1
|
Sculthorpe DJ, Denton A, Fadhil W, Rusnita D, Ilyas M, Mukherjee A. High α-SMA expression in the tumor stroma is associated with adverse clinical parameters in mismatch repair-proficient colorectal cancers only. Am J Clin Pathol 2024:aqae145. [PMID: 39495028 DOI: 10.1093/ajcp/aqae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES As mismatch repair status confers differential prognosis in colorectal cancers, this study aimed to determine associations of α-smooth muscle actin (α-SMA) protein expression in mismatch repair-proficient (pMMR) and mismatch repair-deficient (dMMR) colorectal tumors with clinicopathologic and prognostic features. METHODS Tissue microarrays from patients with colorectal cancer, immunostained with α-SMA, were assessed through digital image analysis. Total (n = 962), pMMR (n = 782), and dMMR (n = 156) stromal H-scores were assessed for associations with clinicopathologic and survival data. RESULTS Higher α-SMA expression was correlated with pMMR status (P = 5.2223 × 10-8). In the pMMR subgroup, higher α-SMA stromal expression at the tumor periphery was correlated with higher T stage (P = .002), perineural invasion (P = .038), infiltrative tumor edge (P = .01), involved nodal status (P = .036), metastases (P = .013), synchronous metastases (P = .007), recurrence (P = .004), and both 3-year and 5-year survival (P = .018). dMMR tumors showed no significant correlations with α-SMA staining. CONCLUSIONS The findings highlight that immunostaining with α-SMA in pMMR colorectal tumors, especially at the tumor periphery, has the potential to identify patients with adverse prognostic features. Digital assessment of α-SMA may offer improved objectivity, accuracy, economy of time, and risk stratification for management.
Collapse
Affiliation(s)
- Declan J Sculthorpe
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amy Denton
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wakkas Fadhil
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dewi Rusnita
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammad Ilyas
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Abhik Mukherjee
- Molecular Pathology Research, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
2
|
Barb AC, Fenesan MP, Pirtea M, Margan MM, Tomescu L, Ceban E, Cimpean AM, Melnic E. Reassessing Breast Cancer-Associated Fibroblasts (CAFs) Interactions with Other Stromal Components and Clinico-Pathologic Parameters by Using Immunohistochemistry and Digital Image Analysis (DIA). Cancers (Basel) 2023; 15:3823. [PMID: 37568639 PMCID: PMC10417678 DOI: 10.3390/cancers15153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Breast cancer (BC) stroma has CD34- and αSMA-positive cancer-associated fibroblasts (CAFs) differently distributed. During malignant transformation, CD34-positive fibroblasts decrease while αSMA-positive CAFs increase. The prevalence of αSMA-positive CAFs in BC stroma makes microscopic examination difficult without digital image analysis processing (DIA). DIA was used to compare CD34- and αSMA-positive CAFs among breast cancer molecular subgroups. DIA-derived data were linked to age, survival, tumor stroma vessels, tertiary lymphoid structures (TLS), invasion, and recurrence. METHODS Double immunostaining for CD34 and αSMA showed different CAF distribution patterns in normal and BC tissues. Single CD34 immunohistochemistry on supplemental slides quantified tumor stroma CD34_CAFs. Digital image analysis (DIA) data on CAF density, intensity, stromal score, and H-score were correlated with clinico-pathologic factors. RESULTS CD34/αSMA CAF proportion was significantly related to age in Luminal A (LA), Luminal B (LB), and HER2 subtypes. CD34_CAF influence on survival, invasion, and recurrence of LA, LB-HER2, and TNBC subtypes was found to be significant. The CD34/αSMA-expressing CAFs exhibited a heterogeneous impact on stromal vasculature and TLS. CONCLUSION BC stromal CD34_CAFs/αSMA_CAFs have an impact on survival, invasion, and recurrence differently between BC molecular subtypes. The tumor stroma DIA assessment may have predictive potential to prognosis and long-term follow-up of patients with breast cancer.
