1
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Heravi G, Liu Z, Herroon M, Wilson A, Fan YY, Jiang Y, Vakeesan N, Tao L, Peng Z, Zhang K, Li J, Chapkin RS, Podgorski I, Liu W. Targeting Fatty Acid Desaturase I Inhibits Renal Cancer Growth Via ATF3-mediated ER Stress Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586426. [PMID: 38586033 PMCID: PMC10996531 DOI: 10.1101/2024.03.23.586426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Zhenjie Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexis Wilson
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Yang-Yi Fan
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
| | - Yang Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Nivisa Vakeesan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Tao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Jing Li
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Robert S. Chapkin
- Department of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, and Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Wang T, Cao C, Fan Y, Xu J, Hua T, Ding J, Liu Z, Wang B, Lian J. GABPB1 plays a cancer-promoting role in non-small cell lung cancer. Discov Oncol 2024; 15:72. [PMID: 38466508 DOI: 10.1007/s12672-024-00914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND GABPB1, the gene that encodes two isoforms of the beta subunit of GABP, has been identified as an oncogene in multiple malignant tumors. However, the role and mode of action of GABPB1 in malignant tumors, especially in lung cancer, are not well understood and need further research. METHODS Our research focused on examining the biological function of GABPB1 in NSCLC (Non-Small Cell Lung Cancer). We analysed tumor data from public databases to assess the expression of GABPB1 in NSCLC and its correlation with patient prognosis and investigated GABPB1 expression and methylation patterns in relation to the tumor microenvironment. In parallel, experiments were conducted using short hairpin RNA (shRNA) to suppress the GABPB1 gene in human lung cancer cells to evaluate the effects on cell proliferation, viability, and apoptosis. RESULTS GABPB1 was widely expressed in various tissues of the human body. Compared to that in normal tissues, the expression of this gene was different in multiple tumor tissues. GABPB1 was highly expressed in lung cancer tissues and cell lines. Its expression was associated with molecular subtype and cellular signalling pathways, and a high level of GABPB1 expression was related to a poor prognosis in lung adenocarcinoma patients. The expression and methylation of GABPB1 affect the tumor microenvironment. After suppressing the expression of GABPB1 in both A549 and H1299 cells, we found a decrease in cell growth and expression, the formation of clones and an increase in the apoptosis rate. CONCLUSIONS Our research verified that GABPB1 promotes the tumorigenesis of NSCLC and has an inhibitory effect on tumor immunity. The specific role of GABPB1 may vary among different pathological types of NSCLC. This molecule can serve as a prognostic indicator for lung adenocarcinoma, and its methylation may represent a potential breakthrough in treatment by altering the tumor immune microenvironment in lung squamous cell carcinoma. The role and mechanism of action of GABPB1 in NSCLC should be further explored.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Cong Cao
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Beili Wang
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
4
|
Nakayama J, Yamamoto Y. Cancer-prone Phenotypes and Gene Expression Heterogeneity at Single-cell Resolution in Cigarette-smoking Lungs. CANCER RESEARCH COMMUNICATIONS 2023; 3:2280-2291. [PMID: 37910161 PMCID: PMC10637260 DOI: 10.1158/2767-9764.crc-23-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies have been broadly utilized to reveal molecular mechanisms of respiratory pathology and physiology at single-cell resolution. Here, we established single-cell meta-analysis (scMeta-analysis) by integrating data from eight public datasets, including 104 lung scRNA-seq samples with clinicopathologic information and designated a cigarette-smoking lung atlas. The atlas revealed early carcinogenesis events and defined the alterations of single-cell transcriptomics, cell population, and fundamental properties of biological pathways induced by smoking. In addition, we developed two novel scMeta-analysis methods: VARIED (Visualized Algorithms of Relationships In Expressional Diversity) and AGED (Aging-related Gene Expressional Differences). VARIED analysis revealed expressional diversity associated with smoking carcinogenesis. AGED analysis revealed differences in gene expression related to both aging and smoking status. The scMeta-analysis paves the way to utilize publicly-available scRNA-seq data and provide new insights into the effects of smoking and into cellular diversity in human lungs, at single-cell resolution. SIGNIFICANCE The atlas revealed early carcinogenesis events and defined the alterations of single-cell transcriptomics, cell population, and fundamental properties of biological pathways induced by smoking.
Collapse
Affiliation(s)
- Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
5
|
Yin H, Wang Z, Wang D, Nuer M, Han M, Ren P, Ma S, Lin C, Chen J, Xian H, Ai D, Li X, Ma S, Lin Z, Pan Y. TIMELESS promotes the proliferation and migration of lung adenocarcinoma cells by activating EGFR through AMPK and SPHK1 regulation. Eur J Pharmacol 2023; 955:175883. [PMID: 37433364 DOI: 10.1016/j.ejphar.2023.175883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has high morbidity and is prone to recurrence. TIMELESS (TIM), which regulates circadian rhythms in Drosophila, is highly expressed in various tumors. Its role in LUAD has gained attention, but the detailed function and mechanism have not been clarified completely at present. METHODS Tumor samples from patients with LUAD patient data from public databases were used to confirm the relationship of TIM expression with lung cancer. LUAD cell lines were used and siRNA of TIM was adopted to knock down TIM expression in LUAD cells, and further cell proliferation, migration and colony formation were analyzed. By using Western blot and qPCR, we detected the influence of TIM on epidermal growth factor receptor (EGFR), sphingosine kinase 1 (SPHK1) and AMP-activated protein kinase (AMPK). With proteomics analysis, we comprehensively inspected the different changed proteins influenced by TIM and did global bioinformatic analysis. RESULTS We found that TIM expression was elevated in LUAD and that this high expression was positively correlated with more advanced tumor pathological stages and shorter overall and disease-free survival. TIM knockdown inhibited EGFR activation and also AKT/mTOR phosphorylation. We also clarified that TIM regulated the activation of SPHK1 in LUAD cells. And with SPHK1 siRNA to knock down the expression level of SPHK1, we found that EGFR activation were inhibited greatly too. Quantitative proteomics techniques combined with bioinformatics analysis clarified the global molecular mechanisms regulated by TIM in LUAD. The results of proteomics suggested that mitochondrial translation elongation and termination were altered, which were closely related to the process of mitochondrial oxidative phosphorylation. We further confirmed that TIM knockdown reduced ATP content and promoted AMPK activation in LUAD cells. CONCLUSIONS Our study revealed that siTIM could inhibit EGFR activation through activating AMPK and inhibiting SPHK1 expression, as well as influencing mitochondrial function and altering the ATP level; TIM's high expression in LUAD is an important factor and a potential key target in LUAD.
