1
|
Zhao Y, Bitzer A, Power JJ, Belikova D, Torres Salazar BO, Adolf LA, Gerlach D, Krismer B, Heilbronner S. Nasal commensals reduce Staphylococcus aureus proliferation by restricting siderophore availability. THE ISME JOURNAL 2024; 18:wrae123. [PMID: 38987933 PMCID: PMC11296517 DOI: 10.1093/ismejo/wrae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The human microbiome is critically associated with human health and disease. One aspect of this is that antibiotic-resistant opportunistic bacterial pathogens, such as methicillin-resistant Staphylococcus aureus, can reside within the nasal microbiota, which increases the risk of infection. Epidemiological studies of the nasal microbiome have revealed positive and negative correlations between non-pathogenic species and S. aureus, but the underlying molecular mechanisms remain poorly understood. The nasal cavity is iron-limited, and bacteria are known to produce iron-scavenging siderophores to proliferate in such environments. Siderophores are public goods that can be consumed by all members of a bacterial community. Accordingly, siderophores are known to mediate bacterial competition and collaboration, but their role in the nasal microbiome is unknown. Here, we show that siderophore acquisition is crucial for S. aureus nasal colonization in vivo. We screened 94 nasal bacterial strains from seven genera for their capacity to produce siderophores as well as to consume the siderophores produced by S. aureus. We found that 80% of the strains engaged in siderophore-mediated interactions with S. aureus. Non-pathogenic corynebacterial species were found to be prominent consumers of S. aureus siderophores. In co-culture experiments, consumption of siderophores by competitors reduced S. aureus growth in an iron-dependent fashion. Our data show a wide network of siderophore-mediated interactions between the species of the human nasal microbiome and provide mechanistic evidence for inter-species competition and collaboration impacting pathogen proliferation. This opens avenues for designing nasal probiotics to displace S. aureus from the nasal cavity of humans.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, 210011 Nanjing, P. R. China
| | - Alina Bitzer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Jeffrey John Power
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Darya Belikova
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - Benjamin Orlando Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Lea Antje Adolf
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
| | - David Gerlach
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Simon Heilbronner
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology, Microbiology, 82152 Martinsried, Germany
- German Center for Infection Research “DZIF” partnersite Tübingen, Germany
| |
Collapse
|
2
|
Lehr K, Nikitina D, Vilchez-Vargas R, Steponaitiene R, Thon C, Skieceviciene J, Schanze D, Zenker M, Malfertheiner P, Kupcinskas J, Link A. Microbial composition of tumorous and adjacent gastric tissue is associated with prognosis of gastric cancer. Sci Rep 2023; 13:4640. [PMID: 36944721 PMCID: PMC10030820 DOI: 10.1038/s41598-023-31740-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection has been considered as the main causal factor in gastric carcinogenesis, but other bacterial species may also play an important role in pathophysiology of gastric cancer. The aim of the study was to explore the link between gastric cancer prognosis and the mucosal microbial community in tumorous and adjacent gastric tissue. The bacterial profile was analysed using 16S sequencing (V1-V2 region). Microbial differences were mostly characterized by lower relative abundances of H. pylori in tumorous gastric tissues. Bacterial community and outcome data analysis revealed the genus Fusobacterium and Prevotella significantly associated with worse overall survival in gastric cancer patients. In particular, Fusobacterium was associated with significant increase in hazard ratio in both univariable and multivariable analysis and independently validated using TCMA data. Phylogenetic biodiversity of Fusobacterium species in the stomach revealed F. periodonticum as the most prevalent in healthy subjects, while F. nucleatum was most abundant in patients with gastric cancer. Bacterial community network analysis in gastric cancer suggests substantial complexity and a strong interplay between F. nucleatum and Prevotella. In summary, mucosal microbial community in the stomach was associated with worse overall survival in gastric cancer patients. Strongest negative impact on prognosis was linked to the abundance of F. nucleatum in tumorous specimens, suggesting its translational relevance in management of gastric cancer patients.
Collapse
Affiliation(s)
- Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Darja Nikitina
- Institute for Digestive Research, Lithuanian University of Health Sciences Kaunas, Kaunas, Lithuania
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ruta Steponaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences Kaunas, Kaunas, Lithuania
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences Kaunas, Kaunas, Lithuania
| | - Denny Schanze
- Institute of Human Genetics, Otto-Von-Guericke University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-Von-Guericke University, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Internal Medicine 2, University Hospital, LMU Munich, Munich, Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences Kaunas, Kaunas, Lithuania
- Department of Gastroenterology, Lithuanian University of Health Sciences Kaunas, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-associated Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
3
|
Fernández-Fernández R, Abdullahi IN, González-Azcona C, Ulloa A, Martínez A, García-Vela S, Höfle U, Zarazaga M, Lozano C, Torres C. Detection of antimicrobial producing Staphylococcus from migratory birds: Potential role in nasotracheal microbiota modulation. Front Microbiol 2023; 14:1144975. [PMID: 37113241 PMCID: PMC10126283 DOI: 10.3389/fmicb.2023.1144975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
