1
|
Wei X, Xiong X, Chen Z, Chen B, Zhang C, Zhang W. MicroRNA155 in non-small cell lung cancer: a potential therapeutic target. Front Oncol 2025; 15:1517995. [PMID: 39963112 PMCID: PMC11830606 DOI: 10.3389/fonc.2025.1517995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Lung cancer (LC) is the second most commonly diagnosed cancer among both men and women, and it stands as the leading cause of cancer-related mortality, characterized by high rates of morbidity and mortality. Among its subtypes, non-small cell lung cancer (NSCLC) is the most prevalent and one of the most challenging malignant tumors to treat. To date, various therapeutic approaches, including surgery, radiotherapy, and chemotherapy, have been employed in the management of lung cancer; however, due to its aggressive nature, the survival rates remain low. Consequently, exploring novel treatment strategies is of paramount importance. MicroRNAs (miRNAs), a large family of non-coding RNAs, play crucial roles in regulating several key biological processes, including cell proliferation, differentiation, inflammation, and apoptosis. Among these, microRNA155(miR-155) is one of the most conserved and versatile miRNAs, predominantly overexpressed in various diseases, including malignant tumors. This review elucidates the biological functions and roles of miR-155 in NSCLC and discusses its potential significance as a therapeutic target for future research directions and clinical applications.
Collapse
Affiliation(s)
- Xiangju Wei
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianmin Xiong
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ze Chen
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cantang Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenhui Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Kharboush TG, Ahmed IA, Farag AA, Kharboush T, Sayed AEDH, Abdel-Kareim AM, Al Mohaini M, Attia H, Eid RA, Zaki MSA, Al-Tabbakh ASM. Epigenetic alterations of miR-155 and global DNA methylation as potential mediators of ochratoxin A cytotoxicity and carcinogenicity in human lung fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5473-5483. [PMID: 38114706 PMCID: PMC10799132 DOI: 10.1007/s11356-023-31283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Ochratoxin A (OTA) is a well-known mycotoxin that adversely affects different human cells. Inhalational exposure to OTA and subsequent pulmonary diseases have been previously reported, yet its potential carcinogenicity and underlying molecular mechanisms have not been fully elucidated. This study aimed to evaluate the OTA-induced cytotoxicity and the epigenetic changes underlying its potential carcinogenicity in fetal lung fibroblast (WI-38) cells. OTA cytotoxicity was assessed by MTT assay; RT-qPCR was used to determine the expression of BAX, BCL-2, TP53, and miR-155, while ELISA was used for measuring 5-methyl cytosine percentage to assess global DNA methylation in OTA-treated versus control cells. WI-38 cells demonstrated sensitivity to OTA with IC50 at 22.38 μM. Though BAX and Bcl-2 were downregulated, with low BAX/BCL-2 ratio, and TP53 was upregulated, their fold changes showed decline trend with increasing OTA concentration. A significant dose-dependent miR-155 upregulation was observed, with dynamic time-related decline. Using subtoxic OTA concentrations, a significant global DNA hypermethylation with significant dose-dependent and dynamic alterations was identified. Global DNA hypermethylation and miR-155 upregulation are epigenetic mechanisms that mediate OTA toxicity on WI-38 cells. BAX downregulation, reduced BAX/BCL-2 ratio together with miR-155 upregulation indicated either the inhibition of TP53-dependent apoptosis or a tissue specific response to OTA exposure. The aforementioned OTA-induced variations present a new molecular evidence of OTA cytotoxicity and possible carcinogenicity in lung fibroblast cells.
Collapse
Affiliation(s)
- Taghrid G Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Amina A Farag
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Tayseir Kharboush
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Asyut, 71516, Egypt.
| | - Amal M Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 31982, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, 31982, Alahsa, Saudi Arabia
| | - Hend Attia
- Clinical and Chemical Pathology, School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
| | - Al-Shaimaa M Al-Tabbakh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| |
Collapse
|
3
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
4
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
5
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
6
|
Stabile R, Cabezas MR, Verhagen MP, Tucci FA, van den Bosch TPP, De Herdt MJ, van der Steen B, Nigg AL, Chen M, Ivan C, Shimizu M, Koljenović S, Hardillo JA, Verrijzer CP, Baatenburg de Jong RJ, Calin GA, Fodde R. The deleted in oral cancer (DOC1 aka CDK2AP1) tumor suppressor gene is downregulated in oral squamous cell carcinoma by multiple microRNAs. Cell Death Dis 2023; 14:337. [PMID: 37217493 DOI: 10.1038/s41419-023-05857-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.
Collapse
Affiliation(s)
- Roberto Stabile
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mario Román Cabezas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francesco A Tucci
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Maria J De Herdt
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meng Chen
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Science, Irving, TX, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George A Calin
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
LncRNA CASC2 Regulate Cell Proliferation and Invasion by Targeting miR-155/SOCS1 Axis in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:8457112. [PMID: 36816357 PMCID: PMC9937765 DOI: 10.1155/2023/8457112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 02/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in the development and progression of various human malignancies. However, the role of lncRNA CASC2 in hepatocellular carcinoma (HCC) remains mostly unknown. The aim of this study was to investigate the potential roles and underlying mechanisms of CASC2 in HCC progression. We found that CASC2 expressions were downregulated in HCC tissue samples and cell lines. The clinical assays revealed that lower levels of CASC2 were associated with the TNM stage, lymph node metastasis, and a poorer prognosis specific to HCC patients. Overexpression of CASC2 inhibited the proliferating, migratory, and invasion capacity of HCC cells. Bioinformatics analysis and the luciferase reporter assay revealed that CASC2 worked as a molecular sponge for miR-155. And CASC2 could upregulate SOCS1 expression by inhibiting miR-155 expression in HCC cells. Furthermore, SOCS1 inhibition partially inverses the suppression effect of cell proliferation, migration, and invasion regulated by CASC2 in Huh7 and HepG2 cells. Taken together, our findings identified CASC2 as a tumor suppressor to inhibit HCC development by regulating the miR-155/SOCS1 axis, and CASC2 might be a potential therapeutic target of HCC for future clinical treatment.
