1
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
2
|
Kebede FG, Derks MFL, Dessie T, Hanotte O, Barros CP, Crooijmans RPMA, Komen H, Bastiaansen JWM. Landscape genomics reveals regions associated with adaptive phenotypic and genetic variation in Ethiopian indigenous chickens. BMC Genomics 2024; 25:284. [PMID: 38500079 PMCID: PMC10946127 DOI: 10.1186/s12864-024-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Climate change is a threat to sustainable livestock production and livelihoods in the tropics. It has adverse impacts on feed and water availability, disease prevalence, production, environmental temperature, and biodiversity. Unravelling the drivers of local adaptation and understanding the underlying genetic variation in random mating indigenous livestock populations informs the design of genetic improvement programmes that aim to increase productivity and resilience. In the present study, we combined environmental, genomic, and phenotypic information of Ethiopian indigenous chickens to investigate their environmental adaptability. Through a hybrid sampling strategy, we captured wide biological and ecological variabilities across the country. Our environmental dataset comprised mean values of 34 climatic, vegetation and soil variables collected over a thirty-year period for 260 geolocations. Our biological dataset included whole genome sequences and quantitative measurements (on eight traits) from 513 individuals, representing 26 chicken populations spread along 4 elevational gradients (6-7 populations per gradient). We performed signatures of selection analyses ([Formula: see text] and XP-EHH) to detect footprints of natural selection, and redundancy analyses (RDA) to determine genotype-environment and genotype-phenotype-associations. RDA identified 1909 outlier SNPs linked with six environmental predictors, which have the highest contributions as ecological drivers of adaptive phenotypic variation. The same method detected 2430 outlier SNPs that are associated with five traits. A large overlap has been observed between signatures of selection identified by[Formula: see text]and XP-EHH showing that both methods target similar selective sweep regions. Average genetic differences measured by [Formula: see text] are low between gradients, but XP-EHH signals are the strongest between agroecologies. Genes in the calcium signalling pathway, those associated with the hypoxia-inducible factor (HIF) transcription factors, and sports performance (GALNTL6) are under selection in high-altitude populations. Our study underscores the relevance of landscape genomics as a powerful interdisciplinary approach to dissect adaptive phenotypic and genetic variation in random mating indigenous livestock populations.
Collapse
Affiliation(s)
- Fasil Getachew Kebede
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands.
- International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - Tadelle Dessie
- International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Carolina Pita Barros
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - Hans Komen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - John W M Bastiaansen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| |
Collapse
|
3
|
Mares-Mayagoitia JA, Lafarga-De la Cruz F, Micheli F, Cruz-Hernández P, de-Anda-Montañez JA, Hyde J, Hernández-Saavedra NY, Mejía-Ruíz P, De Jesús-Bonilla VS, Vargas-Peralta CE, Valenzuela-Quiñonez F. Seascape genomics of the pink abalone (Haliotis corrugata): An insight into a cross-border species in the northeast Pacific coast. J Hered 2024; 115:188-202. [PMID: 38158823 DOI: 10.1093/jhered/esad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024] Open
Abstract
Seascape genomics gives insight into the geographic and environmental factors shaping local adaptations. It improves the understanding of the potential effects of climate change, which is relevant to provide the basis for the international management of fishery resources. The pink abalone (Haliotis corrugata) is distributed from California, United States to Baja California Sur, Mexico, exposed to a latitudinal environmental gradient in the California Current System. Management of the pink abalone contrasts between Mexico and the United States; Mexico has an active fishery organized in four administrative areas, while the United States has kept the fishery in permanent closure since 1996. However, the impact of environmental factors on genetic variation along the species distribution remains unknown, and understanding this relationship is crucial for effective spatial management strategies. This study aims to investigate the neutral and adaptive genomic structure of H. corrugata. A total of 203 samples from 13 locations were processed using ddRADseq, and covering the species' distribution. Overall, 2,231 neutral, nine potentially adaptive and three genomic-environmental association loci were detected. The neutral structure identified two groups: 1) California, United States and 2) Baja California Peninsula, México. In addition, the adaptive structure analysis also detected two groups with genetic divergence observed at Punta Eugenia. Notably, the seawater temperature significantly correlated with the northern group (temperate) and the southern (warmer) group. This study is a valuable foundation for future research and conservation initiatives, emphasizing the importance of considering neutral and adaptive genetic factors when developing management strategies for marine species.