A collection of 259 staphylococci of 13 different species [212 coagulase-negative (CoNS) and 47 coagulase-positive (CoPS)] recovered from nasotracheal samples of 87 healthy nestling white storks was tested by the spot-on-lawn method for antimicrobial-activity (AA) against 14 indicator bacteria. Moreover, extracts of AP isolates were obtained [cell-free-supernatants (CFS) both crude and concentrated and butanol extracts] and tested against the 14 indicator bacteria. The microbiota modulation capacity of AP isolates was tested considering: (a) intra-sample AA, against all Gram-positive bacteria recovered in the same stork nasotracheal sample; (b) inter-sample AA against a selection of representative Gram-positive bacteria of the nasotracheal microbiota of all the storks (30 isolates of 29 different species and nine genera). In addition, enzymatic susceptibility test was carried out in selected AP isolates and bacteriocin encoding genes was studied by PCR/sequencing. In this respect, nine isolates (3.5%; seven CoNS and two CoPS) showed AA against at least one indicator bacteria and were considered antimicrobial-producing (AP) isolates. The AP isolates showed AA only for Gram-positive bacteria. Three of these AP isolates (S. hominis X3764, S. sciuri X4000, and S. chromogenes X4620) revealed AA on all extract conditions; other four AP isolates only showed activity in extracts after concentration; the remaining two AP isolates did not show AA in any of extract conditions. As for the microbiota modulation evaluation, three of the nine AP-isolates revealed intra-sample AA. It is to highlight the potent inter-sample AA of the X3764 isolate inhibiting 73% of the 29 representative Gram-positive species of the nasotracheal stork microbiota population. On the other hand, enzymatic analysis carried out in the two highest AP isolates (X3764 and X4000) verified the proteinaceous nature of the antimicrobial compound and PCR analysis revealed the presence of lantibiotic-like encoding genes in the nine AP isolates. In conclusion, these results show that nasotracheal staphylococci of healthy storks, and especially CoNS, produce antimicrobial substances that could be important in the modulations of their nasal microbiota.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Adriana Ulloa
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Agustí Martínez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Sara García-Vela
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
- Department of Food Science, University of Laval, Québec City, QC, Canada
| | - Ursula Höfle
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute, Spanish National Research Council/University of Castilla–La Mancha, Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
- *Correspondence: Carmen Torres,
| |
Collapse
|
4
|
Gelmez E, Lehr K, Kershaw O, Frentzel S, Vilchez-Vargas R, Bank U, Link A, Schüler T, Jeron A, Bruder D. Characterization of Maladaptive Processes in Acute, Chronic and Remission Phases of Experimental Colitis in C57BL/6 Mice. Biomedicines 2022; 10:biomedicines10081903. [PMID: 36009449 PMCID: PMC9405850 DOI: 10.3390/biomedicines10081903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease with unknown etiology. Dextran sulfate sodium (DSS) induced colitis is a widely used mouse model in IBD research. DSS colitis involves activation of the submucosal immune system and can be used to study IBD-like disease characteristics in acute, chronic, remission and transition phases. Insight into colon inflammatory parameters is needed to understand potentially irreversible adaptations to the chronification of colitis, determining the baseline and impact of further inflammatory episodes. We performed analyses of non-invasive and invasive colitis parameters in acute, chronic and remission phases of the DSS colitis in C57BL/6 mice. Non-invasive colitis parameters poorly reflected inflammatory aspects of colitis in chronic remission phase. We found invasive inflammatory parameters, positively linked to repeated DSS-episodes, such as specific colon weight, inflamed colon area, spleen weight, absolute cell numbers of CD4+ and CD8+ T cells as well as B cells, blood IFN-γ level, colonic chemokines BLC and MDC as well as the prevalence of Turicibacter species in feces. Moreover, microbial Lactobacillus species decreased with chronification of disease. Our data point out indicative parameters of recurrent gut inflammation in context of DSS colitis.
Collapse
Affiliation(s)
- Elif Gelmez
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Sarah Frentzel
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +49-391-67-13374
| |
Collapse
|
5
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
6
|
Gut microbial similarity in twins is driven by shared environment and aging. EBioMedicine 2022; 79:104011. [PMID: 35490553 PMCID: PMC9062754 DOI: 10.1016/j.ebiom.2022.104011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Human gut microbiome composition is influenced by genetics, diet and environmental factors. We investigated the microbial composition in several gastrointestinal (GI) compartments to evaluate the impact of genetics, delivery mode, diet, household sharing and aging on microbial similarity in monozygotic and dizygotic twins. Methods Fecal, biopsy and saliva samples were obtained from total 108 twins. DNA and/or RNA was extracted and the region V1-V2 of the 16S rRNA gene was amplified and sequenced. Bray-Curtis similarity was used for further microbiome comparisons, Mann-Whitney test was applied to evaluate the significant differences between groups and Spearman test was applied to reveal potential correlations between data. Findings The global bacterial profiles were grouped into two clusters separating the upper and lower GI. The upper GI microbiome composition was strictly dependent on the Helicobacter pylori status. With a positivity rate of 55%, H. pylori completely colonized the stomach and separated infected twins from non-infected twins irrespective of zygosity status. Lower GI microbiome similarity between the twins was defined mainly by household-sharing and aging; whereas delivery mode and host genetics had no influence. There was a progredient decrease in the bacterial similarity with aging. Shared vs. non-shared phylotypes analysis showed that in both siblings the shared phylotypes progressively diminished with aging, while the non-shared phylotypes increased. Interpretation Our findings strongly highlight the aging and shared household as they key determinants in gut microbial similarity and drift in twins irrespective of their zygotic state. Funding This work was supported by the grant of the Research Council of Lithuania (Project no. APP-2/2016) and also partially supported by the funds of European Commission through the “European funds for regional development” (EFRE) as well as by the regional Ministry of Economy, Science and Digitalization as part of the “LiLife” Project as part of the “Autonomy in old Age” research group (Project ID: ZS/2018/11/95324).