Collapse
Affiliation(s)
- Alina Cristina Barb
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Mihaela Pasca Fenesan
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Clinical Oncology, OncoHelp Hospital, 300239 Timisoara, Romania
| | - Marilena Pirtea
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
| | - Mădălin-Marius Margan
- Department of Functional Sciences/Discipline of Public Health, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Larisa Tomescu
- Doctoral School in Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Emil Ceban
- Department of Urology and Surgical Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
- Laboratory of Andrology, Functional Urology and Sexual Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.C.B.); (M.P.F.); (M.P.)
- Center of Expertise for Rare Vascular Disease in Children, Emergency Hospital for Children Louis Turcanu, 300011 Timisoara, Romania
| | - Eugen Melnic
- Department of Pathology, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| |
Collapse
|
3
|
Piñeiro-Hermida S, Bosso G, Sánchez-Vázquez R, Martínez P, Blasco MA. Telomerase deficiency and dysfunctional telomeres in the lung tumor microenvironment impair tumor progression in NSCLC mouse models and patient-derived xenografts. Cell Death Differ 2023:10.1038/s41418-023-01149-6. [PMID: 37085672 DOI: 10.1038/s41418-023-01149-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer death. Tumor progression depends on interactions of cancer cells with the tumor microenvironment. Here, we find increased copy number and mRNA expression of the catalytic subunit of telomerase, TERT, in tumors from NSCLC patients, contributing to a lower survival. Moreover, TERT expression in NSCLC patients from the TCGA cohort is mainly associated to the reduced infiltration of CD8+ T lymphocytes, as well as to increased infiltration of myeloid-derived suppressor cells (MDSCs). We also show that TERT deficiency and dysfunctional telomeres induced by 6-thio-dG treatment in mice reduced lung tumor implantation and vascularization, increased DNA damage response, cell cycle arrest and apoptosis, as well as reduced proliferation, inflammation, lung tumor immunosupression and invasion upon induction of a Lewis lung carcinoma (LLC). Furthermore, 6-thio-dG-treated human NSCLC xenografts exhibited increased telomere damage, cell cycle arrest and apoptosis, as well as reduced proliferation, resulting in a reduced tumor growth. Our results show that targeting telomeres might be an effective therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Giuseppe Bosso
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
4
|
Implications of Transglutaminase-Mediated Protein Serotonylation in the Epigenetic Landscape, Small Cell Lung Cancer, and Beyond. Cancers (Basel) 2023; 15:cancers15041332. [PMID: 36831672 PMCID: PMC9954789 DOI: 10.3390/cancers15041332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In the case of small-cell lung carcinoma, the highly metastatic nature of the disease and the propensity for several chromatin modifiers to harbor mutations suggest that epigenetic manipulation may also be a promising route for oncotherapy, but histone deacetylase inhibitors on their own do not appear to be particularly effective, suggesting that there may be other regulatory parameters that dictate the effectiveness of vorinostat's reversal of histone deacetylation. Recent discoveries that serotonylation of histone H3 alters the permissibility of gene expression have led to renewed attention to this rare modification, as facilitated by transglutaminase 2, and at the same time introduce new questions about whether this modification belongs to a part of the concerted cohort of regulator events for modulating the epigenetic landscape. This review explores the mechanistic details behind protein serotonylation and its possible connections to the epigenome via histone modifications and glycan interactions and attempts to elucidate the role of transglutaminase 2, such that optimizations to existing histone deacetylase inhibitor designs or combination therapies may be devised for lung and other types of cancer.