Collapse
Affiliation(s)
- Houqing Yin
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Zequn Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Dan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Muhadaisi Nuer
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Mengyuan Han
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Peng Ren
- Peking University Third Hospital Thoracic Surgery Department, China
| | - Shanwu Ma
- Peking University Third Hospital Thoracic Surgery Department, China
| | - Chutong Lin
- Peking University Third Hospital Thoracic Surgery Department, China
| | - Jingjing Chen
- Department of Pharmacology, Changzhi Medical College, Changzhi City, Shanxi Province, 046000, China
| | - Haocheng Xian
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China
| | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Shaohua Ma
- Peking University Third Hospital Thoracic Surgery Department, China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
6
|
Li X, An W, Pan H, Fan Y, Huang H, Wang Y, Shen W, Zu L, Meng F, Zhou X. Wilms' tumour gene 1 (WT1) enhances non-small cell lung cancer malignancy and is inhibited by microRNA-498-5p. BMC Cancer 2023; 23:824. [PMID: 37667197 PMCID: PMC10476375 DOI: 10.1186/s12885-023-11295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/12/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Wilms' tumour gene 1 (WT1) is clearly recognized as a tumour promoter in diversiform of human malignancies. Nevertheless, knowledge of its expression, functions and potential molecular mechanisms in non-small cell lung cancer (NSCLC) remains elusive. METHODS Differential expression of WT1 mRNA and protein between NSCLC and normal tissues were assessed by analyzing RNA-seq data from Oncomine and protein data from Human Protein Atlas, respectively. Subsequently, prognosis significance and immune cell infiltration were analyzed by Kaplan-Meier plotter and CIBERSORT. 60 pairs of local NSCLC tissues were involved to validate WT1 expression by quantitative PCR (qPCR) and Western blot. Moreover, Cell Counting Kit-8 (CCK-8), colony formation, transwell, dual luciferase reporter assays and in vivo xenograft tumour growth experiments were conducted to explore the function and mechanism of WT1 in NSCLC. RESULTS Our solid data indicated that WT1 was increased in NSCLC tissues and cell lines in comparison with their matched controls. In particular, its upregulation correlated with worse prognosis and immune infiltration of the patients. Functional assays demonstrated that knockdown of WT1 inhibited NSCLC malignancy, including inhibiting cell proliferation, survival and invasion. Further exploration discovered that microRNA-498-5p (miR-498-5p) was the upstream suppressor of WT1 by directly targeting the 3' untranslated region (UTR) of WT1 mRNA. Moreover, expression of miR-498-5p was notably decreased and inversely correlated with WT1 in NSCLC tissues. Finally, we proved that miR-498-5p was a potent tumour suppressor in NSCLC by suppressing cell proliferation, survival and invasion, while WT1 restoration could in turn disrupt this suppression both in vitro and in vivo. CONCLUSION The abnormal increase in WT1 contributes to the malignant properties of NSCLC cells, and miR-498-5p is a natural inhibitor of WT1. Our findings might facilitate the development of novel therapeutic strategies against NSCLC in the future.
Collapse
Grants
- No. 81302002, No. 82273019 to Xuebing Li; No. 81502166, No. 81972354, No. 82172901 to Xuexia Zhou National Natural Science Foundation of China
- No. 81302002, No. 82273019 to Xuebing Li; No. 81502166, No. 81972354, No. 82172901 to Xuexia Zhou National Natural Science Foundation of China
- No. 18JCYBJC92100, to Xuebing Li; No. 21JCQNJC01440, to Xuexia Zhou; No. 17JCYBJC25400, to Yaguang Fan; No. 17JCQNJC11700, to Hongli Pan Natural Science Foundation of Tianjin City
- No. 18JCYBJC92100, to Xuebing Li; No. 21JCQNJC01440, to Xuexia Zhou; No. 17JCYBJC25400, to Yaguang Fan; No. 17JCQNJC11700, to Hongli Pan Natural Science Foundation of Tianjin City
- No. 18JCYBJC92100, to Xuebing Li; No. 21JCQNJC01440, to Xuexia Zhou; No. 17JCYBJC25400, to Yaguang Fan; No. 17JCQNJC11700, to Hongli Pan Natural Science Foundation of Tianjin City
- No. 18JCYBJC92100, to Xuebing Li; No. 21JCQNJC01440, to Xuexia Zhou; No. 17JCYBJC25400, to Yaguang Fan; No. 17JCQNJC11700, to Hongli Pan Natural Science Foundation of Tianjin City
- No. CFC2020kyxm003, to Xuebing Li; No. CFC2020kyxm002, to Yaguang Fan Key Project of Cancer Foundation of China
- No. CFC2020kyxm003, to Xuebing Li; No. CFC2020kyxm002, to Yaguang Fan Key Project of Cancer Foundation of China
- No. ZYYFY2019022, to Fanrong Meng Foundation of Tianjin Medical University General Hospital
Collapse
Affiliation(s)
- Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhe An
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yixuan Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Shen
- West China Hospital, Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, Sichuan University, Chengdu, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanrong Meng
- Tianjin Prenatal Diagnostic Center, Obstetrics and Gynecology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
7
|
Lu Z, Chen J, Yu P, Atherton MJ, Gui J, Tomar VS, Middleton JD, Sullivan NT, Singhal S, George SS, Woolfork AG, Weljie AM, Hai T, Eruslanov EB, Fuchs SY. Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer. Nat Commun 2022; 13:6623. [PMID: 36333297 PMCID: PMC9636202 DOI: 10.1038/s41467-022-34428-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jinyun Chen
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew J Atherton
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Gui
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivek S Tomar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Justin D Middleton
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Neil T Sullivan
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashley G Woolfork
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Lin H, Ho A, Huang H, Yang B, Shih B, Lin H, Yeh C, Hsu C, Cheng C. STAT3‐mediated gene expression in colorectal cancer cells‐derived cancer stem‐like tumorspheres. ADVANCES IN DIGESTIVE MEDICINE 2021. [DOI: 10.1002/aid2.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hua‐Ching Lin
- Division of Colorectal Surgery Chen Hsin General Hospital Taipei Taiwan
- Department of Healthcare Information and Management Ming Chuan University Taoyuan Taiwan
| | - Ai‐Sheng Ho
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Hung Huang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bi‐Ling Yang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bin‐Bin Shih
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Chi Lin
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun Yeh
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chung‐Te Hsu
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun‐Chia Cheng
- Radiation Biology Research Center Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| |
Collapse
|
9
|
Chen Y, Lee K, Liang Y, Qin S, Zhu Y, Liu J, Yao S. A Cholesterol Homeostasis-Related Gene Signature Predicts Prognosis of Endometrial Cancer and Correlates With Immune Infiltration. Front Genet 2021; 12:763537. [PMID: 34790227 PMCID: PMC8591263 DOI: 10.3389/fgene.2021.763537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Endometrial cancer (EC) is one of the most common gynecological malignancies in women. Cholesterol metabolism has been confirmed to be closely related to tumor proliferation, invasion and metastasis. However, the correlation between cholesterol homeostasis-related genes and prognosis of EC remains unclear. Methods: EC patients from the Cancer Genome Atlas (TCGA) database were randomly divided into training cohort and test cohort. Transcriptome analysis, univariate survival analysis and LASSO Cox regression analysis were adopted to construct a cholesterol homeostasis-related gene signature from the training cohort. Subsequently, Kaplan-Meier (KM) plot, receiver operating characteristic (ROC) curve and principal component analysis (PCA) were utilized to verify the predictive performance of the gene signature in two cohorts. Additionally, enrichment analysis and immune infiltration analysis were performed on differentially expressed genes (DEGs) between two risk groups. Results: Seven cholesterol homeostasis-related genes were selected to establish a gene signature. KM plot, ROC curve and PCA in two cohorts demonstrated that the gene signature was an efficient independent prognostic indicator. The enrichment analysis and immune infiltration analysis indicated that the high-risk group generally had lower immune infiltrating cells and immune function. Conclusion: We constructed and validated a cholesterol homeostasis-related gene signature to predict the prognosis of EC, which correlated to immune infiltration and expected to help the diagnosis and precision treatment of EC.