Collapse
|
7
|
Schütte K, Schulz C, Vilchez-Vargas R, Vasapolli R, Palm F, Simon B, Schomburg D, Lux A, Geffers R, Pieper DH, Link A, Malfertheiner P. Impact of healthy aging on active bacterial assemblages throughout the gastrointestinal tract. Gut Microbes 2022; 13:1966261. [PMID: 34455919 PMCID: PMC8409759 DOI: 10.1080/19490976.2021.1966261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The adaption of gut microbiota (GM) throughout human life is a key factor in maintaining health. Interventions to restore a healthy GM composition may have the potential to improve health and disease outcomes in the elderly. We performed a comprehensive characterization of changes in the luminal and mucosa-associated microbiota composition in elderly compared with younger healthy individuals. Samples from saliva and feces, and biopsies from the upper and lower gastrointestinal tract (UGIT, LGIT), were collected from 59 asymptomatic individuals grouped by age: 40-55, 56-70, and 71-85 years). All underwent anthropometric, geriatric, and nutritional assessment. RNA was extracted and reverse-transcribed into complementary DNA; the V1-V2 regions of 16S ribosomal RNA genes were amplified and sequenced. Abundances of the taxa in all taxonomic ranks in each sample type were used to construct sample-similarity matrices by the Bray-Curtis algorithm. Significant differences between defined groups were assessed by analysis of similarity. The bacterial community showed strong interindividual variations and a clear distinction between samples from UGIT, LGIT, and feces. While in saliva some taxa were affected by aging, this number was considerably greater in UGIT and was subsequently higher in LGIT. Unexpectedly, aging scarcely influenced the bacterial community of feces over the age range of 40-85 years. The development of interventions to preserve and restore human health with increased age by establishing a healthy gut microbiome should not rely solely on data from fecal analysis, as the intestinal mucosa is affected by more significant changes, which differ from those observed in fecal analyses.
Collapse
Affiliation(s)
- Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital Osnabrück, Bischofsstr. 1, Osnabrück, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,Department of Internal Medicine 2, University Hospital, Munich, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Riccardo Vasapolli
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,Department of Internal Medicine 2, University Hospital, Munich, Germany
| | - Frederike Palm
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Bianca Simon
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital Osnabrück, Bischofsstr. 1, Osnabrück, Germany
| | - Dirk Schomburg
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anke Lux
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Geffers
- GMAK Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,Department of Internal Medicine 2, University Hospital, Munich, Germany,CONTACT Peter Malfertheiner Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, 39120Magdeburg, Germany
| |
Collapse
|
8
|
Strickland BA, Patel MC, Shilts MH, Boone HH, Kamali A, Zhang W, Stylos D, Boukhvalova MS, Rosas-Salazar C, Yooseph S, Rajagopala SV, Blanco JCG, Das SR. Microbial community structure and composition is associated with host species and sex in Sigmodon cotton rats. Anim Microbiome 2021; 3:29. [PMID: 33863395 PMCID: PMC8051552 DOI: 10.1186/s42523-021-00090-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The cotton rat (genus Sigmodon) is an essential small animal model for the study of human infectious disease and viral therapeutic development. However, the impact of the host microbiome on infection outcomes has not been explored in this model, partly due to the lack of a comprehensive characterization of microbial communities across different cotton rat species. Understanding the dynamics of their microbiome could significantly help to better understand its role when modeling viral infections in this animal model. RESULTS We examined the bacterial communities of the gut and three external sites (skin, ear, and nose) of two inbred species of cotton rats commonly used in research (S. hispidus and S. fulviventer) by using 16S rRNA gene sequencing, constituting the first comprehensive characterization of the cotton rat microbiome. We showed that S. fulviventer maintained higher alpha diversity and richness than S. hispidus at external sites (skin, ear, nose), but there were no differentially abundant genera. However, S. fulviventer and S. hispidus had distinct fecal microbiomes composed of several significantly differentially abundant genera. Whole metagenomic shotgun sequencing of fecal samples identified species-level differences between S. hispidus and S. fulviventer, as well as different metabolic pathway functions as a result of differential host microbiome contributions. Furthermore, the microbiome composition of the external sites showed significant sex-based differences while fecal communities were not largely different. CONCLUSIONS Our study shows that host genetic background potentially exerts homeostatic pressures, resulting in distinct microbiomes for two different inbred cotton rat species. Because of the numerous studies that have uncovered strong relationships between host microbiome, viral infection outcomes, and immune responses, our findings represent a strong contribution for understanding the impact of different microbial communities on viral pathogenesis. Furthermore, we provide novel cotton rat microbiome data as a springboard to uncover the full therapeutic potential of the microbiome against viral infections.
Collapse
Affiliation(s)
- Britton A Strickland
- Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
- Present Address: Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Helen H Boone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arash Kamali
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhang
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Daniel Stylos
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | | | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | | | - Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Suman R Das
- Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Infectious Diseases, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Macchi M, Festa S, Nieto E, Irazoqui JM, Vega-Vela NE, Junca H, Valacco MP, Amadio AF, Morelli IS, Coppotelli BM. Design and evaluation of synthetic bacterial consortia for optimized phenanthrene degradation through the integration of genomics and shotgun proteomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00588. [PMID: 33489789 PMCID: PMC7809168 DOI: 10.1016/j.btre.2021.e00588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023]
Abstract
Two synthetic bacterial consortia (SC) composed of bacterial strains Sphingobium sp. (AM), Klebsiella aerogenes (B), Pseudomonas sp. (Bc-h and T), Burkholderia sp. (Bk) and Inquilinus limosus (Inq) isolated from a natural phenanthrene (PHN)-degrading consortium (CON) were developed and evaluated as an alternative approach to PHN biodegradation in bioremediation processes. A metabolic network showing the potential role of strains was reconstructed by in silico study of the six genomes and classification of dioxygenase enzymes using RHObase and AromaDeg databases. Network analysis suggested that AM and Bk were responsible for PHN initial attack, while Inq, B, T and Bc-h would degrade PHN metabolites. The predicted roles were further confirmed by physiological, RT-qPCR and metaproteomic assays. SC-1 with AM as the sole PHN degrader was the most efficient. The ecological roles inferred in this study can be applied to optimize the design of bacterial consortia and tackle the biodegradation of complex environmental pollutants.