Collapse
Affiliation(s)
| | - Fabiola Lafarga-De la Cruz
- Centro de Investigaciones Científicas y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Fiorenza Micheli
- Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA, United States
| | - Pedro Cruz-Hernández
- Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Baja California Sur, Mexico
| | | | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, United States
| | | | - Paulina Mejía-Ruíz
- Centro de Investigaciones Científicas y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | | - Carmen E Vargas-Peralta
- Centro de Investigaciones Científicas y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | | |
Collapse
|
4
|
Selmoni O, Bay LK, Exposito-Alonso M, Cleves PA. Finding genes and pathways that underlie coral adaptation. Trends Genet 2024; 40:213-227. [PMID: 38320882 DOI: 10.1016/j.tig.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
Collapse
Affiliation(s)
- Oliver Selmoni
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science; Townsville, QLD 4810, Australia
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Phillip A Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
5
|
Beer MA, Proft KM, Veillet A, Kozakiewicz CP, Hamilton DG, Hamede R, McCallum H, Hohenlohe PA, Burridge CP, Margres MJ, Jones ME, Storfer A. Disease-driven top predator decline affects mesopredator population genomic structure. Nat Ecol Evol 2024; 8:293-303. [PMID: 38191839 DOI: 10.1038/s41559-023-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024]
Abstract
Top predator declines are pervasive and often have dramatic effects on ecological communities via changes in food web dynamics, but their evolutionary consequences are virtually unknown. Tasmania's top terrestrial predator, the Tasmanian devil, is declining due to a lethal transmissible cancer. Spotted-tailed quolls benefit via mesopredator release, and they alter their behaviour and resource use concomitant with devil declines and increased disease duration. Here, using a landscape community genomics framework to identify environmental drivers of population genomic structure and signatures of selection, we show that these biotic factors are consistently among the top variables explaining genomic structure of the quoll. Landscape resistance negatively correlates with devil density, suggesting that devil declines will increase quoll genetic subdivision over time, despite no change in quoll densities detected by camera trap studies. Devil density also contributes to signatures of selection in the quoll genome, including genes associated with muscle development and locomotion. Our results provide some of the first evidence of the evolutionary impacts of competition between a top predator and a mesopredator species in the context of a trophic cascade. As top predator declines are increasing globally, our framework can serve as a model for future studies of evolutionary impacts of altered ecological interactions.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Kirstin M Proft
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Anne Veillet
- Hilo Core Genomics Facility, University of Hawaii at Hilo, Hilo, HI, USA
| | - Christopher P Kozakiewicz
- Department of Integrative Biology, Michigan State University, W.K. Kellogg Biological Station, Hickory Corners, MI, USA
| | - David G Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
6
|
Denis H, Bay LK, Mocellin VJL, Naugle MS, Lecellier G, Purcell SW, Berteaux-Lecellier V, Howells EJ. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc Biol Sci 2024; 291:20240587. [PMID: 39257340 PMCID: PMC11463214 DOI: 10.1098/rspb.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024] Open
Abstract
Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- ED 129, Sorbonne Université, 4, Place Jussieu, Paris75252, France
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Melissa S. Naugle
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- Institut de Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, NouméaBP R4 98 851, New Caledonia
| | - Steven W. Purcell
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | - Emily J. Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
7
|
Chambers EA, Bishop AP, Wang IJ. Individual-based landscape genomics for conservation: An analysis pipeline. Mol Ecol Resour 2023. [PMID: 37883295 DOI: 10.1111/1755-0998.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non-model systems has also enabled a shift away from population-based sampling to individual-based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual-based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population-based sampling to individual-based sampling schemes. Here, we discuss the benefits of individual-based sampling for conservation and describe how landscape genomic methods, paired with individual-based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user-friendly, open-source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). The algatr package includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Anusha P Bishop
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Guo F, Ye Y, Zhu K, Lin S, Wang Y, Dong Z, Yao R, Li H, Wang W, Liao Z, Guo B, Yan X. Genetic Diversity, Population Structure, and Environmental Adaptation Signatures of Chinese Coastal Hard-Shell Mussel Mytilus coruscus Revealed by Whole-Genome Sequencing. Int J Mol Sci 2023; 24:13641. [PMID: 37686445 PMCID: PMC10488143 DOI: 10.3390/ijms241713641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The hard-shell mussel (Mytilus coruscus) is widespread in the temperate coastal areas of the northwest Pacific and holds a significant position in the shellfish aquaculture market in China. However, the natural resources of this species have been declining, and population genetic studies of M. coruscus are also lacking. In this study, we conducted whole-genome resequencing (WGR) of M. coruscus from eight different latitudes along the Chinese coast and identified a total of 25,859,986 single nucleotide polymorphism (SNP) markers. Our findings indicated that the genetic diversity of M. coruscus from the Zhoushan region was lower compared with populations from other regions. Furthermore, we observed that the evolutionary tree clustered into two primary branches, and the Zhangzhou (ZZ) population was in a separate branch. The ZZ population was partly isolated from populations in other regions, but the distribution of branches was not geographically homogeneous, and a nested pattern emerged, consistent with the population differentiation index (FST) results. To investigate the selection characteristics, we utilized the northern M. coruscus populations (Dalian and Qingdao) and the central populations (Zhoushan and Xiangshan) as reference populations and the southern ZZ population as the target population. Our selection scan analysis identified several genes associated with thermal responses, including Hsp70 and CYP450. These genes may play important roles in the adaptation of M. coruscus to different living environments. Overall, our study provides a comprehensive understanding of the genomic diversity of coastal M. coruscus in China and is a valuable resource for future studies on genetic breeding and the evolutionary adaptation of this species.