Collapse
Affiliation(s)
- Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaping Lee
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhu
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Shi Q, Hu B, Yang C, Deng S, Cheng X, Wu J, Qi N. ATF3 inhibits arsenic-induced malignant transformation of human bronchial epithelial cells by attenuating inflammation. Toxicology 2021; 460:152890. [PMID: 34364923 DOI: 10.1016/j.tox.2021.152890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Arsenic is a naturally occurring metalloid strongly associated with the incidence of lung cancer. Understanding the mechanisms of arsenic-induced carcinogenesis favors the development of effective interventions to reduce the incidence and mortality of lung cancer. In this study, we investigated the role of activating transcription factor 3 (ATF3) in arsenic-induced transformation of human bronchial epithelial cells. ATF3 was upregulated during chronic exposure to 0.25 μM arsenic, and loss of ATF3 promoted arsenic-induced transformation. Moreover, arsenic-transformed ATF3 knockout (ATF3 KO-AsT) cells exhibited more aggressive characteristics, including acceleration in proliferation, resistance to chemotherapy and increase in migratory capacity. RNA-seq revealed that pathways involved in inflammation, cell cycle, EMT and oncogenesis were affected due to ATF3 deficiency during chronic arsenic exposure. Further experiments confirmed the overproduction of IL-6, IL-8 and TNFα as well as enhanced phosphorylation of AKT and STAT3 in ATF3 KO-AsT cells. Our results demonstrate that ATF3 upregulated by chronic low-dose arsenic exposure represses cell transformation and acquisition of malignant characteristics through inhibiting the production of proinflammatory cytokines and activation of downstream proteins AKT and STAT3, providing a new strategy for the prevention of carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Qiwen Shi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bei Hu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chen Yang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shufen Deng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Cheng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
11
|
Zu T, Wang D, Xu S, Lee CAA, Zhen E, Yoon CH, Abarzua P, Wang S, Frank NY, Wu X, Lian CG, Murphy GF. ATF-3 expression inhibits melanoma growth by downregulating ERK and AKT pathways. J Transl Med 2021; 101:636-647. [PMID: 33299127 PMCID: PMC8091967 DOI: 10.1038/s41374-020-00516-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022] Open
Abstract
Activating transcription factor 3 (ATF-3), a cyclic AMP-dependent transcription factor, has been shown to play a regulatory role in melanoma, although its function during tumor progression remains unclear. Here, we demonstrate that ATF-3 exhibits tumor suppressive function in melanoma. Specifically, ATF-3 nuclear expression was significantly diminished with melanoma progression from nevi to primary to metastatic patient melanomas, correlating low expression with poor prognosis. Significantly low expression of ATF-3 was also found in cultured human metastatic melanoma cell lines. Importantly, overexpression of ATF-3 in metastatic melanoma cell lines significantly inhibited cell growth, migration, and invasion in vitro; as well as abrogated tumor growth in a human melanoma xenograft mouse model in vivo. RNA sequencing analysis revealed downregulation of ERK and AKT pathways and upregulation in apoptotic-related genes in ATF-3 overexpressed melanoma cell lines, which was further validated by Western-blot analysis. In summary, this study demonstrated that diminished ATF-3 expression is associated with melanoma virulence and thus provides a potential target for novel therapies and prognostic biomarker applications.
Collapse
Affiliation(s)
- Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shangdong, China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Diana Wang
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Shuyun Xu
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherine A A Lee
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen Zhen
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Phammela Abarzua
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shangdong, China
| | - Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shangdong, China.
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Christine G Lian
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - George F Murphy
- Department of Pathology, Program in Dermatopathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, Zuo L, Zhang L, Qin X. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:618987. [PMID: 33816467 PMCID: PMC8017234 DOI: 10.3389/fcell.2021.618987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant cancers in East Asia, with high incidence and mortality. Accumulating evidence has shown that ATF3 is associated with tumor progression. Methods Using qPCR, the expression of ATF3 was detected in 93 patients with ccRCC, including 24 paired normal and tumor tissues, which were used to further compare ATF3 expression through western blotting and immunohistochemistry. Lentivirus was used for the overexpression or knockdown of ATF3, and the consequent alteration in function was analyzed through CCK8 assay, colony formation assay, wound healing assay, invasion assay, and flow cytometry. The potential mechanism affected by ATF3 was analyzed through gene set enrichment analysis (GSEA) and verified using western blotting, invasion assay, or immunofluorescence staining. Furthermore, a xenograft mouse model was used to assess the function of ATF3 in vivo. Results ATF3 expression was significantly decreased in ccRCC compared to that in adjacent normal tissues. Through gain- and loss-of-function experiments performed in an in vitro assay, we found that ATF3 could regulate ccRCC cell proliferation, cycle progression, migration, and invasion. In the in vivo study, the xenograft mouse model revealed that ATF3 overexpression can inhibit the growth of ccRCC. Moreover, the mechanism analysis showed that suppression of ATF3 could lead to an increase the expression of β-catenin and promote β-catenin transfer to the nucleus, and might be affected by EGFR/AKT/GSK3β signaling. Conclusion ATF3 could be utilized as an independent protective factor to inhibit the progression of ccRCC. Potential treatment strategies for ccRCC include targeting the ATF3/EGFR/AKT/GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Simin Wang
- Changzhou Third People's Hospital, Changzhou, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chuang Yue
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shuzhang Wei
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
13
|
Kang HG, Park JE, Lee SY, Choi JE, Do SK, Hong MJ, Lee JH, Jeong JY, Do YW, Lee EB, Shin KM, Lee WK, Choi SH, Lee YH, Seo HW, Yoo SS, Lee J, Cha SI, Kim CH, Cho S, Jheon S, Park JY. Genetic Polymorphisms in Activating Transcription Factor 3 Binding Site and the Prognosis of Early-Stage Non-Small Cell Lung Cancer. Oncology 2021; 99:336-344. [PMID: 33626541 DOI: 10.1159/000514131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Activating transcription factor 3 (ATF3) plays a significant role in cancer development and progression. We investigated the association between variants in expression quantitative trait loci (eQTLs) within ATF3 binding regions and the prognosis of non-small cell lung cancer (NSCLC) after surgery. METHODS A total of 772 patients with NSCLC who underwent curative surgery were enrolled. Using a public database (http://galaxyproject.org), we selected 104 single nucleotide polymorphisms (SNPs) in eQTLs in the ATF3 binding regions. The association of those SNPs with disease-free survival (DFS) was evaluated. RESULTS Among those SNPs, HAX1 rs11265425T>G was associated with significantly worse DFS (aHR = 1.30, 95% CI = 1.00-1.69, p = 0.05), and ME3 rs10400291C>A was associated with significantly better DFS (aHR = 0.66, 95% CI = 0.46-0.95, p = 0.03). Regarding HAX1 rs11265425T>G, the significant association remained only in adenocarcinoma, and the association was significant only in squamous cell carcinoma regarding ME3 rs10400291C>A. ChIP-qPCR assays showed that the two variants reside in active enhancers where H3K27Ac and ATF3 binding occurs. Promoter assays showed that rs11265425 G allele had significantly higher HAX1 promoter activity than T allele. HAX1 RNA expression was significantly higher in tumor than in normal lung, and higher in rs11265425 TG+GG genotypes than in TT genotype. Conversely, ME3 expression was significantly lower in tumor than in normal lung, and higher in rs10400291 AA genotype than in CC+CA genotypes. CONCLUSIONS In conclusion, this study shows that the functional polymorphisms in ATF3 binding sites, HAX1 rs11265425T>G and ME3 rs10400291C>A are associated with the clinical outcomes of patients in surgically resected NSCLC.