Collapse
Affiliation(s)
- Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| | - Esteban Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| | - José M. Irazoqui
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Nelson E. Vega-Vela
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology: Metabolism, Genomics & Evolution, Chía, Colombia
| | | | - Ariel F. Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Irma S. Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M. Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP, CCT-La Plata, CONICET), La Plata, Argentina
| |
Collapse
|
10
|
Harder OE, Emmer KM, Sparks AE, Miller EJ, Gemensky-Metzler AJ, Coble DJ, Niewiesk S, La Perle KMD. Cause and Treatment of Exophthalmos in Aged Cotton Rats ( Sigmodon hispidus). Comp Med 2020; 70:291-299. [PMID: 32404235 DOI: 10.30802/aalas-cm-19-000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aged cotton rats (Sigmodon hispidus) from an established breeding colony displayed signs of spontaneous exophthalmos. Of a total of 118 colony animals that were older than 6 mo of age, 37 (31%) displayed signs of exophthalmos. These rats were clinically healthy and had no other signs of disease. Ophthalmic exams, molecular and microbiologic testing, and histopa- thology were performed to determine the cause of the exophthalmos and to provide appropriate treatment. Environmental monitoring records were also reviewed for vivarium rooms in which the cotton rats were housed. Histopathology findings supported that the exophthalmos in these cotton rats was secondary to retro-orbital thrombosis associated with cardiomyopathy. The exophthalmic eyes were treated by either removal of the affected eye (enucleation) or surgical closure of the eyelids (temporary tarsorraphy). Enucleation of the exophthalmic eye was the best intervention for these aged cotton rats. These findings demonstrate the potential for a high incidence of ocular problems occurring secondary to cardiomyopathy in aged cotton rats. Enucleation as a therapeutic intervention for exophthalmic eyes in aged cotton rats prolongs the morbidity-free time span during which these aged animals can be used experimentally.
Collapse
Affiliation(s)
- Olivia E Harder
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Kathryn M Emmer
- University Laboratory Animal Resources, The Ohio State University, Columbus, Ohio
| | - Amanda E Sparks
- University Laboratory Animal Resources, The Ohio State University, Columbus, Ohio
| | - Eric J Miller
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
| | | | - Dondrae J Coble
- University Laboratory Animal Resources, The Ohio State University, Columbus, Ohio
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio; Comparative Pathology and Mouse Phenotyping, The Ohio State University, Columbus, Ohio;,
| |
Collapse
|
11
|
Duysburgh C, Ossieur WP, De Paepe K, Van den Abbeele P, Vichez-Vargas R, Vital M, Pieper DH, Van de Wiele T, Hesta M, Possemiers S, Marzorati M. Development and validation of the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME)1. J Anim Sci 2020; 98:5643609. [PMID: 31768533 DOI: 10.1093/jas/skz357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
Whereas a wide variety of in vitro models have been developed and validated to assess the effect of specific food ingredients on the human gut microbiome, such models have only been developed and applied to a limited extent for companion animals. Since the use of pre- and probiotics to improve gut health is an emerging research topic in the field of companion animals and as dogs are often used as laboratory animals in developing and testing of pharmaceuticals, the current study aimed to establish an adequate canine in vitro model. This consisted of a four-stage reactor composed of a stomach and small intestinal compartment followed by a proximal and distal colon. This semi-continuous gastrointestinal tract model allowed a long-term, region-dependent, and pH-controlled simulation of the colon-associated microbial community of dogs. Upon reaching a functional steady state, the simulated canine microbial community composition proved to be representative of the in vivo situation. Indeed, the predominant bacterial phyla present in the in vitro proximal and distal colon corresponded with the main bacterial phyla detected in the fecal material of the dogs, resulting in an average community composition along the simulated canine gastrointestinal tract of 50.5% Firmicutes, 34.5% Bacteroidetes, 7.4% Fusobacteria, 4.9% Actinobacteria, and 2.7% Proteobacteria. A parallel in vivo-in vitro comparison assessing the effects of fructooligosaccharides (FOS) on the canine microbial community composition showed a consistent stimulation of Lactobacillus concentrations in the in vivo fecal samples as well as in the in vitro canine gut model. Furthermore, the in vitro platform provided additional insights about the prebiotic effect of FOS supplementation of dogs, such as a reduced abundance of Megamonas spp. which are only present in very low abundance in in vivo fecal samples, indicating an interesting application potential of the developed canine in vitro model in research related to gastrointestinal health of dogs.
Collapse
Affiliation(s)
| | - Wendy P Ossieur
- ProDigest bvba, Technologiepark, Ghent, Belgium.,Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links, Ghent, Belgium
| | - Kim De Paepe
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links, Ghent, Belgium
| | | | - Ramiro Vichez-Vargas
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links, Ghent, Belgium
| | - Marius Vital
- Microbial Interaction and Processes Research, HZI-Helmholtz Centre for Infection Research, Inhoffenstrasse, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interaction and Processes Research, HZI-Helmholtz Centre for Infection Research, Inhoffenstrasse, Braunschweig, Germany
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links, Ghent, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Ghent University, Heidestraat, Merelbeke, Belgium
| | | | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links, Ghent, Belgium
| |
Collapse
|
12
|
Casadei E, Tacchi L, Lickwar CR, Espenschied ST, Davison JM, Muñoz P, Rawls JF, Salinas I. Commensal Bacteria Regulate Gene Expression and Differentiation in Vertebrate Olfactory Systems Through Transcription Factor REST. Chem Senses 2019; 44:615-630. [PMID: 31403159 PMCID: PMC6796929 DOI: 10.1093/chemse/bjz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.