Collapse
Affiliation(s)
- Feng Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yuxia Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhenyu Dong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Xiaojun Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| |
Collapse
|
9
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
10
|
Dauphin B, Rellstab C, Wüest RO, Karger DN, Holderegger R, Gugerli F, Manel S. Re-thinking the environment in landscape genomics. Trends Ecol Evol 2023; 38:261-274. [PMID: 36402651 DOI: 10.1016/j.tree.2022.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.
Collapse
Affiliation(s)
- Benjamin Dauphin
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.
| | | | - Rafael O Wüest
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; Institute of Integrative Biology (IBZ), ETH, Zurich, 8092 Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Stéphanie Manel
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, 34000 Montpellier, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
11
|
Snead AA, Clark RD. The Biological Hierarchy, Time, and Temporal 'Omics in Evolutionary Biology: A Perspective. Integr Comp Biol 2022; 62:1872-1886. [PMID: 36057775 DOI: 10.1093/icb/icac138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sequencing data-genomics, transcriptomics, epigenomics, proteomics, and metabolomics-have revolutionized biological research, enabling a more detailed study of processes, ranging from subcellular to evolutionary, that drive biological organization. These processes, collectively, are responsible for generating patterns of phenotypic variation and can operate over dramatically different timescales (milliseconds to billions of years). While researchers often study phenotypic variation at specific levels of biological organization to isolate processes operating at that particular scale, the varying types of sequence data, or 'omics, can also provide complementary inferences to link molecular and phenotypic variation to produce an integrated view of evolutionary biology, ranging from molecular pathways to speciation. We briefly describe how 'omics has been used across biological levels and then demonstrate the utility of integrating different types of sequencing data across multiple biological levels within the same study to better understand biological phenomena. However, single-time-point studies cannot evaluate the temporal dynamics of these biological processes. Therefore, we put forward temporal 'omics as a framework that can better enable researchers to study the temporal dynamics of target processes. Temporal 'omics is not infallible, as the temporal sampling regime directly impacts inferential ability. Thus, we also discuss the role the temporal sampling regime plays in deriving inferences about the environmental conditions driving biological processes and provide examples that demonstrate the impact of the sampling regime on biological inference. Finally, we forecast the future of temporal 'omics by highlighting current methodological advancements that will enable temporal 'omics to be extended across species and timescales. We extend this discussion to using temporal multi-omics to integrate across the biological hierarchy to evaluate and link the temporal dynamics of processes that generate phenotypic variation.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - René D Clark
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Shaffer HB, Toffelmier E, Corbett-Detig RB, Escalona M, Erickson B, Fiedler P, Gold M, Harrigan RJ, Hodges S, Luckau TK, Miller C, Oliveira DR, Shaffer KE, Shapiro B, Sork VL, Wang IJ. Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project. J Hered 2022; 113:577-588. [PMID: 35395669 DOI: 10.1093/jhered/esac020] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
The California Conservation Genomics Project (CCGP) is a unique, critically important step forward in the use of comprehensive landscape genetic data to modernize natural resource management at a regional scale. We describe the CCGP, including all aspects of project administration, data collection, current progress, and future challenges. The CCGP will generate, analyze, and curate a single high-quality reference genome and 100-150 resequenced genomes for each of 153 species projects (representing 235 individual species) that span the ecological and phylogenetic breadth of California's marine, freshwater, and terrestrial ecosystems. The resulting portfolio of roughly 20 000 resequenced genomes will be analyzed with identical informatic and landscape genomic pipelines, providing a comprehensive overview of hotspots of within-species genomic diversity, potential and realized corridors connecting these hotspots, regions of reduced diversity requiring genetic rescue, and the distribution of variation critical for rapid climate adaptation. After 2 years of concerted effort, full funding ($12M USD) has been secured, species identified, and funds distributed to 68 laboratories and 114 investigators drawn from all 10 University of California campuses. The remaining phases of the CCGP include completion of data collection and analyses, and delivery of the resulting genomic data and inferences to state and federal regulatory agencies to help stabilize species declines. The aspirational goals of the CCGP are to identify geographic regions that are critical to long-term preservation of California biodiversity, prioritize those regions based on defensible genomic criteria, and provide foundational knowledge that informs management strategies at both the individual species and ecosystem levels.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA.,California Department of Fish and Wildlife, Fisheries Branch, West Sacramento, CA 95605, USA
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Russ B Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bjorn Erickson
- U.S. Fish and Wildlife Service, Sacramento, CA 95825, USA
| | - Peggy Fiedler
- Natural Reserve System, Office of the President, University of California, Oakland, CA 94607, USA
| | - Mark Gold
- California Natural Resources Agency, 1416 Ninth Street, Suite 1311, Sacramento, CA 95814, USA
| | - Ryan J Harrigan
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA.,Center for Tropical Research, Institute for Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Scott Hodges
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Tara K Luckau
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Courtney Miller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Daniel R Oliveira
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Kevin E Shaffer
- California Department of Fish and Wildlife, Fisheries Branch, West Sacramento, CA 95605, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Beer MA, Kane RA, Micheletti SJ, Kozakiewicz CP, Storfer A. Landscape genomics of the streamside salamander: Implications for species management in the face of environmental change. Evol Appl 2022; 15:220-236. [PMID: 35233244 PMCID: PMC8867708 DOI: 10.1111/eva.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding spatial patterns of genetic differentiation and local adaptation is critical in a period of rapid environmental change. Climate change and anthropogenic development have led to population declines and shifting geographic distributions in numerous species. The streamside salamander, Ambystoma barbouri, is an endemic amphibian with a small geographic range that predominantly inhabits small, ephemeral streams. As A. barbouri is listed as near-threatened by the IUCN, we describe range-wide patterns of genetic differentiation and adaptation to assess the species' potential to respond to environmental change. We use outlier scans and genetic-environment association analyses to identify genomic variation putatively underlying local adaptation across the species' geographic range. We find evidence for adaptation with a polygenic architecture and a set of candidate SNPs that identify genes putatively contributing to local adaptation. Our results build on earlier work that suggests that some A. barbouri populations are locally adapted despite evidence for asymmetric gene flow between the range core and periphery. Taken together, the body of work describing the evolutionary genetics of range limits in A. barbouri suggests that the species may be unlikely to respond naturally to environmental challenges through a range shift or in situ adaptation. We suggest that management efforts such as assisted migration may be necessary in future.