Collapse
Affiliation(s)
- Hyo-Gyoung Kang
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Eun Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, .,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea,
| | - Jin Eun Choi
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Kyung Do
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Woo Do
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eung Bae Lee
- Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Ki Lee
- Medical Research Collaboration Center in Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Won Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Sun R, Lü W, Liu Z, Yang Y, Wang X, Zhao X, Fu S, Dai W, Huang C, Diao D. FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis via integrating ChIP-seq and RNA-seq data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:34-45. [PMID: 33610681 DOI: 10.1016/j.pbiomolbio.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
FOXI1 plays a key role in the development of gastric cancer. However, the whole genome FOXI1 binding sites and its target genes are unclear. In the present study, we used ChIP-seq and RNA-seq technologies to identify the target gene of FOXI1. Firstly, ChIP-seq data showed that, 4476 unique peaks in the genome region were captured. Most of these binding peaks are located in introns or intergenic regions. We annotated all the peaks to the nearest gene and identified 404 genes as FOXI1 binding genes. KEGG and GO analysis showed that FOXI1 binding gene to be correlated with the cellular process, cell part, cell, binding, single-organism process. Further, we performed FOXI1-overexpressed RNA-seq experiment. We comprehensively analyzed the ChIP-seq and RNA-seq data and take the intersection of two databases, several genes were identified. ATF3 was selected from the intersection since ATF3 was the most enriched mRNA after FOXI1 overexpressed. ChIP-qPCR and luciferase report gene were used to validate that ATF3 was target gene of FOXI1. Intriguely, ATF3 protein was significantly downregulated after FOXI1 overexpressed. We found FOXI1 can also bind to the promoter of miR-590 and active it which directly target ATF3. The binding site between FOXI1 and miR-590 was verified by ChIP-qPCR and luciferase report gene, and the target relationship between miR-590 and ATF3 was confirmed by dual-luciferase reporter gene. In conclusion, our data identified the genome binding sites of FOXI1, and provide evidence that FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Weidong Lü
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Xinliang Zhao
- Department of General Thoracic Surgery, 521 Ordnance Hospital, 12 Zhangba East Road, Xi'an, Shaanxi, PR China
| | - Shufeng Fu
- Medical College of Xianyang Vocational and Technical College, 1 Tongyi Road, Xi'an, Shaanxi, PR China
| | - Wei Dai
- Department of Emergency, Shaanxi Provincial People's Hospital, 256, Youyi West Road, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| | - Dongmei Diao
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, PR China.
| |
Collapse
|
15
|
Xu L, Zu T, Li T, Li M, Mi J, Bai F, Liu G, Wen J, Li H, Brakebusch C, Wang X, Wu X. ATF3 downmodulates its new targets IFI6 and IFI27 to suppress the growth and migration of tongue squamous cell carcinoma cells. PLoS Genet 2021; 17:e1009283. [PMID: 33539340 PMCID: PMC7888615 DOI: 10.1371/journal.pgen.1009283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 02/17/2021] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
Activating transcription factor 3 (ATF3) is a key transcription factor involved in regulating cellular stress responses, with different expression levels and functions in different tissues. ATF3 has also been shown to play crucial roles in regulating tumor development and progression, however its potential role in oral squamous cell carcinomas has not been fully explored. In this study, we examined biopsies of tongue squamous cell carcinomas (TSCCs) and found that the nuclear expression level of ATF3 correlated negatively with the differentiation status of TSCCs, which was validated by analysis of the ATGC database. By using gain- or loss- of function analyses of ATF3 in four different TSCC cell lines, we demonstrated that ATF3 negatively regulates the growth and migration of human TSCC cells in vitro. RNA-seq analysis identified two new downstream targets of ATF3, interferon alpha inducible proteins 6 (IFI6) and 27 (IFI27), which were upregulated in ATF3-deleted cells and were downregulated in ATF3-overexpressing cells. Chromatin immunoprecipitation assays showed that ATF3 binds the promoter regions of the IFI6 and IFI27 genes. Both IFI6 and IFI27 were highly expressed in TSCC biopsies and knockdown of either IFI6 or IFI27 in TSCC cells blocked the cell growth and migration induced by the deletion of ATF3. Conversely, overexpression of either IFI6 or IFI27 counteracted the inhibition of TSCC cell growth and migration induced by the overexpression of ATF3. Finally, an in vivo study in mice confirmed those in vitro findings. Our study suggests that ATF3 plays an anti-tumor function in TSCCs through the negative regulation of its downstream targets, IFI6 and IFI27. Activating transcription factor 3 (ATF3), a stress response gene, has been shown to play either tumor promoting or tumor suppressing functions depending on the type of tumor cell and the stromal context. Here we discovered that ATF3 plays an anti-tumor role in tongue squamous cell carcinoma (TSCC) cells through the transcriptional suppression of its new downstream targets interferon alpha inducible proteins 6 (IFI6) and 27 (IFI27). This finding contributes to understanding how ATF3, a transcriptional repressor, can target specific downstream genes in different tumor cells to play anti-tumor or pro-tumor functions. A thorough understanding of ATF3 functions and its downstream signaling pathways provides a potential approach to develop new therapeutics for the treatment of tumors such as TSCCs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- Department of Orthodontics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Precision Biomedical Key Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Tao Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
| | - Min Li
- Precision Biomedical Key Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong, China
- * E-mail: (XW); (XW)
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- * E-mail: (XW); (XW)
| |
Collapse
|
16
|
Deng Y, Guo SL, Li JQ, Xie SS, Zhou YC, Wei B, Wang Q, Wang F. Interferon regulatory factor 7 inhibits rat vascular smooth muscle cell proliferation and inflammation in monocrotaline-induced pulmonary hypertension. Life Sci 2021; 264:118709. [PMID: 33152351 DOI: 10.1016/j.lfs.2020.118709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Although interferon regulatory factor 7 (IRF7) has known roles in regulating the inflammatory response, vascular smooth muscle cell proliferation, and apoptosis, its role in the pathogenesis of pulmonary hypertension (PH) is unclear. We hypothesized that IRF7 overexpression could inhibit pulmonary vascular remodeling and slow the progression of PH. MAIN METHODS IRF7 mRNA and protein levels in the lung samples and pulmonary artery smooth muscle cells (PASMCs) isolated from monocrotaline (MCT)-induced PH rats were assessed. We evaluated the effects of IRF7 on inflammation, proliferation, and apoptosis using an in vivo MCT-induced PH rat model and in vitro methods. KEY FINDINGS We noted decreased IRF7 mRNA and protein levels in the pulmonary vasculature of MCT-induced PH rats. IRF7 upregulation attenuated pulmonary vascular remodeling, decreased the pulmonary artery systolic pressure, and improved the right ventricular (RV) structure and function. Our findings suggest that nuclear factor kappa-Bp65 (NF-κBp65) deactivation could confer pulmonary vasculature protection, reduce proinflammatory cytokine (tumor necrosis factor-α, interleukin 6) release, and decrease PASMC proliferation and resistance to apoptosis via deactivating transcription factor 3 (ATF3) signaling. ATF3 deactivation induced the downregulation of the proliferation-dependent genes proliferating cell nuclear antigen (PCNA), cyclin D1, and survivin, coupled with increased levels of B cell lymphoma-2-associated X protein (Bax)/B cell lymphoma-2 (Bcl2) ratio, and cleaved caspase-3 in PASMCs. SIGNIFICANCE Our findings showed that IRF7 downregulation could initiate inflammation via NF-κBp65 signaling, causing PASMC proliferation via ATF3 signaling pathway activation. Therefore, IRF7 could be a potential molecular target for PH therapy.