Collapse
|
8
|
The imminent role of microRNAs in salivary adenoid cystic carcinoma. Transl Oncol 2022; 27:101573. [PMID: 36335706 PMCID: PMC9646983 DOI: 10.1016/j.tranon.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Unfortunately, despite the severe problem associated with salivary adenoid cystic carcinoma (SACC), it has not been studied in detail yet. Therefore, the time has come to understand the oncogenic cause of SACC and find the correct molecular markers for diagnosis, prognosis, and therapeutic target to tame this disease. Recently, we and others have suggested that non-coding RNAs, specifically microRNAs and long non-coding RNAs, can be ideal biomarkers for cancer(s) diagnosis and progression. Herein, we have shown that various miRNAs, like miR-155, miR‑103a‑3p, miR-21, and miR-130a increase the oncogenesis process, whereas some miRNAs such as miR-140-5p, miR-150, miR-375, miR-181a, miR-98, miR-125a-5p, miR-582-5p, miR-144-3p, miR-320a, miR-187 and miR-101-3p, miR-143-3p inhibit the salivary adenoid cystic carcinoma progression. Furthermore, we have found that miRNAs also target many vital genes and pathways like mitogen-activated protein kinases-snail family transcriptional repressor 2 (MAPK-Snai2), p38/JNK/ERK, forkhead box C1 protein (FOXC1), mammalian target of rapamycin (mTOR), integrin subunit beta 3 (ITGB3), epidermal growth factor receptor (EGFR)/NF-κB, programmed cell death protein 4 (PDCD4), signal transducer and activator of transcription 3 (STAT3), neuroblastoma RAS (N-RAS), phosphatidylinositol-3-kinase (PI3K)/Akt, MEK/ERK, ubiquitin-like modifier activating enzyme 2 (UBA2), tumor protein D52 (TPD52) which play a crucial role in the regulation of salivary adenoid cystic carcinoma. Therefore, we believe that knowledge from this manuscript will help us find the pathogenesis process in salivary adenoid cystic carcinoma and could also give us better biomarkers of diagnosis and prognosis of the disease.
Collapse
|
9
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
10
|
Dezfuli NK, Alipoor SD, Dalil Roofchayee N, Seyfi S, Salimi B, Adcock IM, Mortaz E. Evaluation Expression of miR-146a and miR-155 in Non-Small-Cell Lung Cancer Patients. Front Oncol 2021; 11:715677. [PMID: 34790566 PMCID: PMC8591170 DOI: 10.3389/fonc.2021.715677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Non−small-cell lung cancer (NSCLC) is the major type of lung cancer. MicroRNAs (miRNAs) are novel markers and targets in cancer therapy and can act as both tumor suppressors and oncogenes and affect immune function. The aim of this study was to investigate the expression of miR146a and miR155 in linked to blood immune cell phenotypes and serum cytokines in NSCLC patients. Methods Thirty-three NSCLC patients and 30 healthy subjects were enrolled in this study. The allele frequencies of potential DNA polymorphisms were studied using polymerase chain reaction (PCR)–restriction fragment length polymorphism (PCR-RFLP) analysis in peripheral blood samples. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of miR-146a and miR-155 in peripheral blood mononuclear cells (PBMCs). Serum cytokine (IL-1β, IL-6, TNF-α, TGF-β, IL-4, IFN-γ) levels were determined by ELISA. The frequency of circulating CD3+CTLA-4+ and CD4+CD25+FOXP3+ (T regulatory cells/Treg) expression was measured by flow cytometry. Results miR-146a was significantly downregulated in PBMC of NSCLC patients (P ≤ 0.001). Moreover, IL-6 and TGF-β levels were elevated in NSCLC patients (P ≤ 0.001, P ≤ 0.018, respectively). CD3+ CTLA-4+ and Treg cells frequencies were higher in patients than in control subjects (P ≤ 0.0001, P ≤ 0.0001, respectively). There was a positive correlation between miR-155 and IL-1β levels (r=0.567, p ≤ 0.001) and a negative correlation between miR-146a and TGF-β levels (r=-0.376, P ≤ 0.031) in NSCLC patients. No significant differences were found in the relative expression of miR-146a and miR-155, cytokine levels or immune cell numbers according to miR-146a and miR-155 (GG/GC/CC, TT/AT/AA) genotypes. However, there was a positive correlation between miR-146a and IL-1β levels (r=0.74, P ≤ 0.009) in GG subjects and a positive correlation between miR-146a expression and CD3+CTLA4+ cell frequency (r=0.79, P ≤ 0.01) in CC genotyped subjects. Conversely, a negative correlation between miR-146a expression and Treg cell frequency (r=−0.87, P ≤ 0.05) was observed with the GG genotype. A positive correlation between miR-155 and IL-1β expression (r=0.58, p ≤ 0.009) in the TT genotype and between miR-155 expression and CD3+CTLA-4 cell frequency (r=0.75, P ≤ 0.01) was observed in the AT genotype. Conclusions The current data suggest that the miR-146a expression in PBMC and serum TGF-β and IL-1β levels may act as blood markers in NSCLC patients. Further study is needed to elucidate the link between immune cells and serum miR146 at early disease stages.