Collapse
Affiliation(s)
- Elisa Casadei
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Scott T Espenschied
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Pilar Muñoz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
13
|
Casadei E, Salinas I. Comparative models for human nasal infections and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:212-222. [PMID: 30513304 PMCID: PMC7102639 DOI: 10.1016/j.dci.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.
Collapse
Affiliation(s)
- Elisa Casadei
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| |
Collapse
|
14
|
Korsch M, Marten SM, Walther W, Vital M, Pieper DH, Dötsch A. Impact of dental cement on the peri-implant biofilm-microbial comparison of two different cements in an in vivo observational study. Clin Implant Dent Relat Res 2018; 20:806-813. [PMID: 30126038 DOI: 10.1111/cid.12650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 06/09/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The type of cement used in cemented fixed implant-supported restorations influences formation of undetected excess cement and composition of the peri-implant biofilm. Excess cement and dysbiosis of the biofilm involve the risk of peri-implant inflammation. PURPOSE The aim of the study was to investigate the impact of two different cements on the peri-implant biofilm and inflammation. MATERIALS AND METHODS In an observational study, the suprastructures of 34 patients with cemented fixed implant-supported restorations were revised. In 20 patients, a methacrylate cement (Premier Implant cement [PIC]) and in 14 patients, a zinc oxide eugenol cement (Temp Bond [TB]) were used. After revision, TB was used for recementation. During revision and follow-up after 1 year, microbial samples were obtained. RESULTS Excess cement was found in 12 (60%) of the 20 patients with PIC. Suppuration was observed in two (25%) implants with PIC without excess cement (PIC-) and in all 12 (100%) implants with PIC and excess cement (PIC+). Implants cemented with TB had neither excess cement nor suppuration. The taxonomic analysis of the microbial samples revealed an accumulation of periodontal pathogens in the PIC patients independent of the presence of excess cement. Significantly, fewer oral pathogens occurred in patients with TB compared to patients with PIC. TB was used in all cases (PIC and TB) for recementation. In the follow-up check, suppuration was not found around any of the implants with PIC-, only around one implant with PIC+ and around one implant with TB. Bacterial species associated with severe periodontal infections that were abundant in PIC- and PIC+ samples before the revision were reduced after 1 year to levels found in the TB samples. CONCLUSIONS The revision and recementation with TB had a positive effect on the peri-implant biofilm in cases with PIC. The cementation of suprastructures on implants with TB is an alternative method to be considered.
Collapse
Affiliation(s)
- Michael Korsch
- Dental Academy for Continuing Professional Development, Karlsruhe, Germany.,Center for Implantology and Oral Surgery, Heidelberg, Germany.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg, Germany
| | - Silke-Mareike Marten
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Winfried Walther
- Dental Academy for Continuing Professional Development, Karlsruhe, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institute, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
15
|
Giuliani C, Marzorati M, Innocenti M, Vilchez-Vargas R, Vital M, Pieper DH, Van de Wiele T, Mulinacci N. Dietary supplement based on stilbenes: a focus on gut microbial metabolism by the in vitro simulator M-SHIME®. Food Funct 2018; 7:4564-4575. [PMID: 27713962 DOI: 10.1039/c6fo00784h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyphenols and intestinal microbiota can influence each other, modifying metabolism and gut wellness. Data on this mutual effect need to be improved. Several studies on the biological activities of resveratrol and derivatives have been carried out, but the effects of a continuous administration of stilbenes on gut microbiota have not yet been investigated. This study evaluated the effects of an extract from Vitis vinifera, containing a combination of t-resveratrol and ε-viniferin, on intestinal microbiota, using the advanced gastrointestinal simulator M-SHIME®. A triple M-SHIME® experiment was performed using two concentrations of the extract (i.e. 1 and 2 g L-1), simulating a continuous daily intake. The effects were evaluated in terms of microbial functionality (SCFA and NH4+) and composition (DGGE and Illumina sequencing), since the microbiological aspect has been less considered so far. The treatment induced changes in microbial functionality and composition. In fact, the levels of SCFA and NH4+ suffered a strong decrease (i.e. inhibition of the saccharolytic and proteolytic activity), while DGGE and Illumina showed important modifications of the microbiota composition, associated with an imbalance of the colonic microbiota (i.e. increase in the relative abundance of Enterobacteriaceae). HPLC-DAD-TOF-MS analyses demonstrated that the metabolism of t-resveratrol and other stilbenes was inhibited by continuous administration. Our results suggest M-SHIME® as an explorative tool to define the dosage of food supplements, in particular to simulate effective continuous administration in humans.
Collapse
Affiliation(s)
- Camilla Giuliani
- Department of Neurofarba- Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marzia Innocenti
- Department of Neurofarba- Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| | - Ramiro Vilchez-Vargas
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nadia Mulinacci
- Department of Neurofarba- Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
16
|
Schulz C, Schütte K, Koch N, Vilchez-Vargas R, Wos-Oxley ML, Oxley APA, Vital M, Malfertheiner P, Pieper DH. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 2018; 67:216-225. [PMID: 27920199 DOI: 10.1136/gutjnl-2016-312904] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Patients infected with Helicobacter pylori develop chronic gastritis with a subgroup progressing to further complications. The role of microbiota from the oral cavity swallowed with saliva and either transiting the stomach or persisting in the gastric mucosa is uncertain. It is also not known whether the bacterial community differs in luminal and mucosal niches. A key question is whether H. pylori influences the bacterial communities of gastroduodenal niches. DESIGN Saliva, gastric and duodenal aspirates as well as gastric and duodenal biopsies were collected during oesophagogastroduodenoscopy from 24 patients (m:9, f:15, mean age 52.2±SD 14.5 years). RNA was extracted and the V1-V2 region of the retrotranscribed bacterial 16S rRNA amplified and sequenced on the Illumina MiSeq platform. RESULTS Overall, 687 bacterial phylotypes that belonged to 95 genera and 11 phyla were observed. Each individual comprised a unique microbiota composition that was consistent across the different niches. However, the stomach fluid enriched for specific microbiota components. Helicobacter spp were shown to dominate the mucosa-associated community in the stomach, and to significantly influence duodenal and oral communities. CONCLUSIONS The detailed analysis of the active global bacterial communities from the five distinct sites of the upper GI tract allowed for the first time the differentiation between host effects and the influence of sampling region on the bacterial community. The influence of Helicobacter spp on the global community structures is striking.