Collapse
MESH Headings
- Activating Transcription Factor 3/metabolism
- Animals
- Apoptosis
- Caspase 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Cyclin D1/metabolism
- Dependovirus/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Inflammation/complications
- Inflammation/pathology
- Interferon Regulatory Factor-7/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Signal Transduction
- Survivin/metabolism
- Up-Regulation
- Vascular Remodeling
- bcl-2-Associated X Protein/metabolism
- Rats
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Sheng-Lan Guo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| | - Shan-Shan Xie
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Wang XM, Liu XM, Wang Y, Chen ZY. Activating transcription factor 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through transforming growth factor beta (TGF-beta)/SMAD signaling pathway. Bioengineered 2020; 12:117-126. [PMID: 33315500 PMCID: PMC8806324 DOI: 10.1080/21655979.2020.1860491] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The successful treatment of keloids is a great challenge in the plastic surgery field. Activating transcription factor 3 (ATF3) is discovered as an adaptive responsive gene, which plays a critical role in fibroblast activation. This study aimed to investigate the expression and biological role of ATF3 in the pathogenesis of keloids. ATF3 expression in normal skins and keloids was evaluated by real-time PCR, western blot and immunohistochemistry. Effects of ATF3 on cell growth, apoptosis, invasion and collagen production were evaluated in keloid fibroblast cells overexpressing or downregulating ATF3. ATF3 expression was significantly elevated in keloid tissues when compared with that of normal skins and parakeloidal skin tissues. Moreover, ATF3 promoted cell proliferation and collagen production in keloid fibroblast cells. Conversely, transfection with siRNA targeting ATF3 led to decreased cell viability and collagen synthesis via inhibiting transforming growth factor-β1 (TGF-β1) and fibroblast growth factor 2/8 (FGF2/8) production in keloid fibroblasts. ATF3 could reduce the apoptosis rate of keloid fibroblast cells. Molecularly, we found that ATF3 promoted BCL2 level and inhibit the expression of BCL2 associated agonist of cell death (Bad), Caspase3 and Caspase9 in keloid fibroblast cells. ATF3 also enhanced the invasive potential via upregulating the expression of Matrix Metalloproteinases (MMP) family members (MMP1, MMP2, MMP9 and MMP13). ATF3 could induce activation of TGF-β/Smad signaling pathway in fibroblasts. Collectively, ATF3 could promote growth and invasion, and inhibit apoptosis via TGF-β/Smad pathway in keloid fibroblast cells, suggesting that ATF3 might be considered as a novel therapeutic target for the management of keloid.
Collapse
Affiliation(s)
- Xue-Ming Wang
- Department of Plastic Surgery, Qingdao University , Qingdao, China.,Department of Plastic Surgery, Fujian Provincial Maternity and Children's Hospital , Fuzhou, China
| | - Xiu-Mei Liu
- Child Care Center, Fujian Provincial Maternity and Children's Hospital , Fuzhou, China
| | - Yuting Wang
- Department of Plastic Surgery, Yantai Yuhuangding Hospital , Yantai, China
| | - Zhen-Yu Chen
- Medical Plastic and Cosmetic Center, The Affiliated Hospital of Qingdao University , Qingdao, China
| |
Collapse
|
18
|
Kumar S, Dhara VG, Orzolek LD, Hao H, More AJ, Lau EC, Betenbaugh MJ. Elucidating the impact of cottonseed hydrolysates on CHO cell culture performance through transcriptomic analysis. Appl Microbiol Biotechnol 2020; 105:271-285. [PMID: 33201275 DOI: 10.1007/s00253-020-10972-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
In order to evaluate the impact of plant-based hydrolysates on CHO cells, a transcriptomic study was undertaken using cottonseed hydrolysate and Illumina's NextSeq transcriptomics profiling for 2 days of a batch cell culture. While cottonseed hydrolysate extended cell growth and increased antibody titer, significant effects were seen on transcriptomic signatures of supplemented cultures when compared to untreated cultures, evaluated using fold change, gene ontology (GO), and KEGG pathway analysis. Transcription and other factors commonly associated with cell growth such as those of the Atf family and homeobox proteins were upregulated while genes in the Hippo signaling pathway were downregulated. Genes involved in anabolic pathways such as gluconeogenesis and those involving protein folding and translation elongation were upregulated. GO analysis of biological processes for cottonseed-supplemented cultures indicated enrichments in DNA replication, protein processing, and unfolded protein response while molecular functions associated with growth such as GTPases, ATP binding, and aminoacyl t-RNA ligase activity were also enriched. Cellular components associated with structural integrity such as actin cytoskeleton, microtubules, mitochondrion, and Lewy body were enriched. Enriched KEGG pathways include growth-associated pathways such as cell cycle, pI3K-AKT-mTOR, and cancer-related pathways as well as those enhancing glycan metabolism, purine metabolism, amino acid biosynthesis, and protein processing in the endoplasmic reticulum (ER). These transcriptomic profiles provide insights into the roles that hydrolysates such as cottonseed can play in altering CHO cell growth and other physiological characteristics as well as suggesting ways in which CHO cell culture may be modified for enhancing performance in biotechnology applications. KEY POINTS: • Hydrolysate-supplemented cultures increased mammalian cell growth and productivity. • Fold-change analysis revealed upregulation in transcription and translation. • Enriched GOs and KEGG pathways including cell cycle and metabolism were observed.