Collapse
Affiliation(s)
- Neda K Dezfuli
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology and Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Neda Dalil Roofchayee
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seyfi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Salimi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Liao G, Ma H, Li Y, Sheng Y, Chen C. Selenium nanoparticles inhibit tumor metastasis in prostate cancer through upregulated miR-155-5p-related pathway. Biosci Biotechnol Biochem 2021; 85:287-296. [PMID: 33604641 DOI: 10.1093/bbb/zbaa089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Prostate cancer are the most common, malignant and lethal tumors in men, and the complexity of prostate cancer (CaP) is also due to the diverse metastasis profile. Selenium nanoparticles (SeNPs) have been reported to have potent antitumor activity, but whether it impacted the tumor metastasis is not fully clear. Here, we confirmed that SeNPs could inhibit the CaP cell migrations and invasions. Combined with our previous findings, we identified a series of microRNAs that could be upregulated significantly under SeNP treatment, among which miR-155-5p acts as a key component in mediating the SeNP-inhibited migration and invasion of CaP cells, through directly targeting IκB kinase ɛ and Sma- and Mad-related protein 2. The cell-based results were proved in xenograft mice modeling. These results have evidently signified the antitumor potential of SeNPs in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Guolong Liao
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - He Ma
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yamei Li
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yiyu Sheng
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chujie Chen
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Zhang W, Han Z, Liang Y, Zhang Q, Dou X, Guo G, Wang X. A pico-HPLC-LIF system for the amplification-free determination of multiple miRNAs in cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
14
|
Liu F, Mao Q, Zhu S, Qiu J. MicroRNA-155-5p promotes cell proliferation and invasion in lung squamous cell carcinoma through negative regulation of fibroblast growth factor 9 expression. J Thorac Dis 2021; 13:3669-3679. [PMID: 34277059 PMCID: PMC8264708 DOI: 10.21037/jtd-21-882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 11/12/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) ranks first for mortality among all malignancies. Squamous cell carcinoma (SCC) is one of the main types of NSCLC. Previous studies have found that fibroblast growth factor 9 (FGF9) is closely related to lung SCC via different molecular regulatory mechanisms. This study aimed to explore the relationship between microRNA-155-5p (miR-155-5p) and FGF9 gene expression and their effects on the proliferation and invasion of lung SCC through experiments, in order to provide theoretical basis for overcoming this disease. Methods Fluorescence quantitative polymerase chain reaction was employed for the detection miR-155-5p and FGF9 expression in lung SCC tissues (n=40) and the corresponding adjacent normal tissues. The expression of FGF9 in the cancerous and adjacent tissues was detected by western blot. Transwell assay used to verify the effect of miR-155-5p on FGF-induced invasion and migration. Finally, subcutaneous tumor formation experiments in nude mice were used to verify how miR-155-5p and FGF9 affect the proliferative ability of lung SCC cells. Results The results of fluorescence quantitative PCR revealed that miR-155-5p and FGF9 were expressed at high and low levels, respectively, in lung SCC tissue samples relative to normal adjacent tissue samples. Western blot analysis of 6 lung SCC tissue samples revealed a significantly reduced level of FGF9. Correlation analysis uncovered that miR-155-5p and FGF9 share a significant negative correlation in lung SCC. At the messenger RNA and protein levels miR-155-5p could negatively regulate the expression of FGF9. Bioinformatics and dual luciferase reporter assay results confirmed FGF9 to be a downstream regulatory gene targeted by miR-155-5p. Our in vitro and in vivo results demonstrated that FGF9 overexpression exerted a significant inhibitory effect on miR-155-5p’s ability to promote lung cancer cell growth, invasion, and proliferation. Conclusions Our results show that miR-155-5p, as an oncogene, negative regulates FGF9 expression to promote SCC occurrence and development in the lungs.
Collapse
Affiliation(s)
- Feng Liu
- Department of Cardiothoracic Surgery, Nanjing Lishui People's Hospital, Zhongda Hospital Lushui Branch Affiliated to Southeast University, Nanjing, China
| | - Qing Mao
- Department of Cardiothoracic Surgery, Nanjing Lishui People's Hospital, Zhongda Hospital Lushui Branch Affiliated to Southeast University, Nanjing, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, China
| | - Junlan Qiu
- Department of Oncology and Hematology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China.,Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Sheikhpour M, Abolfathi H, Karimipoor M, Movafagh A, Shahsavani M. The Common miRNAs between Tuberculosis and Non-Small Cell Lung Cancer: A Critical Review. TANAFFOS 2021; 20:197-208. [PMID: 35382078 PMCID: PMC8978040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/05/2021] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) and non-small cell lung cancer (NSCLC) are two major contributors to mortality and morbidity worldwide. In this regard, TB and NSCLC have similar symptoms, and TB has symptoms that are identical to malignancy; therefore, sometimes it is mistakenly diagnosed as lung cancer. Moreover, patients with active pulmonary TB are at a higher risk of dying due to lung cancer. In addition, several signaling pathways involved in TB and NSCLC have been identified. Also, the miRNAs are biological molecules shown to play essential roles in the above-mentioned diseases through targeting the signaling pathways' genes. Most of the pathways affected by miRNAs are immune responses such as autophagy and apoptosis in TB and NSCLC, respectively. Several studies have separately investigated the expression of miRNAs profile in patients with NSCLC and infectious TB. In this critical review, we attempted to gather common miRNAs between TB and NSCLC and to explain the involved-pathways, which are affected by miRNAs in both TB and NSCLC. Results of this critical review show that the expressions of miR-155, miR-146a, miR-125b, miR-30a, miR-29a, and miR-Let7 have significantly changed in TB and NSCLC. The data suggest that miRNAs expression may provide a new method for screening or differential diagnosis of NSCLC and TB.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Cancer Research Center, Shohada Hospital, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahbubeh Shahsavani
- Department of Genetics & Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
16
|
Abolfathi H, Sheikhpour M, Mohammad Soltani B, Fahimi H. The comparison and evaluation of the miR-16, miR-155 and miR-146a expression pattern in the blood of TB and NSCLC patients: A Research paper. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
A novel and distinctive mode of cell death revealed by using non-thermal atmospheric pressure plasma: The involvements of reactive oxygen species and the translation inhibitor Pdcd4. Chem Biol Interact 2021; 338:109403. [PMID: 33582111 DOI: 10.1016/j.cbi.2021.109403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/22/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Cells death is indispensable for embryonic development, tissue homeostasis, and the elimination of cancer, virally infected, or degenerated cells in multicellular organisms. It occurs not only via existing modes but also via unidentified modes, whose elucidation requires. Exposure to non-thermal atmospheric pressure plasma (NTAPP) has been demonstrated to induce cell death, probably because of its ability to generate reactive oxygen species (ROS). However, the mode of this cell death and its underlying mechanism remained elusive. Here we show cell death occurring in a novel and distinctive mode different from apoptosis and necrosis/necroptosis through a mechanism that ROS mediate the loss of the translation inhibitor Programmed cell death 4 (Pdcd4) when cells are cultured in solutions activated by NTAPP irradiation. Thus, our study performed with NTAPP-activated solutions may provide insight into the existence of the atypical cell death in cells and some features of its distinguishing mode and underlying mechanism.