Collapse
Affiliation(s)
- Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital, Osnabrück, Germany
| | - Nadine Koch
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrew P A Oxley
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Molecular Sciences Laboratory, SARDI Aquatic Sciences, West Beach, South Australia, Australia
| | - Marius Vital
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
17
|
Legrand TPRA, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DAJ, Qin JG, Oxley APA. The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Front Microbiol 2018; 8:2664. [PMID: 29379473 PMCID: PMC5775239 DOI: 10.3389/fmicb.2017.02664] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host–microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key β-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.
Collapse
Affiliation(s)
- Thibault P R A Legrand
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Melissa L Wos-Oxley
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany.,South Australian Museum, Adelaide, SA, Australia
| | | | - Matt Landos
- Future Fisheries Veterinary Service Pty Ltd., East Ballina, NSW, Australia
| | - Matthew S Bansemer
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - David A J Stone
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Andrew P A Oxley
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| |
Collapse
|
18
|
Heidrich B, Vital M, Plumeier I, Döscher N, Kahl S, Kirschner J, Ziegert S, Solbach P, Lenzen H, Potthoff A, Manns MP, Wedemeyer H, Pieper DH. Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver Int 2018; 38:50-58. [PMID: 28561276 DOI: 10.1111/liv.13485] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The importance of the intestinal microbiota for the onset and clinical course of many diseases, including liver diseases like non-alcoholic steatohepatitis and cirrhosis, is increasingly recognized. However, the role of intestinal microbiota in chronic hepatitis C virus (HCV) infection remains unclear. METHODS In a cross-sectional approach, the intestinal microbiota of 95 patients chronically infected with HCV (n=57 without cirrhosis [NO-CIR]; n=38 with cirrhosis [CIR]) and 50 healthy controls (HC) without documented liver diseases was analysed. RESULTS Alpha diversity, measured by number of phylotypes (S) and Shannon diversity index (H'), decreased significantly from HC to NO-CIR to CIR. S and H' correlated negatively with liver elastography. Analysis of similarities revealed highly statistically significant differences in the microbial communities between HC, NO-CIR and CIR (R=.090; P<1.0×10-6 ). Stratifying for HCV genotypes even increased the differences. In addition, we observed distinct patterns in the relative abundance of genera being either positive or negative correlated with diseases status. CONCLUSIONS This study shows that not only the stage of liver disease but also HCV infection is associated with a reduced alpha diversity and different microbial community patterns. These differences might be caused by direct interactions between HCV and the microbiota or indirect interactions facilitated by the immune system.
Collapse
Affiliation(s)
- Benjamin Heidrich
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Nico Döscher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Janina Kirschner
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Szilvia Ziegert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Philipp Solbach
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Henrike Lenzen
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andrej Potthoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
19
|
Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 2017; 15:675-687. [PMID: 29021598 DOI: 10.1038/nrmicro.2017.104] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although human colonization by facultative bacterial pathogens, such as Staphylococcus aureus, represents a major risk factor for invasive infections, the commensal lifestyle of such pathogens has remained a neglected area of research. S. aureus colonizes the nares of approximately 30% of the human population and recent studies suggest that the composition of highly variable nasal microbiota has a major role in promoting or inhibiting S. aureus colonization. Competition for epithelial attachment sites or limited nutrients, different susceptibilities to host defence molecules and the production of antimicrobial molecules may determine whether nasal bacteria outcompete each other. In this Review, we discuss recent insights into mechanisms that are used by S. aureus to prevail in the human nose and the counter-strategies that are used by other nasal bacteria to interfere with its colonization. Understanding such mechanisms will be crucial for the development of new strategies for the eradication of endogenous facultative pathogens.
Collapse
Affiliation(s)
- Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Christopher Weidenmaier
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Zipperer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
20
|
Wos-Oxley ML, Chaves-Moreno D, Jáuregui R, Oxley APA, Kaspar U, Plumeier I, Kahl S, Rudack C, Becker K, Pieper DH. Exploring the bacterial assemblages along the human nasal passage. Environ Microbiol 2017; 18:2259-71. [PMID: 27207744 DOI: 10.1111/1462-2920.13378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human nasal passage, from the anterior nares through the nasal vestibule to the nasal cavities, is an important habitat for opportunistic pathogens and commensals alike. This work sampled four different anatomical regions within the human nasal passage across a large cohort of individuals (n = 79) comprising individuals suffering from chronic nasal inflammation clinically known as chronic rhinosinusitis (CRS) and individuals not suffering from inflammation (CRS-free). While individuals had their own unique bacterial fingerprint that was consistent across the anatomical regions, these bacterial fingerprints formed into distinct delineated groups comprising core bacterial members, which were consistent across all four swabbed anatomical regions irrespective of health status. The most significant observed pattern was the difference between the global bacterial profiles of swabbed and tissue biopsy samples from the same individuals, being also consistent across different anatomical regions. Importantly, no statistically significant differences could be observed concerning the global bacterial communities, any of the bacterial species or the range of diversity indices used to compare between CRS and CRS-free individuals, and between two CRS phenotypes (without nasal polyps and with nasal polyps). Thus, the role of bacteria in the pathogenesis of sinusitis remains uncertain.