Collapse
Affiliation(s)
- Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Linda D Orzolek
- Transcriptomics and Deep Sequencing Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Haiping Hao
- Transcriptomics and Deep Sequencing Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Borgoni S, Sofyalı E, Soleimani M, Wilhelm H, Müller-Decker K, Will R, Noronha A, Beumers L, Verschure PJ, Yarden Y, Magnani L, van Kampen AH, Moerland PD, Wiemann S. Time-Resolved Profiling Reveals ATF3 as a Novel Mediator of Endocrine Resistance in Breast Cancer. Cancers (Basel) 2020; 12:E2918. [PMID: 33050633 PMCID: PMC7650760 DOI: 10.3390/cancers12102918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the disease at diagnosis, 10 to 40% of these tumors eventually relapse due to resistance development. Even though recent novel approaches as the combination with CDK4/6 inhibitors increased the overall survival of relapsing patients, this remains relatively short and there is a urgent need to find alternative targetable pathways. In this study we profiled the early phases of the resistance development process to uncover drivers of this phenomenon. Time-resolved analysis revealed that ATF3, a member of the ATF/CREB family of transcription factors, acts as a novel regulator of the response to therapy via rewiring of central signaling processes towards the adaptation to endocrine treatment. ATF3 was found to be essential in controlling crucial processes such as proliferation, cell cycle, and apoptosis during the early response to treatment through the regulation of MAPK/AKT signaling pathways. Its essential role was confirmed in vivo in a mouse model, and elevated expression of ATF3 was verified in patient datasets, adding clinical relevance to our findings. This study proposes ATF3 as a novel mediator of endocrine resistance development in breast cancer and elucidates its role in the regulation of downstream pathways activities.
Collapse
Affiliation(s)
- Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (E.S.); (H.W.); (L.B.)
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Emre Sofyalı
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (E.S.); (H.W.); (L.B.)
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Maryam Soleimani
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.H.C.v.K.); (P.D.M.)
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Heike Wilhelm
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (E.S.); (H.W.); (L.B.)
| | - Karin Müller-Decker
- Tumor Models Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel; (A.N.); (Y.Y.)
| | - Lukas Beumers
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (E.S.); (H.W.); (L.B.)
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Pernette J. Verschure
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel; (A.N.); (Y.Y.)
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, W12 0NN London, UK;
| | - Antoine H.C. van Kampen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.H.C.v.K.); (P.D.M.)
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Perry D. Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.H.C.v.K.); (P.D.M.)
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (E.S.); (H.W.); (L.B.)
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Li J, Wang B, Li X, Zhu Y. Estimation of Hub Genes and Infiltrating Immune Cells in Non-Smoking Females with Lung Adenocarcinoma by Integrated Bioinformatic Analysis. Med Sci Monit 2020; 26:e922680. [PMID: 32669531 PMCID: PMC7384333 DOI: 10.12659/msm.922680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In recent years, the morbidity and mortality rates of lung adenocarcinoma in non-smoking females have been increasing dramatically. Although much research has been done with some progress, the molecular mechanism remains unclear. In this study we aimed to estimate hub genes and infiltrating immune cells in non-smoking females with lung adenocarcinoma. MATERIAL AND METHODS Firstly, we obtained differentially expressed genes (DEGs) by GEO2R analysis based on 3 independent mRNA microarray datasets of GSE10072, GSE31547, and GSE32863. The DAVID database was utilized for functional enrichment analysis of DEGs. Moreover, we identified hub genes with prognostic value by STRING, Cytoscape, and Kaplan Meier plotter. Subsequently, these genes were further analyzed by Gene Expression Profiling Interactive Analysis, Oncomine, Tumor Immune Estimation Resource, and Human Protein Atlas. Finally, the immune infiltration analysis was performed by CIBERSORT and The Cancer Genome Atlas with R packages. RESULTS We found 315 DEGs enriching in the extracellular matrix organization, cell adhesion, integrin binding, angiogenesis, and hypoxic response. And among these DEGs, we identified 10 hub genes (SPP1, ENG, ATF3, TOP2A, COL1A1, PAICS, CAV1, CAT, TGFBR2, and ANGPT1) of significant prognostic value. Simultaneously, we illustrated the distribution and differential expressions of 22 immune cell subtypes. and dendritic cells resting and macrophages M1 were identified with prognostic significance. CONCLUSIONS The results indicated that 10 hub genes and 2 immune cell subtypes might be promising biomarkers for lung adenocarcinoma in non-smoking females. This finding needs to be further evaluated.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Ben Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Xin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
21
|
Hu J, Bai Y, Zhang Q, Li M, Yin R, Xu L. Identification of LBX2 as a novel causal gene of lung adenocarcinoma. Thorac Cancer 2020; 11:2137-2145. [PMID: 32567804 PMCID: PMC7396393 DOI: 10.1111/1759-7714.13506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most predominant histological type of lung cancer with a poor prognosis. In this study, we demonstrate that LBX2 regulates cell proliferation, migration and invasion and the potential molecular mechanism in LUAD. Methods The Cancer Genome Atlas dataset was accessed to screen for novel genes and immunohistochemistry (IHC) assays were performed to determine the association between LBX2 expression and clinicopathological features of LUAD. 5‐ethynyl‐2′‐deoxyuridine, colony formation and Real Time xCELLigence analysis system were used to evaluate the cell proliferation abilities of LUAD. Wound healing, transwell and Matrigel assays were used to detect cell migration and invasion capacities. Xenograft tumor models were used to assess the oncogenic role of LBX2 in vivo. Results We found that LBX2 was hyperexpressed in LUAD and correlated with clinicopathological features and poor prognosis in LUAD patients. Knockdown of LBX2 inhibited cell proliferation, migration and invasion of LUAD, whereas ectopic expression of LBX2 enhanced tumor growth, migration, and invasion. We further found that LBX2 might participate in epithelial‐to‐mesenchymal transition (EMT) progression and influence EMT‐related gene expression. Conclusions The current study suggests that LBX2 plays an oncogenic role in LUAD and may participate in tumor proliferation, migration, and invasion through EMT progression. Key points
Collapse
Affiliation(s)
- Jingwen Hu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Yongkang Bai
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Quanli Zhang
- Department of Scientific Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
22
|
Activating transcription factor 3 inhibits endometrial carcinoma aggressiveness via JunB suppression. Int J Oncol 2020; 57:707-720. [PMID: 32582999 PMCID: PMC7384851 DOI: 10.3892/ijo.2020.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
The function of activating transcription factor 3 (ATF3) in cancer is context‑dependent and its role in endometrial carcinoma (EC) is yet to be elucidated. In the present study, ATF3 was indicated to be downregulated, while one of the ATF3‑interacting proteins, JunB, was upregulated in ECs according to western blot analysis. After overexpression in ECs, ATF3 inhibited the proliferation and invasion of EC cells and enhanced apoptosis, as well as suppressed the expression of JunB. The properties of EC cells, including the expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, the cell cycle and apoptosis were all altered by overexpression of ATF3. Furthermore, luciferase activity assay, chromatin precipitation and DNA affinity assay results indicated that ATF3 exerted the aforementioned functions via JunB binding and activator protein‑1 signaling. However, the interaction between ATF3 and JunB did not occur in EC cells under basal conditions, but in ATF3‑overexpressing ECs, which was capable of mitigating EC proliferation, invasion and metastasis. Collectively, the present results suggested that the ATF3/JunB interaction may serve as a potential therapeutic target for ECs.