Collapse
|
18
|
Therapeutic Approaches for Metastases from Colorectal Cancer and Pancreatic Ductal Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13010103. [PMID: 33466892 PMCID: PMC7830403 DOI: 10.3390/pharmaceutics13010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.
Collapse
|
19
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
20
|
Xia H, Zhao Y. miR-155 is high-expressed in polycystic ovarian syndrome and promotes cell proliferation and migration through targeting PDCD4 in KGN cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:197-205. [PMID: 31851829 DOI: 10.1080/21691401.2019.1699826] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a typical disease of female endocrine and metabolic abnormalities. miR-155, famous as a multifunctional miRNA, promotes the proliferation, migration and invasion of human cancer cells. Therefore, we aimed to explore its regulation mechanism in PCOS. BrdU incorporation and apoptosis assay were used to test KGN cell survival. Luciferase activity experiment was employed to test targeting link between miR-155 and programmed cell death 4 (PDCD4). Migration and invasion assay were operated to examine the influence of miR-155 and PDCD4 in migration and invasion of KGN cells. In addition, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay and western blot analysis were utilized to measure expression of miR-155 and other relative factors. We found that expression of miR-155 was high in PCOS patients' tissues and it promoted proliferation, migration and invasion in KGN cells. Further studies found that PDCD4 was down-regulated by miR-155 and was a target of miR-155. Overexpression of PDCD4 promoted cell apoptosis to mitigate PCOS. Besides, up-regulation of PDCD4 suppressed PI3K/AKT and JNK signal pathways. To sum up, miR-155 promoted proliferation, migration, invasion and the activation of PI3K/AKT and JNK pathways in KGN cells through negatively regulating PDCD4.
Collapse
Affiliation(s)
- Huanjun Xia
- School of Nursing, Jining Medical University, Jining, P. R. China
| | - Yaxian Zhao
- Department of Obstetrics, No.1 People's Hospital of Jining, Jining, P. R. China
| |
Collapse
|
21
|
Zhu HZ, Fang CJ, Guo Y, Zhang Q, Huang LM, Qiu D, Chen GP, Pang XF, Hu JJ, Sun JG, Chen ZT. Detection of miR-155-5p and imaging lung cancer for early diagnosis: in vitro and in vivo study. J Cancer Res Clin Oncol 2020; 146:1941-1951. [PMID: 32447486 PMCID: PMC7324423 DOI: 10.1007/s00432-020-03246-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 12/04/2022]
Abstract
Purpose Currently, the routine screening program has insufficient capacity for the early diagnosis of lung cancer. Therefore, a type of chitosan-molecular beacon (CS-MB) probe was developed to recognize the miR-155-5p and image the lung cancer cells for the early diagnosis. Methods Based on the molecular beacon (MB) technology and nanotechnology, the CS-MB probe was synthesized self-assembly. There are four types of cells—three kinds of animal models and one type of histopathological sections of human lung cancer were utilized as models, including A549, SPC-A1, H446 lung cancer cells, tumor-initiating cells (TICs), subcutaneous and lung xenografts mice, and lox-stop-lox(LSL) K-ras G12D transgenic mice. The transgenic mice dynamically displayed the process from normal lung tissues to atypical hyperplasia, adenoma, carcinoma in situ, and adenocarcinoma. The different miR-155-5p expression levels in these cells and models were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The CS-MB probe was used to recognize the miR-155-5p and image the lung cancer cells by confocal microscopy in vitro and by living imaging system in vivo. Results The CS-MB probe could be used to recognize the miR-155-5p and image the lung cancer cells significantly in these cells and models. The fluorescence intensity trends detected by the CS-MB probe were similar to the expression levels trends of miR-155 tested by qRT-PCR. Moreover, the fluorescence intensity showed an increasing trend with the tumor progression in the transgenic mice model, and the occurrence and development of lung cancer were dynamically monitored by the differen fluorescence intensity. In addition, the miR-155-5p in human lung cancer tissues could be detected by the miR-155-5p MB. Conclusion Both in vivo and in vitro experiments demonstrated that the CS-MB probe could be utilized to recognize the miR-155-5p and image the lung cancer cells. It provided a novel experimental and theoretical basis for the early diagnosis of the disease. Also, the histopathological sections of human lung cancer research laid the foundation for subsequent preclinical studies. In addition, different MBs could be designed to detect other miRNAs for the early diagnosis of other tumors.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Chun-Ju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Yi Guo
- Department of Basic Knowledge, Guiyang Nursing Vocational College, Guiyang, 400037, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Li-Min Huang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Dong Qiu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Guang-Peng Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiu-Feng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian-Jun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
22
|
Liao G, Tang J, Wang D, Zuo H, Zhang Q, Liu Y, Xiong H. Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J Surg Oncol 2020; 18:81. [PMID: 32357938 PMCID: PMC7195723 DOI: 10.1186/s12957-020-01850-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives This research aimed to examine the antitumor mechanisms of selenium nanoparticles (SeNPs) specifically against prostate cancers. Methods The antitumor activities of SeNPs against cancer cells were determined via MTT assay. The cell cycle was determined by detecting the DNA content, and apoptosis was determined via annexin V-Fluos staining kit. The microRNA expressions in cancer cells were analyzed via microarray and qRT-PCR. The potential targets of miR-16 were identified via luciferase analysis and mRNA expression determination. miR-16 functions in cancer cells were explored via the transient transfection of miR-16 mimic or inhibitor. Results SeNPs were most potent in prostate cancer cells, regardless of whether or not they were androgen-dependent. Furthermore, SeNP stimulation can induce cell cycle arrest and the apoptosis enhancement of prostate cancer cells. Microarray and molecular mechanism studies demonstrated that miR-16 could directly target cyclin D1 and BCL-2 to mediate SeNP apoptosis enhancement. Results show that the serum selenium levels positively correlate with miR-16 expressions, and they correlate with the overall and disease-free survival rates. Conclusion These results signify the cytotoxic potential of SeNPs in prostate cancer treatment.