Collapse
Affiliation(s)
- Marc A. Beer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Rachael A. Kane
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | | | | | - Andrew Storfer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
14
|
Foster SD, Feutry P, Grewe P, Davies C. Sample size requirements for genetic studies on yellowfin tuna. PLoS One 2021; 16:e0259113. [PMID: 34735482 PMCID: PMC8568148 DOI: 10.1371/journal.pone.0259113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
In population genetics, the amount of information for an analytical task is governed by the number of individuals sampled and the amount of genetic information measured on each of those individuals. In this work, we assessed the numbers of individual yellowfin tuna (Thunnus albacares) and genetic markers required for ocean-basin scale inferences. We assessed this for three distinct data analysis tasks that are often employed: testing for differences between genetic profiles; stock delineation, and; assignment of individuals to stocks. For all analytical tasks, we used real (not simulated) data from four sampling locations that span the tropical Pacific Ocean. Whilst spatially separated, the genetic differences between the sampling sites were not substantial, a maximum of approximately Fst = 0.02, which is quite typical of large pelagic fish. We repeatedly sub-sampled the data, mimicking a new survey, and performed the analyses. False positive rates were also assessed by re-sampling and randomly assigning fish to groups. Varying the sample sizes indicated that some analytical tasks, namely profile testing, required relatively few individuals per sampling location (n ≳ 10) and single nucleotide polymorphisms (SNPs, m ≳ 256). Stock delineation required more individuals per sampling location (n ≳ 25). Assignment of fish to sampling locations required substantially more individuals, more in fact than we had available (n > 50), although this sample size could be reduced to n ≳ 30 when individual fish were assumed to belong to one of the groups sampled. With these results, designers of molecular ecological surveys for yellowfin tuna, and users of information from them, can assess whether the information content is adequate for the required inferential task.
Collapse
Affiliation(s)
| | - Pierre Feutry
- CSIRO’s Oceans and Atmospheres, Hobart, Tasmania, Australia
| | - Peter Grewe
- CSIRO’s Oceans and Atmospheres, Hobart, Tasmania, Australia
| | | |
Collapse
|
15
|
Kebede FG, Komen H, Dessie T, Alemu SW, Hanotte O, Bastiaansen JWM. Species and Phenotypic Distribution Models Reveal Population Differentiation in Ethiopian Indigenous Chickens. Front Genet 2021; 12:723360. [PMID: 34567075 PMCID: PMC8456010 DOI: 10.3389/fgene.2021.723360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Smallholder poultry production dominated by indigenous chickens is an important source of livelihoods for most rural households in Ethiopia. The long history of domestication and the presence of diverse agroecologies in Ethiopia create unique opportunities to study the effect of environmental selective pressures. Species distribution models (SDMs) and Phenotypic distribution models (PDMs) can be applied to investigate the relationship between environmental variation and phenotypic differentiation in wild animals and domestic populations. In the present study we used SDMs and PDMs to detect environmental variables related with habitat suitability and phenotypic differentiation among nondescript Ethiopian indigenous chicken populations. 34 environmental variables (climatic, soil, and vegetation) and 19 quantitative traits were analyzed for 513 adult chickens from 26 populations. To have high variation in the dataset for phenotypic and ecological parameters, animals were sampled from four spatial gradients (each represented by six to seven populations), located in different climatic zones and geographies. Three different ecotypes are proposed based on correlation test between habitat suitability maps and phenotypic clustering of sample populations. These specific ecotypes show phenotypic differentiation, likely in response to environmental selective pressures. Nine environmental variables with the highest contribution to habitat suitability are identified. The relationship between quantitative traits and a few of the environmental variables associated with habitat suitability is non-linear. Our results highlight the benefits of integrating species and phenotypic distribution modeling approaches in characterization of livestock populations, delineation of suitable habitats for specific breeds, and understanding of the relationship between ecological variables and quantitative traits, and underlying evolutionary processes.