Collapse
|
23
|
Ku HC, Cheng CF. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front Endocrinol (Lausanne) 2020; 11:556. [PMID: 32922364 PMCID: PMC7457002 DOI: 10.3389/fendo.2020.00556] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays vital roles in modulating metabolism, immunity, and oncogenesis. ATF3 acts as a hub of the cellular adaptive-response network. Multiple extracellular signals, such as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, are connected to ATF3 induction. The function of ATF3 as a regulator of metabolism and immunity has recently sparked intense attention. In this review, we describe how ATF3 can act as both a transcriptional activator and a repressor. We then focus on the role of ATF3 and ATF3-regulated signals in modulating metabolism, immunity, and oncogenesis. The roles of ATF3 in glucose metabolism and adipose tissue regulation are also explored. Next, we summarize how ATF3 regulates immunity and maintains normal host defense. In addition, we elaborate on the roles of ATF3 as a regulator of prostate, breast, colon, lung, and liver cancers. Further understanding of how ATF3 regulates signaling pathways involved in glucose metabolism, adipocyte metabolism, immuno-responsiveness, and oncogenesis in various cancers, including prostate, breast, colon, lung, and liver cancers, is then provided. Finally, we demonstrate that ATF3 acts as a master regulator of metabolic homeostasis and, therefore, may be an appealing target for the treatment of metabolic dyshomeostasis, immune disorders, and various cancers.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Ching-Feng Cheng
| |
Collapse
|
24
|
Šimečková P, Marvanová S, Kulich P, Králiková L, Neča J, Procházková J, Machala M. Screening of Cellular Stress Responses Induced by Ambient Aerosol Ultrafine Particle Fraction PM0.5 in A549 Cells. Int J Mol Sci 2019; 20:E6310. [PMID: 31847237 PMCID: PMC6940800 DOI: 10.3390/ijms20246310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Effects of airborne particles on the expression status of markers of cellular toxic stress and on the release of eicosanoids, linked with inflammation and oxidative damage, remain poorly characterized. Therefore, we proposed a set of various methodological approaches in order to address complexity of PM0.5-induced toxicity. For this purpose, we used a well-characterized model of A549 pulmonary epithelial cells exposed to a non-cytotoxic concentration of ambient aerosol particle fraction PM0.5 for 24 h. Electron microscopy confirmed accumulation of PM0.5 within A549 cells, yet, autophagy was not induced. Expression profiles of various cellular stress response genes that have been previously shown to be involved in early stress responses, namely unfolded protein response, DNA damage response, and in aryl hydrocarbon receptor (AhR) and p53 signaling, were analyzed. This analysis revealed induction of GREM1, EGR1, CYP1A1, CDK1A, PUMA, NOXA and GDF15 and suppression of SOX9 in response to PM0.5 exposure. Analysis of eicosanoids showed no oxidative damage and only a weak anti-inflammatory response. In conclusion, this study helps to identify novel gene markers, GREM1, EGR1, GDF15 and SOX9, that may represent a valuable tool for routine testing of PM0.5-induced in vitro toxicity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miroslav Machala
- Veterinary Research Institute, Department of Chemistry and Toxicology, Hudcova 296/70, 62100 Brno, Czech Republic; (P.Š.); (S.M.); (P.K.); (L.K.); (J.N.); (J.P.)
| |
Collapse
|
25
|
Kiratipaiboon C, Stueckle TA, Ghosh R, Rojanasakul LW, Chen YC, Dinu CZ, Rojanasakul Y. Acquisition of Cancer Stem Cell-like Properties in Human Small Airway Epithelial Cells after a Long-term Exposure to Carbon Nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2152-2170. [PMID: 31372228 PMCID: PMC6675031 DOI: 10.1039/c9en00183b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs. The chronic CNM-exposed cells exhibited CSC-like properties as indicated by 3D spheroid formation, anoikis resistance, and CSC markers expression. Mechanistic studies revealed specific self-renewal and epithelial-mesenchymal transition (EMT)-related transcription factors that are involved in the cellular transformation process. Pathway analysis of gene signaling networks supports the role of SOX2 and SNAI1 signaling in CNM-mediated transformation. These findings support the potential carcinogenicity of high aspect ratio CNMs and identified molecular targets and signaling pathways that may contribute to the disease development.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, 26505, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, 26505, United States
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia, 26416, United States
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and WVU Cancer Institute, West Virginia University, Morgantown, West Virginia, 26506, United States
| |
Collapse
|
26
|
Zhou X, Li X, Yu L, Wang R, Hua D, Shi C, Sun C, Luo W, Rao C, Jiang Z, Wang Q, Yu S. The RNA-binding protein SRSF1 is a key cell cycle regulator via stabilizing NEAT1 in glioma. Int J Biochem Cell Biol 2019; 113:75-86. [PMID: 31200124 DOI: 10.1016/j.biocel.2019.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
The relevance of RNA processing has been increasingly recognized in a variety of diseases. We previously identified serine/arginine-rich splicing factor 1 (SRSF1) as an oncodriver in glioma via splicing control. However, its splicing-independent roles and mechanisms are poorly defined in glioma. In this study, by integrating the data mining of SRSF1-co-expressed genes, SRSF1-affected genes and experimental studies, we demonstrated that SRSF1 was the most highly expressed SRSF in the 9 tumor types tested, and it was a crucial cell cycle regulator in glioma. Importantly, we identified nuclear paraspeckle assembly transcript1 (NEAT1), an upregulated long non-coding RNA (lncRNA) in glioma, as a target of SRSF1. Endogenous NEAT1 inhibition resembled the effect of SRSF1 knockdown on glioma cell proliferation by retarding cell cycle. Mechanistically, we proved that SRSF1 bound to NEAT1 and facilitated its RNA stability. The positive correlation between SRSF1 and NEAT1 levels in cancers further supported the positive regulation of NEAT1 by SRSF1. Collectively, our results provide novel insights on the splicing-independent mechanisms of SRSF1 in glioma, and confirm that NEAT1, whose stability maintained by SRSF1, implicates gliomagenesis by regulating cell cycle. Both SRSF1 and NEAT1 may serve as promising targets for antineoplastic therapies.