Collapse
Affiliation(s)
- Guolong Liao
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiani Tang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Di Wang
- Department of Clinical Laboratory, PLA 309 Hospital, Beijing, China
| | - Haoru Zuo
- Department of Surgery Anesthesia Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qi Zhang
- Department of Surgery Anesthesia Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ying Liu
- Department of Surgery Anesthesia Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haiyun Xiong
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
23
|
Shen X, Zhao Z, Yang B. MicroRNA-155 promotes apoptosis of colonic smooth muscle cells and aggravates colonic dysmotility by targeting IGF-1. Exp Ther Med 2020; 19:2725-2732. [PMID: 32256755 DOI: 10.3892/etm.2020.8485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Colonic dysmotility as a complication of diabetes affects public health; however, the underlying molecular mechanisms have remained elusive. Insulin-like growth factor-1 (IGF-1) was previously demonstrated to prevent apoptosis of colonic smooth muscle cells (SMCs) and alleviate colonic dysmotility in diabetic rats. However, the regulatory mechanisms upstream of IGF-1 in colonic dysmotility have remained to be determined. The present study reports on microRNA-155 (miR-155), initially identified using bioinformatics, as a direct upstream regulator of IGF-1. In colonic SMCs, miR-155 negatively regulated IGF-1 expression at the post-transcriptional level, as identified through ectopic overexpression and knockdown experiments. A luciferase reporter assay further demonstrated that miR-155 inhibits IGF-1 through binding to its 3'-untranslated region. Furthermore, overexpression of miR-155 led to increased apoptosis of colonic SMCs and a decrease in the thickness of colonic smooth muscle tissues of diabetic mice, indicating miR-155 aggravates colonic dysmotility. By contrast, knockdown of miR-155 induced the opposite effect. Overall, the results of the present study suggest a role of miR-155 in colonic dysmotility, thereby providing a novel therapeutic target.
Collapse
Affiliation(s)
- Xiaoxue Shen
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Zhibin Zhao
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Bin Yang
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
24
|
Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek's disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Vet Res 2020; 16:23. [PMID: 31992293 PMCID: PMC6988224 DOI: 10.1186/s12917-020-2239-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Marek's disease (MD) is caused by the oncogenic Marek's disease virus (MDV), and is a highly contagious avian infection with a complex underlying pathology that involves lymphoproliferative neoplasm formation. MicroRNAs (miRNAs) act as oncogenes or tumor suppressors in most cancers. The gga-miR-155 is downregulated in the MDV-infected chicken tissues or lymphocyte lines, although its exact role in tumorigenesis remains unclear. The aim of this study was to analyze the effects of gga-miR-155 on the proliferation, apoptosis and invasiveness of an MDV-transformed lymphocyte line MSB1 and elucidate the underlying mechanisms. RESULTS The expression level of gga-miR-155 was manipulated in MSB1 cells using specific mimics and inhibitors. While overexpression of gga-miR-155 increased proliferation, decreased the proportion of G1 phase cells relative to that in S and G2 phases, reduced apoptosis rates and increased invasiveness. However, its downregulation had the opposite effects. Furthermore, gga-miR-155 directly targeted the RORA gene and downregulated its expression in the MSB1 cells. CONCLUSION The gga-miR-155 promotes the proliferation and invasiveness of the MDV-transformed lymphocyte line MSB1 and inhibits apoptosis by targeting the RORA gene.
Collapse
|
25
|
Cao A, Li X. Bilobalide protects H9c2 cell from oxygen-glucose-deprivation-caused damage through upregulation of miR-27a. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:2980-2988. [PMID: 31322008 DOI: 10.1080/21691401.2019.1640708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/20/2023]
Abstract
Background: Myocardial ischemia is a troublesome disease. Bilobalide possesses multiple biological functions. We researched the consequents of bilobalide in OGD-irritated H9c2 cells. Methods: OGD-stimulated H9c2 cells were treated by bilobalide, and/or transfected with miR-27a inhibitor or negative control. Use CCK-8 and flow cytometry to test cell activity and apoptosis, respectively. Luciferase activity experiment was to test targeting link between miR-27a and Tmub1. Levels of cell-cycle and apoptosis relative proteins and phosphorylation of PI3K/AKT and Wnt/β-catenin related proteins were detected through western blot. Results: OGD stimulation reduced cell activity and negatively regulated the expression of CDK4, CDK6 and CyclinD1. Cell apoptosis was increased and its related proteins were affected by OGD. Bilobalide administration reversed all the results above caused by OGD. OGD negatively regulated miR-27a while bilobalide upregulated miR-27a. miR-27a's target gene was Tmub1. The protection consequents of bilobalide were suppressed when cells were transfected with a miR-27a inhibitor that cell activity was reduced and apoptosis was raised. Attenuation in the phosphorylation level of PI3K, AKT and β-catenin by OGD was reversed by bilobalide, whereas there were opposite results after transfected with miR-27a inhibitor. Conclusion: Bilobalide relieved OGD-caused H9c2 cell damage, raising cell activity and attenuating apoptosis via upregulating miR-27a and activating of PI3K/AKT and Wnt/β-catenin signal pathway. Highlights Bilobalide alleviates OGD-induced H9c2 cell injury. Bilobalide upregulates miR-27a expression in OGD-stimulated H9c2 cells. Bilobalide alleviates cell injury by upregulation of miR-27a. Bilobalide actuates PI3K/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Ailin Cao
- a Department of Cardiology, Affiliated Hospital of Jining Medical University , Jining , China
| | - Xiangting Li
- a Department of Cardiology, Affiliated Hospital of Jining Medical University , Jining , China
| |
Collapse
|
26
|
Zhao M, Zhu N, Hao F, Song Y, Wang Z, Ni Y, Ding L. The Regulatory Role of Non-coding RNAs on Programmed Cell Death Four in Inflammation and Cancer. Front Oncol 2019; 9:919. [PMID: 31620370 PMCID: PMC6759660 DOI: 10.3389/fonc.2019.00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death 4 (PDCD4) is a tumor suppressor gene implicated in many cellular functions, including transcription, translation, apoptosis, and the modulation of different signal transduction pathways. The downstream mechanisms of PDCD4 have been well-discussed, but its upstream regulators have not been systematically summarized. Noncoding RNAs (ncRNAs) are gene transcripts with no protein-coding potential but play a pivotal role in the regulation of the pathogenesis of solid tumors, cardiac injury, and inflamed tissue. In recent studies, many ncRNAs, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were found to interact with PDCD4 to manipulate its expression through transcriptional regulation and function as oncogenes or tumor suppressors. For example, miR-21, as a classic oncogene, was identified as the key regulator of PDCD4 by targeting its 3′-untranslated region (UTR) to promote tumor proliferation, migration, and invasion in colon, breast, and bladder carcinoma. Therefore, we reviewed the recently emerging pleiotropic regulation of PDCD4 by ncRNAs in cancer and inflammatory disorders and aimed to shed light on the mechanisms of associated diseases, which could be conducive to the development of novel treatment strategies for PDCD4-induced diseases.