Collapse
Affiliation(s)
- Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ruy Jáuregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Andrew P A Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | | | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Münster, Münster, Germany
| | | | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| |
Collapse
|
21
|
Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice. Appl Environ Microbiol 2017; 83:AEM.02766-16. [PMID: 28115375 DOI: 10.1128/aem.02766-16] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD.IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease.
Collapse
|
22
|
Eisenberg T, Fawzy A, Nicklas W, Semmler T, Ewers C. Phylogenetic and comparative genomics of the family Leptotrichiaceae and introduction of a novel fingerprinting MLVA for Streptobacillus moniliformis. BMC Genomics 2016; 17:864. [PMID: 27809782 PMCID: PMC5093955 DOI: 10.1186/s12864-016-3206-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022] Open
Abstract
Background The Leptotrichiaceae are a family of fairly unnoticed bacteria containing both microbiota on mucous membranes as well as significant pathogens such as Streptobacillus moniliformis, the causative organism of streptobacillary rat bite fever. Comprehensive genomic studies in members of this family have so far not been carried out. We aimed to analyze 47 genomes from 20 different member species to illuminate phylogenetic aspects, as well as genomic and discriminatory properties. Results Our data provide a novel and reliable basis of support for previously established phylogeny from this group and give a deeper insight into characteristics of genome structure and gene functions. Full genome analyses revealed that most S. moniliformis strains under study form a heterogeneous population without any significant clustering. Analysis of infra-species variability for this highly pathogenic rat bite fever organism led to the detection of three specific variable number tandem analysis loci with high discriminatory power. Conclusions This highly useful and economical tool can be directly employed in clinical samples without laborious prior cultivation. Our and prospective case-specific data can now easily be compared by using a newly established MLVA database in order to gain a better insight into the epidemiology of this presumably under-reported zoonosis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3206-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Abteilung Veterinärmedizin, Landesbetrieb Hessisches Landeslabor (LHL), Schubertstr. 60/H13, D-35392, Giessen, Germany.
| | - Ahmad Fawzy
- Abteilung Veterinärmedizin, Landesbetrieb Hessisches Landeslabor (LHL), Schubertstr. 60/H13, D-35392, Giessen, Germany.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza Square, 12211, Egypt.,Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Giessen, D-35392, Giessen, Germany
| | - Werner Nicklas
- Deutsches Krebsforschungszentrum, D-69120, Heidelberg, Germany
| | | | - Christa Ewers
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Giessen, D-35392, Giessen, Germany
| |
Collapse
|
23
|
Burke CM, Darling AE. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq. PeerJ 2016; 4:e2492. [PMID: 27688981 PMCID: PMC5036073 DOI: 10.7717/peerj.2492] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution.
Collapse
Affiliation(s)
- Catherine M Burke
- The i3 Institute, University of Technology Sydney , Sydney, NSW , Australia
| | - Aaron E Darling
- The i3 Institute, University of Technology Sydney , Sydney, NSW , Australia
| |
Collapse
|
24
|
Marzorati M, Vilchez-Vargas R, Bussche JV, Truchado P, Jauregui R, El Hage RA, Pieper DH, Vanhaecke L, Van de Wiele T. High-fiber and high-protein diets shape different gut microbial communities, which ecologically behave similarly under stress conditions, as shown in a gastrointestinal simulator. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/29/2016] [Accepted: 06/16/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET); Ghent University, Coupure Links 653; Ghent Belgium
| | - Ramiro Vilchez-Vargas
- Center of Microbial Ecology and Technology (CMET); Ghent University, Coupure Links 653; Ghent Belgium
| | - Julie Vanden Bussche
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Ghent University; Merelbeke Belgium
| | - Pilar Truchado
- Center of Microbial Ecology and Technology (CMET); Ghent University, Coupure Links 653; Ghent Belgium
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group; Department of Molecular Infection Biology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Racha Ahmad El Hage
- Center of Microbial Ecology and Technology (CMET); Ghent University, Coupure Links 653; Ghent Belgium
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group; Department of Molecular Infection Biology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis; Department of Veterinary Public Health and Food Safety; Ghent University; Merelbeke Belgium
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology (CMET); Ghent University, Coupure Links 653; Ghent Belgium
| |
Collapse
|
25
|
Eisenberg T, Ewers C, Rau J, Akimkin V, Nicklas W. Approved and novel strategies in diagnostics of rat bite fever and other Streptobacillus infections in humans and animals. Virulence 2016; 7:630-48. [PMID: 27088660 DOI: 10.1080/21505594.2016.1177694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rat bite fever (RBF), a worldwide occurring and most likely under-diagnosed zoonosis caused by Streptobacillus moniliformis, represents the most prominent disease of Streptobacillus infections. Recently, novel members have been described, from which a reservoir in rats and other animal species and a zoonotic potential can be assumed. Despite regularly published case reports, diagnostics of RBF continues to represent a 'diagnostic dilemma', because the mostly applied 16S rRNA sequence analysis may be uncertain for proper pathogen identification. Virtually nothing is known regarding prevalence in humans and animal reservoirs. For a realistic assessment of the pathogen's spread, epidemiology and virulence traits, future studies should focus on the genomic background of Streptobacillus. Full genome sequence analyses of a representative collection of strains might facilitate to unequivocally identify and type isolates. Prevalence studies using selective enrichment mechanisms may also enable the isolation of novel strains and candidate species of this neglected group of microorganisms.