Collapse
Affiliation(s)
- Fasil Getachew Kebede
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Hans Komen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | | | - Olivier Hanotte
- International Livestock Research Institute, Addis Ababa, Ethiopia
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
16
|
Kazanidis G, Henry L, Vad J, Johnson C, De Clippele LH, Roberts JM. Sensitivity of a cold‐water coral reef to interannual variability in regional oceanography. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Georgios Kazanidis
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| | - Lea‐Anne Henry
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| | - Johanne Vad
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| | | | | | - J. Murray Roberts
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| |
Collapse
|
17
|
Postolache D, Oddou-Muratorio S, Vajana E, Bagnoli F, Guichoux E, Hampe A, Le Provost G, Lesur I, Popescu F, Scotti I, Piotti A, Vendramin GG. Genetic signatures of divergent selection in European beech (Fagus sylvatica L.) are associated with the variation in temperature and precipitation across its distribution range. Mol Ecol 2021; 30:5029-5047. [PMID: 34383353 DOI: 10.1111/mec.16115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.
Collapse
Affiliation(s)
- D Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | - S Oddou-Muratorio
- INRAE, URFM, Avignon, France.,ECOBIOP Université de Pau et des Pays de l'Adour, INRAE, ECOBIOP, E2S UPPA, Saint-Pée-sur-Nivelle, France
| | - E Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - E Guichoux
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - A Hampe
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - G Le Provost
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - I Lesur
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France.,HelixVenture, Mérignac, France
| | - F Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | | | - A Piotti
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
18
|
Paril JF, Balding DJ, Fournier-Level A. Optimizing sampling design and sequencing strategy for the genomic analysis of quantitative traits in natural populations. Mol Ecol Resour 2021; 22:137-152. [PMID: 34192415 DOI: 10.1111/1755-0998.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
Mapping the genes underlying ecologically relevant traits in natural populations is fundamental to develop a molecular understanding of species adaptation. Current sequencing technologies enable the characterization of a species' genetic diversity across the landscape or even over its whole range. The relevant capture of the genetic diversity across the landscape is critical for a successful genetic mapping of traits and there are no clear guidelines on how to achieve an optimal sampling and which sequencing strategy to implement. Here we determine, through simulation, the sampling scheme that maximizes the power to map the genetic basis of a complex trait in an outbreeding species across an idealized landscape and draw genomic predictions for the trait, comparing individual and pool sequencing strategies. Our results show that quantitative trait locus detection power and prediction accuracy are higher when more populations over the landscape are sampled and this is more cost-effectively done with pool sequencing than with individual sequencing. Additionally, we recommend sampling populations from areas of high genetic diversity. As progress in sequencing enables the integration of trait-based functional ecology into landscape genomics studies, these findings will guide study designs allowing direct measures of genetic effects in natural populations across the environment.
Collapse
Affiliation(s)
- Jefferson F Paril
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Balding
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandre Fournier-Level
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Burgess SM, Garrick RC. The effect of sampling density and study area size on landscape genetics inferences for the Mississippi slimy salamander ( Plethodon mississippi). Ecol Evol 2021; 11:6289-6304. [PMID: 34141218 PMCID: PMC8207395 DOI: 10.1002/ece3.7481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
In landscape genetics, it is largely unknown how choices regarding sampling density and study area size impact inferences upon which habitat features impede vs. facilitate gene flow. While it is recommended that sampling locations be spaced no further apart than the average individual's dispersal distance, for low-mobility species, this could lead to a challenging number of sampling locations, or an unrepresentative study area. We assessed the effects of sampling density and study area size on landscape genetic inferences for a dispersal-limited amphibian, Plethodon mississippi, via analysis of nested datasets. Microsatellite-based genetic distances among individuals were divided into three datasets representing sparse sampling across a large study area, dense sampling across a small study area, or sparse sampling across the same small study area. These datasets were a proxy for gene flow (i.e., the response variable) in maximum-likelihood population effects models that assessed the nature and strength of their relationship with each of five land-use classes (i.e., potential predictor variables). Comparisons of outcomes were based on the rank order of effect, sign of effect (i.e., gene flow resistance vs. facilitation), spatial scale of effect, and functional relationship with gene flow. The best-fit model for each dataset had the same sign of effect for hardwood forests, manmade structures, and pine forests, indicating the impacts of these land-use classes on dispersal and gene flow in P. mississippi are robust to sampling scheme. Contrasting sampling densities led to a different inferred functional relationship between agricultural areas and gene flow. Study area size appeared to influence the scale of effect of manmade structures and the sign of effect of pine forests. Our findings provided evidence for an influence of sampling density, study area size, and sampling effort upon inferences. Accordingly, we recommend iterative subsampling of empirical datasets and continued investigation into the sensitivities of landscape genetic analyses using simulations.