Collapse
Affiliation(s)
- Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Run Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Chun Rao
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.
| |
Collapse
|
27
|
Network Pharmacology Integrated Molecular Docking Reveals the Antiosteosarcoma Mechanism of Biochanin A. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1410495. [PMID: 30723510 PMCID: PMC6339762 DOI: 10.1155/2019/1410495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Background As the malignant tumor with the highest incidence in teenagers, osteosarcoma has become a major problem in oncology research. In addition to surgical management, the pharmacotherapeutic strategy for osteosarcoma treatment is an attractive way to explore. It has been demonstrated that biochanin A has an antitumor capacity on multiple kinds of solid tumor, including osteosarcoma. But the precise mechanism of biochanin A against osteosarcoma is still needed to be discovered. Objective To identify the potential therapeutic targets of biochanin A in treating osteosarcoma. Methods In present study, an integrated approach including network pharmacology and molecular docking technique was conducted, which mainly comprises target prediction, network construction, gene ontology, and pathway enrichment. CCK8 test was employed to evaluate the cell viability of MG63 cells. Western-blot was used to verify the target proteins of biochanin A. Results Ninety-six and 114 proteins were obtained as the targets of biochanin A and osteosarcoma, respectively. TP53, IGF1, JUN, BGLAP, ATM, MAPK1, ATF3, H2AFX, BAX, CDKN2A, and EGF were identified as the potential targets of biochanin A against osteosarcoma. Based on the western-blot detection, the expression of BGLAP, BAX, and ATF3 in MG63 cell line changed under the treatment of biochanin A. Conclusion Biochanin A can effectively suppress the proliferation of osteosarcoma and regulate the expression of BGLAP, BAX, and ATF3, which may act as the potential therapeutic targets of osteosarcoma.
Collapse
|
28
|
Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, Chen T, Li H, Yao M, Li J. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:263. [PMID: 30376856 PMCID: PMC6208028 DOI: 10.1186/s13046-018-0919-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/27/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with a high incidence and high mortality in East Asia. Identifying biomarkers and clarifying the regulatory mechanisms of HCC are of great importance. Herein, we report the role and mechanism of activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element-binding protein family of transcription factors in HCC. Methods ATF3 overexpression vector and shRNAs were transfected into HCC cancer cells to upregulate or downregulate ATF3 expression. In vitro and in vivo assays were performed to investigate the functional role of ATF3 in hepatocellular carcinoma. RNA-Seq was performed to screen the differentially expressed genes downstream of ATF3. The dual-luciferase reporter assay, chromatin immunoprecipitation (Ch-IP) analysis and functional rescue experiments were used to confirm the target gene regulated by ATF3. Tissue microarrays (TMAs) comprising 236 human primary HCC tissues were obtained and immunohistochemical staining were carried out to analyze the clinical significance of ATF3. Results The results indicate that ATF3 significantly inhibited the proliferation and mobility of HCC cells both in vitro and in vivo. Cysteine-rich angiogenic inducer 61 (CYR61) is a key target for transcriptional regulation by ATF3. Both ATF3 and CYR61 were consistently downregulated in human HCC tissues, and their expression levels were significantly and positively correlated with each other. Conclusions Our findings indicate that ATF3 functions as a tumor suppressor in HCC through targeting and regulating CYR61. Electronic supplementary material The online version of this article (10.1186/s13046-018-0919-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Zheng Liu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangyu Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | | | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Gu L, Ge Z, Wang Y, Shen M, Zhao P. Activating transcription factor 3 promotes intestinal epithelial cell apoptosis in Crohn’s disease. Pathol Res Pract 2018; 214:862-870. [DOI: 10.1016/j.prp.2018.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
|
30
|
Zhu H, Liu M, Zhang N, Pan H, Lin G, Li N, Wang L, Yang H, Yan K, Gong F. Serum and Adipose Tissue mRNA Levels of ATF3 and FNDC5/Irisin in Colorectal Cancer Patients With or Without Obesity. Front Physiol 2018; 9:1125. [PMID: 30246803 PMCID: PMC6140752 DOI: 10.3389/fphys.2018.01125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022] Open
Abstract
Objectives: To explore the activating transcription factor 3 (ATF3) and fibronectin type III domain-containing protein 5 (FNDC5)/irisin protein levels in serum and mRNA levels in subcutaneous and visceral white adipose tissue (sWAT and vWAT) in normal-weight (NW) and overweight/obese (OW/OB) patients with colorectal cancer (CRC). Methods: 76 CRC patients and 40 healthy controls were recruited. Serum ATF3 and irisin levels were detected by using ELISA kits, and the mRNA expression levels in sWAT and vWAT were measured by performing RT-qPCR. Results: The serum ATF3 levels were greater by 37.2%, whereas the irisin levels were lower by 23.3% in NW+CRC patients compared with those in healthy controls. CRC was independently associated with both ATF3 and irisin levels. The probability of CRC greater by 22.3-fold in individuals with high ATF3 levels compared with those with low ATF3 levels, whereas the risk of CRC in subjects with high irisin levels was lower by 78.0% compared to the risk in those with low irisin levels after adjustment for age, gender, BMI, and other biochemical parameters. Serum ATF3 and irisin could differentiate CRC patients from controls with receiver operating characteristic (ROC) curve areas of 0.745 (95% CI, 0.655-0.823) and 0.656 (95% CI, 0.561-0.743), respectively. The combination of ATF3 and irisin exhibited improved diagnosis value accuracy with ROC curve areas of 0.796 (95% CI, 0.710-0.866) as well as 72.6% sensitivity and 80.0% specificity. Conclusion: Increased ATF3 and reduced irisin levels were observed in sera from CRC patients. Individuals with high ATF3 and low irisin levels were more likely to have CRC. ATF3 and irisin represent potential diagnostic biomarkers for CRC patients.
Collapse
Affiliation(s)
- Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Nianrong Zhang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guole Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Naishi Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Fengying Gong, ;
| |
Collapse
|
31
|
Li X, Zhou X, Hua F, Fan Y, Zu L, Wang Y, Shen W, Pan H, Zhou Q. The RNA-binding protein Sam68 is critical for non-small cell lung cancer cell proliferation by regulating Wnt/β-catenin pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8281-8291. [PMID: 31966679 PMCID: PMC6965395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 06/10/2023]
Abstract
Src associated in mitosis, 68 kDa (Sam68) is a KH domain RNA-binding protein that regulates a broad scope of biological events, including RNA metabolism, transcription and signal transduction. Herein, we aimed to explore the expression, clinical significance and biological function of Sam68 in human non-small cell lung cancer (NSCLC). By applying quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry (IHC) methods, we found that nucleic localized Sam68 was markedly overexpressed in NSCLC tissues and cell lines. By X2 analysis and Kaplan-Meier survivial analysis between Sam68 expression and various clinicopathological features, Sam68 was found to be significantly associated with clinical T stage, advanced tumor grade, and short overall survival. Finally, in vitro loss-of-function studies showed that knockdown of Sam68 inhibited cell proliferation, colony formation and cell cycle progression in NSCLC cells. Moreover, our results clarified that knockdown of Sam68 could suppress NSCLC cell proliferation via the inhibition of Wnt/β-catenin pathway. To conclude, our results demonstrated that upregulation of Sam68 in NSCLC resulted in poor prognosis, and it promoted cell proliferation via activating Wnt/β-catenin signaling pathway, which could serve as a novel biomarker for the prognosis and therapy of NSCLC.
Collapse
Affiliation(s)
- Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of The Nervous System, Key Laboratory of Post-Trauma Neuro- Repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Feng Hua
- Department of Thoracic Surgery, Shandong Cancer Hospital and InstituteJinan, P. R. China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Yuli Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Wang Shen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
- Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Sichuan UniversityChengdu, P. R. China
| |
Collapse
|