Collapse
Affiliation(s)
- Mengxiang Zhao
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Nisha Zhu
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fengyao Hao
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Nanjing, China
| | - Yanhong Ni
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Microsatellite instability in mismatch repair and tumor suppressor genes and their expression profiling provide important targets for the development of biomarkers in gastric cancer. Gene 2019; 710:48-58. [PMID: 31145962 DOI: 10.1016/j.gene.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 12/24/2022]
|
28
|
Ning S, Liu H, Gao B, Wei W, Yang A, Li J, Zhang L. miR-155, miR-96 and miR-99a as potential diagnostic and prognostic tools for the clinical management of hepatocellular carcinoma. Oncol Lett 2019; 18:3381-3387. [PMID: 31452818 DOI: 10.3892/ol.2019.10606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has demonstrated that circulating microRNAs (miRNAs) can be utilized as potential biomarkers for the diagnosis of cancer, as well as a prognostic tool for the management of the disease. Therefore, the present study aimed to evaluate the predictive ability of miRNA (miR)-155, miR-96 and miR-99a for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Tissues were collected from 30 patients with HCC and their matched adjacent normal liver tissues, as well as from serum samples from 30 patients with HCC and 30 healthy controls. Reverse transcription-quantitative PCR was used to measure the expression levels of miR-155, miR-96 and miR-99a. The expression levels of miR-155 and miR-96 were upregulated in the tissues and serum of patients with HCC, whereas miR-99a expression levels were decreased. Receiver operating characteristics (ROC) curve analysis revealed that circulating miR-155, miR-96, miR-99a and a combination of these three miRNAs could serve as diagnostic biomarkers for HCC with areas under the curve (AUC) of 0.84, 0.824, 0.799 and 0.931, respectively. Serum α-fetoprotein (AFP) was detected using electrochemiluminescence immunoassay analyzer. The addition of AFP with the combination of these three miRNAs offered a higher accuracy of HCC diagnosis (AUC, 0.979; sensitivity, 90.0%; specificity, 100.0%). In addition, elevated expression levels of miR-155 and miR-96 were associated with poor survival time of patients with HCC. The panel of miR-155, miR-96, miR-99a and AFP had a higher sensitivity and specificity for the diagnosis of HCC when compared with a single marker. Furthermore, the present data suggested that miR-155 and miR-96 may be potential prognostic markers for the clinical management of patients with HCC.
Collapse
Affiliation(s)
- Shufang Ning
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Haizhou Liu
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bing Gao
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wene Wei
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Aifang Yang
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jilin Li
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Litu Zhang
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
29
|
Xu S, Shi L. High expression of miR-155 and miR-21 in the recurrence or metastasis of non-small cell lung cancer. Oncol Lett 2019; 18:758-763. [PMID: 31289551 PMCID: PMC6539534 DOI: 10.3892/ol.2019.10337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
High expression of miR-155 and miR-21 in the recurrence or metastasis of non-small cell lung cancer (NSCLC) was investigated. Retrospective analysis on the clinical information of 180 patients with NSCLC was carried out. The patients were admitted to Daqing Oil Field General Hospital from February 2012 to March 2015 and they were the research group. Moreover, the physical examination information of 88 normal medical examinees were selected at the same period of time as the control group. In the research group, 68 patients diagnosed with NSCLC were the newly diagnosed group and 112 cases of recurrence or metastasis of NSCLC were the recurrence group. The quantitative real-time polymerase chain reaction was used to detect the expression levels of serum miR-115 and miR-21. In addition, the expression levels between miR-155 and miR-21 and the relationship between the recurrence rate and metastasis of NSCLC were analyzed. The impact on the prognosis of patients were also analyzed. The expression levels of serum miR-155 and miR-21 were higher in the research group than those in the control group (P<0.05). The expression levels of serum miR-155 and miR-21 were higher in the recurrence group than those in the newly diagnosed group (P<0.05). We followed up the patients in the research group for 36 months, the median survival time and mortality rate in the recurrence group was higher than that of in the newly diagnosed group (χ2=9.705, P<0.01). In conclusion, miR-155 and miR-21 were highly expressed in the serum of patients, however, the recurrence and metastasis of NSCLC were even higher. The highly expressed levels of miR-155 and miR-21 were associated with the recurrence and metastasis in NSCLC patients, affecting the prognosis of patients.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Cardiothoracic Surgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Lei Shi
- Department of Hematology and Oncology, Daqing Longnan Hospital, Daqing, Heilongjiang 163000, P.R. China
| |
Collapse
|
30
|
Bayraktar R, Van Roosbroeck K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev 2019; 37:33-44. [PMID: 29282605 DOI: 10.1007/s10555-017-9724-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small non-coding microRNAs (miRNAs) are instrumental in physiological processes, such as proliferation, cell cycle, apoptosis, and differentiation, processes which are often disrupted in diseases like cancer. miR-155 is one of the best conserved and multifunctional miRNAs, which is mainly characterized by overexpression in multiple diseases including malignant tumors. Altered expression of miR-155 is found to be associated with various physiological and pathological processes, including hematopoietic lineage differentiation, immune response, inflammation, and tumorigenesis. Furthermore, miR-155 drives therapy resistance mechanisms in various tumor types. Therefore, miR-155-mediated signaling pathways became a potential target for the molecular treatment of cancer. In this review, we summarize the current findings of miR-155 in hematopoietic lineage differentiation, the immune response, inflammation, and cancer therapy resistance. Furthermore, we discuss the potential of miR-155-based therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1881 Holcombe Boulevard, Unit 1950, Houston, TX, 77054, USA
| | - Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1881 Holcombe Boulevard, Unit 1950, Houston, TX, 77054, USA.