Collapse
|
20
|
Schweizer RM, Saarman N, Ramstad KM, Forester BR, Kelley JL, Hand BK, Malison RL, Ackiss AS, Watsa M, Nelson TC, Beja-Pereira A, Waples RS, Funk WC, Luikart G. Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. J Hered 2021; 112:313-327. [PMID: 33860294 DOI: 10.1093/jhered/esab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Norah Saarman
- Department of Biology, Utah State University, Logan, UT
| | - Kristina M Ramstad
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Brian K Hand
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Rachel L Malison
- Flathead Lake Biological Station, University of Montana, Polson, MT
| | - Amanda S Ackiss
- Wisconsin Cooperative Fishery Research Unit, University of Wisconsin Stevens Point, Stevens Point, WI
| | | | | | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), InBIO, Universidade do Porto, Vairão, Portugal.,DGAOT, Faculty of Sciences, University of Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), Faculty of Sciences, University of Porto, Porto, Portugal
| | - Robin S Waples
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO
| | - Gordon Luikart
- Division of Biological Sciences, University of Montana, Missoula, MT.,Flathead Lake Biological Station, University of Montana, Polson, MT
| |
Collapse
|
21
|
Selmoni O, Lecellier G, Magalon H, Vigliola L, Oury N, Benzoni F, Peignon C, Joost S, Berteaux-Lecellier V. Seascape genomics reveals candidate molecular targets of heat stress adaptation in three coral species. Mol Ecol 2021; 30:1892-1906. [PMID: 33619812 PMCID: PMC8252710 DOI: 10.1111/mec.15857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Anomalous heat waves are causing a major decline of hard corals around the world and threatening the persistence of coral reefs. There are, however, reefs that have been exposed to recurrent thermal stress over the years and whose corals appear to have been tolerant against heat. One of the mechanisms that could explain this phenomenon is local adaptation, but the underlying molecular mechanisms are poorly known. In this work, we applied a seascape genomics approach to study heat stress adaptation in three coral species of New Caledonia (southwestern Pacific) and to uncover the molecular actors potentially involved. We used remote sensing data to characterize the environmental trends across the reef system, and sampled corals living at the most contrasted sites. These samples underwent next generation sequencing to reveal single nucleotide polymorphisms (SNPs), frequencies of which were associated with heat stress gradients. As these SNPs might underpin an adaptive role, we characterized the functional roles of the genes located in their genomic region. In each of the studied species, we found heat stress-associated SNPs located in proximity of genes involved in pathways well known to contribute to the cellular responses against heat, such as protein folding, oxidative stress homeostasis, inflammatory and apoptotic pathways, and DNA damage-repair. In some cases, the same candidate molecular targets of heat stress adaptation recurred among species. Together, these results underline the relevance and the power of the seascape genomics approach for the discovery of adaptive traits that could allow corals to persist across wider thermal ranges.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG, School of Architecture, Civil and Environmental Engineering (ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland.,UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France
| | - Gaël Lecellier
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Hélène Magalon
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, St Denis de la Réunion, France
| | - Laurent Vigliola
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France
| | - Nicolas Oury
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, St Denis de la Réunion, France
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christophe Peignon
- UMR250/9220, ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, France
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG, School of Architecture, Civil and Environmental Engineering (ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland
| | | |
Collapse
|
22
|
Rochat E, Selmoni O, Joost S. Spatial areas of genotype probability: Predicting the spatial distribution of adaptive genetic variants under future climatic conditions. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG) School of Architecture, Civil and Environmental Engineering (ENAC) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG) School of Architecture, Civil and Environmental Engineering (ENAC) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG) School of Architecture, Civil and Environmental Engineering (ENAC) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
- The NEXTGEN Consortium
| |
Collapse
|
23
|
Hübner S, Kantar MB. Tapping Diversity From the Wild: From Sampling to Implementation. FRONTIERS IN PLANT SCIENCE 2021; 12:626565. [PMID: 33584776 PMCID: PMC7873362 DOI: 10.3389/fpls.2021.626565] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 05/05/2023]
Abstract
The diversity observed among crop wild relatives (CWRs) and their ability to flourish in unfavorable and harsh environments have drawn the attention of plant scientists and breeders for many decades. However, it is also recognized that the benefit gained from using CWRs in breeding is a potential rose between thorns of detrimental genetic variation that is linked to the trait of interest. Despite the increased interest in CWRs, little attention was given so far to the statistical, analytical, and technical considerations that should guide the sampling design, the germplasm characterization, and later its implementation in breeding. Here, we review the entire process of sampling and identifying beneficial genetic variation in CWRs and the challenge of using it in breeding. The ability to detect beneficial genetic variation in CWRs is strongly affected by the sampling design which should be adjusted to the spatial and temporal variation of the target species, the trait of interest, and the analytical approach used. Moreover, linkage disequilibrium is a key factor that constrains the resolution of searching for beneficial alleles along the genome, and later, the ability to deplete linked deleterious genetic variation as a consequence of genetic drag. We also discuss how technological advances in genomics, phenomics, biotechnology, and data science can improve the ability to identify beneficial genetic variation in CWRs and to exploit it in strive for higher-yielding and sustainable crops.