Collapse
Affiliation(s)
| | - Christa Ewers
- b Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Gießen , Gießen , Germany
| | - Jörg Rau
- c Chemisches und Veterinäruntersuchungsamt Stuttgart , Fellbach , Germany
| | - Valerij Akimkin
- c Chemisches und Veterinäruntersuchungsamt Stuttgart , Fellbach , Germany
| | - Werner Nicklas
- d Deutsches Krebsforschungszentrum , Heidelberg , Germany
| |
Collapse
|
26
|
Verstraelen H, Vilchez-Vargas R, Desimpel F, Jauregui R, Vankeirsbilck N, Weyers S, Verhelst R, De Sutter P, Pieper DH, Van De Wiele T. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. PeerJ 2016; 4:e1602. [PMID: 26823997 PMCID: PMC4730988 DOI: 10.7717/peerj.1602] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
Background. It is widely assumed that the uterine cavity in non-pregnant women is physiologically sterile, also as a premise to the long-held view that human infants develop in a sterile uterine environment, though likely reflecting under-appraisal of the extent of the human bacterial metacommunity. In an exploratory study, we aimed to investigate the putative presence of a uterine microbiome in a selected series of non-pregnant women through deep sequencing of the V1-2 hypervariable region of the 16S ribosomal RNA (rRNA) gene. Methods. Nineteen women with various reproductive conditions, including subfertility, scheduled for hysteroscopy and not showing uterine anomalies were recruited. Subjects were highly diverse with regard to demographic and medical history and included nulliparous and parous women. Endometrial tissue and mucus harvesting was performed by use of a transcervical device designed to obtain endometrial biopsy, while avoiding cervicovaginal contamination. Bacteria were targeted by use of a barcoded Illumina MiSeq paired-end sequencing method targeting the 16S rRNA gene V1-2 region, yielding an average of 41,194 reads per sample after quality filtering. Taxonomic annotation was pursued by comparison with sequences available through the Ribosomal Database Project and the NCBI database. Results. Out of 183 unique 16S rRNA gene amplicon sequences, 15 phylotypes were present in all samples. In some 90% of the women included, community architecture was fairly similar inasmuch B. xylanisolvens, B. thetaiotaomicron, B. fragilis and an undetermined Pelomonas taxon constituted over one third of the endometrial bacterial community. On the singular phylotype level, six women showed predominance of L. crispatus or L. iners in the presence of the Bacteroides core. Two endometrial communities were highly dissimilar, largely lacking the Bacteroides core, one dominated by L. crispatus and another consisting of a highly diverse community, including Prevotella spp., Atopobium vaginae, and Mobiluncus curtisii. Discussion. Our findings are, albeit not necessarily generalizable, consistent with the presence of a unique microbiota dominated by Bacteroides residing on the endometrium of the human non-pregnant uterus. The transcervical sampling approach may be influenced to an unknown extent by endocervical microbiota, which remain uncharacterised, and therefore warrants further validation. Nonetheless, consistent with our understanding of the human microbiome, the uterine microbiota are likely to have a previously unrecognized role in uterine physiology and human reproduction. Further study is therefore warranted to document community ecology and dynamics of the uterine microbiota, as well as the role of the uterine microbiome in health and disease.
Collapse
Affiliation(s)
- Hans Verstraelen
- Department of Obstetrics and Gynaecology, Ghent University , Ghent , Belgium
| | - Ramiro Vilchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Ghent , Belgium
| | - Fabian Desimpel
- Faculty of Medicine and Health Sciences, Ghent University , Ghent , Belgium
| | - Ruy Jauregui
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Nele Vankeirsbilck
- Department of Obstetrics and Gynaecology, Ghent University , Ghent , Belgium
| | - Steven Weyers
- Department of Obstetrics and Gynaecology, Ghent University , Ghent , Belgium
| | - Rita Verhelst
- Department of Obstetrics and Gynaecology, Ghent University , Ghent , Belgium
| | - Petra De Sutter
- Department of Obstetrics and Gynaecology, Ghent University , Ghent , Belgium
| | - Dietmar H Pieper
- Microbial Interactions and Processes (MINP) Research Group, Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Tom Van De Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Ghent , Belgium
| |
Collapse
|
27
|
Eisenberg T, Imaoka K, Kimura M, Glaeser SP, Ewers C, Semmler T, Rau J, Nicklas W, Tanikawa T, Kämpfer P. Streptobacillus ratti sp. nov., isolated from a black rat (Rattus rattus). Int J Syst Evol Microbiol 2015; 66:1620-1626. [PMID: 26705259 DOI: 10.1099/ijsem.0.000869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An indole-, oxidase- and catalase-negative, non-motile bacterium, strain OGS16T, was isolated from an oral swab of a feral black rat (Rattus rattus) in 2007 in Japan. It stained Gram-negative and had pleomorphic, rod-shaped, non-spore-forming cells. Based on 16S rRNA gene sequence analyses, strain OGS16T was assigned to the genus Streptobacillus, with 16S rRNA gene sequence similarities of 99.3, 99.0, 98.6 and 95.5% to the type strains of Streptobacillus moniliformis, Streptobacillus notomytis, Streptobacillus felis and Streptobacillus hongkongensis, respectively. Strain OGS16T could also be differentiated clearly from other species of the genus Streptobacillus by rpoB, groEL and recA nucleotide and deduced amino acid sequence analysis. DNA-DNA relatedness as obtained by average nucleotide identity was 89.10% between strain OGS16T and Streptobacillus moniliformis DSM 12112T. Chemotaxonomic and physiological data for strain OGS16T were congruent with results for other closely related members of the family Leptotrichiaceae, represented by highly similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis also proved suitable in discriminating strain OGS16T unequivocally from all currently described taxa of the genus Streptobacillus. On the basis of these data, we propose the novel species Streptobacillus ratti sp. nov., with the type strain OGS16T (=JCM 31098T=DSM 101843T). The G+C content of the DNA of the type strain is 25.9 mol% and the genome size is 1.50 Mbp.
Collapse
Affiliation(s)
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Christa Ewers
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | - Jörg Rau
- Chemisches und Veterinäruntersuchungsamt Stuttgart, D-70736 Fellbach, Germany
| | - Werner Nicklas
- Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|