| |
Collapse
|
31
|
Zhu HZ, Hou J, Guo Y, Liu X, Jiang FL, Chen GP, Pang XF, Sun JG, Chen ZT. Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv 2019; 25:1974-1983. [PMID: 30621480 PMCID: PMC6327580 DOI: 10.1080/10717544.2018.1516003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is still the most common cancer globally. Early screening remains the key to improve the prognosis of patients. There is currently a lack of specific and sensitive methods for early screening of lung cancer. In recent years, studies have found that microRNA plays an important role in the occurrence and development of lung cancer and become a biological target in the early diagnosis of lung cancer. In this study, lung cancer cells, subcutaneous xenografts of lung cancer in nude mice, and Lox-Stop-lox K-ras G12D transgenic mice were used as models. The transgenic mice displayed the dynamic processes from normal lung tissue to atypical hyperplasia, adenomas, carcinoma in situ and lung adenocarcinoma. It was found that miR-155 and somatostatin receptor 2 (SSTR2) were expressed in all the disease stages of transgenic mice. Through molecular beacon (MB) technology and nanotechnology, chitosan-molecular beacon (CS-MB) nanoparticles and targeted octreotide (OCT) were conjugated and synthesized. The octreotide-conjugated chitosan-molecular beacon nanoparticles (CS-MB-OCT) can specifically bind to SSTR2 expressed by the lung cancer cells to achieve the goal of identification of lung cancer cells and imaging miR-155 in vivo and in vitro. Fluorescence imaging at different disease stages of lung cancer in Lox-Stop-lox K-ras G12D transgenic mice was performed, and could dynamically monitor the occurrence and development of lung cancer by different fluorescence intensity ranges. The current research, in turn, provides new idea, new method, and new technology for the early screening of lung cancer.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- a Department of Oncology , Guizhou provincial people's Hospital , Guizhou , China
| | - Jing Hou
- b Department of Breast surgery , Guizhou provincial people's Hospital , Guizhou , China
| | - Yi Guo
- c Department of Basic knowledge , Guiyang nursing vocational college , Guizhou , China
| | - Xin Liu
- d Department of Clinical laboratory , Guizhou provincial people's Hospital , Guizhou , China
| | - Fei-Long Jiang
- e Department of Oncology , Chinese Medicine Hospital of Chongqing , Chongqing , China
| | - Guang-Peng Chen
- f Cancer Institute of PLA, Xinqiao Hospital, Army Medical University , Chongqing , China
| | - Xiu-Feng Pang
- g Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai , China
| | - Jian-Guo Sun
- f Cancer Institute of PLA, Xinqiao Hospital, Army Medical University , Chongqing , China
| | - Zheng-Tang Chen
- f Cancer Institute of PLA, Xinqiao Hospital, Army Medical University , Chongqing , China
| |
Collapse
|
32
|
Gui Z, Zhang H, Tan Q, Ling X, Liu Z, Peng J, Shao J, Wu M, Yuan Q, Li J, Pan Z, Zhong B, Liu L. Poly(ADP-ribose) polymerase-1 promotes expression of miR-155 by the up-regulation of methyl-CpG binding domain protein 2 in TK6 cells exposed to hydroquinone. Toxicol In Vitro 2019; 55:51-57. [DOI: 10.1016/j.tiv.2018.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/27/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
|
33
|
A Feedback Loop between MicroRNA 155 (miR-155), Programmed Cell Death 4, and Activation Protein 1 Modulates the Expression of miR-155 and Tumorigenesis in Tongue Cancer. Mol Cell Biol 2019; 39:MCB.00410-18. [PMID: 30617160 DOI: 10.1128/mcb.00410-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
MicroRNA 155 (miR-155) is an oncomir, generated as a noncoding RNA from the BIC gene whose promoter activity is mainly controlled via activation protein 1 (AP-1) and NF-κB transcription factors. We found that the expression levels of miR-155 and programmed cell death 4 (Pdcd4) exhibit inverse relationships in tongue cancer cells (SAS and AWL) and tumor tissues compared to their relationships in normal FBM cells and normal tongue tissues, respectively. In silico and in vitro studies with the 3' untranslated region (UTR) of Pdcd4 via luciferase reporter assays, quantitative PCR (qPCR), and Western blotting showed that miR-155 directly targets Pdcd4 mRNA and blocks its expression. Ectopic expression of Pdcd4 or knockdown of miR-155 in tongue cancer cells predominantly reduces AP-1-dependent transcriptional activity of the BIC promoter and decreases miR-155 expression. In this study, we demonstrate that miR-155 expression is modulated by a feedback loop between Pdcd4, AP-1, and miR-155 which results in enhanced expression of miR-155 with a consequent progression of tongue tumorigenesis. Further, miR-155 knockdown increases apoptosis, arrests the cell cycle, regresses tumor size in xenograft nude mice, and reduces cell viability and colony formation in soft-agar and clonogenic assays. Thus, the restoration of Pdcd4 levels by the use of molecular manipulation such as using a miR-155 sponge has an essential role in the therapeutic intervention of cancers, including tongue cancer.
