimen being caught, demonstrating the relevance of the eDNA approach for large species that can probably avoid bottom trawls in most cases. Quantitative detection of marine fish using eDNA remains to be tested further to ascertain whether this technique is able to yield credible results for routine application in fisheries. Nevertheless, our study demonstrates that eDNA reads can be used as a qualitative and quantitative proxy for marine fish assemblages in deepwater oceanic habitats. This relates directly to applied fisheries as well as to monitoring effects of ongoing climate change on marine biodiversity—especially in polar ecosystems.
Collapse
|