Collapse
Affiliation(s)
- Sariel Hübner
- Galilee Research Institute (MIGAL), Tel-Hai College, Qiryat Shemona, Israel
- *Correspondence: Sariel Hübner,
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
24
|
Flesch EP, Graves TA, Thomson JM, Proffitt KM, White PJ, Stephenson TR, Garrott RA. Evaluating wildlife translocations using genomics: A bighorn sheep case study. Ecol Evol 2020; 10:13687-13704. [PMID: 33391673 PMCID: PMC7771163 DOI: 10.1002/ece3.6942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
Wildlife restoration often involves translocation efforts to reintroduce species and supplement small, fragmented populations. We examined the genomic consequences of bighorn sheep (Ovis canadensis) translocations and population isolation to enhance understanding of evolutionary processes that affect population genetics and inform future restoration strategies. We conducted a population genomic analysis of 511 bighorn sheep from 17 areas, including native and reintroduced populations that received 0-10 translocations. Using the Illumina High Density Ovine array, we generated datasets of 6,155 to 33,289 single nucleotide polymorphisms and completed clustering, population tree, and kinship analyses. Our analyses determined that natural gene flow did not occur between most populations, including two pairs of native herds that had past connectivity. We synthesized genomic evidence across analyses to evaluate 24 different translocation events and detected eight successful reintroductions (i.e., lack of signal for recolonization from nearby populations) and five successful augmentations (i.e., reproductive success of translocated individuals) based on genetic similarity with the source populations. A single native population founded six of the reintroduced herds, suggesting that environmental conditions did not need to match for populations to persist following reintroduction. Augmentations consisting of 18-57 animals including males and females succeeded, whereas augmentations of two males did not result in a detectable genetic signature. Our results provide insight on genomic distinctiveness of native and reintroduced herds, information on the relative success of reintroduction and augmentation efforts and their associated attributes, and guidance to enhance genetic contribution of augmentations and reintroductions to aid in bighorn sheep restoration.
Collapse
Affiliation(s)
- Elizabeth P. Flesch
- Fish and Wildlife Ecology and Management ProgramEcology DepartmentMontana State UniversityBozemanMTUSA
| | - Tabitha A. Graves
- Northern Rocky Mountain Science CenterU.S. Geological SurveyWest GlacierMTUSA
| | | | | | - P. J. White
- Yellowstone Center for ResourcesNational Park ServiceMammothWYUSA
| | - Thomas R. Stephenson
- Sierra Nevada Bighorn Sheep Recovery ProgramCalifornia Department of Fish and WildlifeBishopCAUSA
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management ProgramEcology DepartmentMontana State UniversityBozemanMTUSA
| |
Collapse
|
25
|
Selmoni O, Lecellier G, Vigliola L, Berteaux-Lecellier V, Joost S. Coral cover surveys corroborate predictions on reef adaptive potential to thermal stress. Sci Rep 2020; 10:19680. [PMID: 33184366 PMCID: PMC7661510 DOI: 10.1038/s41598-020-76604-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022] Open
Abstract
As anomalous heat waves are causing the widespread decline of coral reefs worldwide, there is an urgent need to identify coral populations tolerant to thermal stress. Heat stress adaptive potential is the degree of tolerance expected from evolutionary processes and, for a given reef, depends on the arrival of propagules from reefs exposed to recurrent thermal stress. For this reason, assessing spatial patterns of thermal adaptation and reef connectivity is of paramount importance to inform conservation strategies. In this work, we applied a seascape genomics framework to characterize the spatial patterns of thermal adaptation and connectivity for coral reefs of New Caledonia (Southern Pacific). In this approach, remote sensing of seascape conditions was combined with genomic data from three coral species. For every reef of the region, we computed a probability of heat stress adaptation, and two indices forecasting inbound and outbound connectivity. We then compared our indicators to field survey data, and observed that decrease of coral cover after heat stress was lower at reefs predicted with high probability of adaptation and inbound connectivity. Last, we discussed how these indicators can be used to inform local conservation strategies and preserve the adaptive potential of New Caledonian reefs.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- UMR250/9220 ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, New Caledonia, France
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, New Caledonia, France
- UVSQ, Université de Paris-Saclay, Versailles, France
| | - Laurent Vigliola
- UMR250/9220 ENTROPIE IRD-CNRS-Ifremer-UNC-UR, Labex CORAIL, Nouméa, New Caledonia, France
| | | | - Stéphane Joost
- Laboratory of Geographic Information Systems, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Selmoni O, Rochat E, Lecellier G, Berteaux‐Lecellier V, Joost S. Seascape genomics as a new tool to empower coral reef conservation strategies: An example on north-western Pacific Acropora digitifera. Evol Appl 2020; 13:1923-1938. [PMID: 32908595 PMCID: PMC7463334 DOI: 10.1111/eva.12944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Coral reefs are suffering a major decline due to the environmental constraints imposed by climate change. Over the last 20 years, three major coral bleaching events occurred in concomitance with anomalous heatwaves, provoking a severe loss of coral cover worldwide. The conservation strategies for preserving reefs, as they are implemented now, cannot cope with global climatic shifts. Consequently, researchers are advocating for preservation networks to be set-up to reinforce coral adaptive potential. However, the main obstacle to this implementation is that studies on coral adaption are usually hard to generalize at the scale of a reef system. Here, we study the relationships between genotype frequencies and environmental characteristics of the sea (seascape genomics), in combination with connectivity analysis, to investigate the adaptive potential of a flagship coral species of the Ryukyu Archipelago (Japan). By associating genotype frequencies with descriptors of historical environmental conditions, we discovered six genomic regions hosting polymorphisms that might promote resistance against heat stress. Remarkably, annotations of genes in these regions were consistent with molecular roles associated with heat responses. Furthermore, we combined information on genetic and spatial distances between reefs to predict connectivity at a regional scale. The combination of these results portrayed the adaptive potential of this population: we were able to identify reefs carrying potential heat stress adapted genotypes and to understand how they disperse to neighbouring reefs. This information was summarized by objective, quantifiable and mappable indices covering the whole region, which can be extremely useful for future prioritization of reefs in conservation planning. This framework is transferable to any coral species on any reef system and therefore represents a valuable tool for empowering preservation efforts dedicated to the protection of coral reefs in warming oceans.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Gael Lecellier
- UMR250/9220 ENTROPIE IRD‐CNRS‐URLabex CORAILNoumeaNew Caledonia
- UVSQUniversité de Paris‐SaclayVersaillesFrance
| | | | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
27
|
Aoki S, Ito M. Where should wild species be sampled? New method based on isolation-by-distance objectively gives the answer. Mol Ecol Resour 2020; 20:1299-1310. [PMID: 32343471 DOI: 10.1111/1755-0998.13179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/18/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
Random sampling is an important statistical assumption, but virtually impossible when sampling a wild species as we cannot know where all the individuals exist. While interpopulation or intrataxa sampling methods have been developed, there are currently few intrataxon sampling methods to objectively decide where to sample wild taxa. We suggest a new sampling method which computes appropriate sampling locations from coordinates, assuming geographical autocorrelation of phylogeny within a taxon (isolation-by-distance). The computed locations encompass the highest genetic diversity, providing a genetically representative sample. In addition, it can utilize presence/absence information during sampling to reoptimize sampling scheme. Comparing to the single existing method of the similar purpose, the merits of ours is unnecessity of environmental data resulting in easy application, and is theoretically deduced. We tested this method using published phylogeographical data. The test result was generally encouraging, but the method failed where species showed uniform genetic structure or recent distribution expansion which violate the assumption of geographical autocorrelation of phylogeny. Though simple, our method constructs a methodological and statistical foundation for sampling wild species, and is applicable to revising taxonomic study and conservation biology.
Collapse
Affiliation(s)
- Satoshi Aoki
- Department of Biological Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Motomi Ito
- Department of General Systems Studies, The University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
28
|
Jackson JM, Pimsler ML, Oyen KJ, Strange JP, Dillon ME, Lozier JD. Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Mol Ecol 2020; 29:920-939. [PMID: 32031739 DOI: 10.1111/mec.15376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well-suited for studying local adaptation. Here, we analyzed genome-wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.
Collapse
Affiliation(s)
- Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Kennan J Oyen
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - James P Strange
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
29
|
Selmoni O, Vajana E, Guillaume A, Rochat E, Joost S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol Ecol Resour 2019; 20:154-169. [PMID: 31550072 PMCID: PMC6972490 DOI: 10.1111/1755-0998.13095] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
An increasing number of studies are using landscape genomics to investigate local adaptation in wild and domestic populations. Implementation of this approach requires the sampling phase to consider the complexity of environmental settings and the burden of logistical constraints. These important aspects are often underestimated in the literature dedicated to sampling strategies. In this study, we computed simulated genomic data sets to run against actual environmental data in order to trial landscape genomics experiments under distinct sampling strategies. These strategies differed by design approach (to enhance environmental and/or geographical representativeness at study sites), number of sampling locations and sample sizes. We then evaluated how these elements affected statistical performances (power and false discoveries) under two antithetical demographic scenarios. Our results highlight the importance of selecting an appropriate sample size, which should be modified based on the demographic characteristics of the studied population. For species with limited dispersal, sample sizes above 200 units are generally sufficient to detect most adaptive signals, while in random mating populations this threshold should be increased to 400 units. Furthermore, we describe a design approach that maximizes both environmental and geographical representativeness of sampling sites and show how it systematically outperforms random or regular sampling schemes. Finally, we show that although having more sampling locations (between 40 and 50 sites) increase statistical power and reduce false discovery rate, similar results can be achieved with a moderate number of sites (20 sites). Overall, this study provides valuable guidelines for optimizing sampling strategies for landscape genomics experiments.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elia Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Annie Guillaume
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|