Collapse
|
34
|
Islas JF, Moreno-Cuevas JE. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int J Mol Sci 2018; 19:E2075. [PMID: 30018214 PMCID: PMC6073753 DOI: 10.3390/ijms19072075] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the latest research pertaining to MicroRNAs (miRs) related to cardiovascular diseases. In today's molecular age, the key clinical aspects of diagnosing and treating these type of diseases are crucial, and miRs play an important role. Therefore, we have made a thorough analysis discussing the most important candidate protagonists of many pathways relating to such conditions as atherosclerosis, heart failure, myocardial infarction, and congenital heart disorders. We approach miRs initially from the fundamental molecular aspects and look at their role in developmental pathways, as well as regulatory mechanisms dysregulated under specific cardiovascular conditions. By doing so, we can better understand their functional roles. Next, we look at therapeutic aspects, including delivery and inhibition techniques. We conclude that a personal approach for treatment is paramount, and so understanding miRs is strategic for cardiovascular health.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| | - Jorge Eugenio Moreno-Cuevas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| |
Collapse
|
35
|
Han L, Chen W, Xia Y, Song Y, Zhao Z, Cheng H, Jiang T. MiR-101 inhibits the proliferation and metastasis of lung cancer by targeting zinc finger E-box binding homeobox 1. Am J Transl Res 2018; 10:1172-1183. [PMID: 29736210 PMCID: PMC5934576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are involved in the development and progression of lung cancer. MicroRNA-101 (miR-101) displays crucial properties in non-small cell lung cancer (NSCLC) by negatively regulating cell proliferation and invasion, but the underlying molecular mechanisms remain largely unknown. In this study, we found that miR-101 was underexpressed while zinc finger E-box binding homeobox 1 (ZEB1) was highly upregulated in NSCLC tissues and cells. The downregulation of miR-101 was positively associated with lymph node metastasis and poor prognosis of NSCLC patients. Dual-luciferase reporter assay showed that miR-101 directly targeted ZEB1 in NSCLC cells. Enforced expression of miR-101 significantly inhibited NSCLC cell proliferation, apoptosis resistance, migration, and invasion in vitro, which were attenuated by ZEB1 overexpression and phenocopied by ZEB1 knockdown, respectively. Consistently, miR-101 retarded NSCLC growth and metastasis in vivo. The findings indicated that miR-101 suppressed NSCLC growth and metastasis by targeting ZEB1, thereby providing new evidence of miR-101 as a potential therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Le Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi ProvinceXi’an 710038, Shaanxi, China
| | - Wenjuan Chen
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi ProvinceXi’an 710038, Shaanxi, China
| | - Yanmin Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Yangrong Song
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Zheng Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Hao Cheng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| |
Collapse
|
36
|
Abstract
Prostate cancer still represents a major health problem for men worldwide. Due to the specific limitation of the currently used clinical biomarkers for prostate cancer, there is a need to identify new and more accurate prostate-specific biomarkers, both for diagnosis and prediction. Small noncoding species of RNAs called microRNAs (miRNAs) have emerged as possible biomarkers in cancer tissues as well as biological fluids, including for prostate cancer. Moreover, it has been shown that miRNAs could be used as therapeutic targets in different cancer types, including prostate cancer, playing an important role in improving diagnosis and prognosis; and miRNAs have the potential to be clinically useful as predictors of response to personalized cancer therapy and as predictors of prognosis. The analysis of miRNAs in prostate tissue is rather straightforward and has been routinely done on fresh tissue. In addition, due to the more stable nature of miRNAs, they are amenable to be analyzed in archived formalin fixed paraffin embedded tissue as well, and also in serum, plasma and urine, using various analytical platforms including microarrays, next generation sequencing and real time PCR. Moreover, although the existence or prostasomes (microvesicles secreted by prostate cells including prostate cancer cells) has been known for years and they were studied as a source of biomarkers for prostate cancer, only recently it has been described that these vesicles also contain miRNAs that could be used as biomarkers in prostate cancer. This chapter underscores the feasibility of current technologies for miRNA analysis and their importance in prostate cancer biology. Moreover, elucidating the specific alteration of miRNA expression and how to modulate it in prostate tissue will open new avenues for developing therapeutic strategies for prostate cancer treatment.
Collapse
Affiliation(s)
- Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | | | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.
| |
Collapse
|
37
|
LncRNA NEAT1 enhances the radio-resistance of cervical cancer via miR-193b-3p/CCND1 axis. Oncotarget 2017; 9:2395-2409. [PMID: 29416780 PMCID: PMC5788648 DOI: 10.18632/oncotarget.23416] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022] Open
Abstract
LncRNAs have become a hot topic in various cancer-related researches. Radio-resistance is a great threat for cancer therapy. However, how lncRNAs affect the radio-resistance in cervical cancer is masked. As for our paper, it was discovered that NEAT1 was highly expressed in cervical cancer tissues and non-sensitive tissues as well as radio-resistant cell lines. And the overexpression of NEAT1 accelerated proliferation, while the knockdown of NEAT1 had the opposite result. The effect of NEAT1 on cell proliferation was dependent on the dose of ionizing radiation. And the silence of NEAT1 also caused cell cycle arrest in G0/G1 phase, and triggered more apoptosis, indicating the oncogenic role of NEAT1 in cervical cancer. Next, mechanistic assays affirmed that NEAT1 could function as a ceRNA to regulate cyclin D1 through sponging miR-193b-3p in cervical cancer. Rescue assays were employed to validate that miR-193b-3p and cyclin D1 could inhibit NEAT1-mediated suppressive effect on proliferation, and its stimulative effect on cell cycle arrest and apoptosis. In general, this article disclosed that NEAT1 could facilitate the radio-resistance of cervical cancer via competitively binding miR-193b-3p to up-regulate the expression of cyclin D1.
Collapse
|