Collapse
|
5
|
"Pulsed Hypoxia" Gradually Reprograms Breast Cancer Fibroblasts into Pro-Tumorigenic Cells via Mesenchymal-Epithelial Transition. Int J Mol Sci 2023; 24:ijms24032494. [PMID: 36768815 PMCID: PMC9916667 DOI: 10.3390/ijms24032494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Hypoxia arises in most growing solid tumors and can lead to pleotropic effects that potentially increase tumor aggressiveness and resistance to therapy through regulation of the expression of genes associated with the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). The main goal of the current work was to obtain and investigate the intermediate phenotype of tumor cells undergoing the hypoxia-dependent transition from fibroblast to epithelial morphology. Primary breast cancer fibroblasts BrC4f, being cancer-associated fibroblasts, were subjected to one or two rounds of "pulsed hypoxia" (PH). PH induced transformation of fibroblast-shaped cells to semi-epithelial cells. Western blot analysis, fluorescent microscopy and flow cytometry of transformed cells demonstrated the decrease in the mesenchymal markers vimentin and N-cad and an increase in the epithelial marker E-cad. These cells kept mesenchymal markers αSMA and S100A4 and high ALDH activity. Real-time PCR data of the cells after one (BrC4f_Hyp1) and two (BrC4f_Hyp2) rounds of PH showed consistent up-regulation of TWIST1 gene as an early response and ZEB1/2 and SLUG transcriptional activity as a subsequent response. Reversion of BrC4f_Hyp2 cells to normoxia conditions converted them to epithelial-like cells (BrC4e) with decreased expression of EMT genes and up-regulation of MET-related OVOL2 and c-MYC genes. Transplantation of BrC4f and BrC4f_Hyp2 cells into SCID mice showed the acceleration of tumor growth up to 61.6% for BrC4f_Hyp2 cells. To summarize, rounds of PH imitate the MET process of tumorigenesis in which cancer-associated fibroblasts pass through intermediate stages and become more aggressive epithelial-like tumor cells.
Collapse
|
6
|
Prognostic role of annexin A2 and cancer-associated fibroblasts in advanced non-small cell lung cancer: Implication in epithelial-mesenchymal transition and gefitinib resistance. Pathol Res Pract 2023; 241:154293. [PMID: 36586309 DOI: 10.1016/j.prp.2022.154293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite advances in treatment of non-small cell lung cancer (NSCLC), its prognosis remains dismal. Development of drug resistance is a major obstacle against success of targeted epidermal growth factor receptor (EGFR) -tyrosine kinase inhibitors (TKI) therapy. This study aimed to assess the prognostic role of annexin A2 (ANXA2) expression, within both tumor cells and stroma, as well as cancer associated fibroblasts (CAFs) in NSCLC and to investigate their potential role in induction of epithelial mesenchymal transition (EMT) and resistance to gefitinib. METHOD Immunohistochemistry was performed to evaluate tumoral and stromal ANXA2 expression and α-SMA-stained CAFs in 110 advanced NSCLC patients. Furthermore, STAT3 and E-cadherin mRNA expression was studied by quantitative reverse transcription PCR (qRT-PCR). RESULTS Both tumoral and stromal ANXA2 as well as CAFs were significantly related to clinical stage IV and malignant pleural effusion, while tumoral ANXA2 was significantly related to poor tumor differentiation. EGFR mutation and high tumoral ANXA2 were independent factors for poor overall survival, whereas high stromal and tumoral ANXA2 and high CAFs were independent predictors for poor progression-free survival. Moreover, high ANXA2 and CAFs were significantly associated with high STAT3 and low E-cadherin mRNA expression. Focusing on EGFR mutated cases, gefitinib resistance was significantly associated with high tumoral and stromal ANXA2, high CAFs, high STAT3 and low E-cadherin. CONCLUSION CAFs and ANXA2 could be considered as poor prognostic parameters in advanced NSCLC and are potential factors for gefitinib therapy resistance through EMT induction.
Collapse
|
7
|
Peterfi L, Yusenko MV, Kovacs G, Beothe T. FAPα and αSMA mark different subsets of fibroblasts in normal kidney and conventional renal cell carcinoma. Neoplasia 2022; 35:100854. [PMID: 36516488 PMCID: PMC9755362 DOI: 10.1016/j.neo.2022.100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
Several studies suggested a correlation between cancer associated fibroblasts (CAF) and cancer progression, but data on conventional renal cell carcinoma (cRCC) is still lacking. We aimed to analyse the impact of αSMA positive myo-CAF and FAPα expressing i-CAF on postoperative relapse of cRCC. We applied immunohistochemistry on tissue-multiarray (TMA) containing 736 consecutively operated cRCC without metastasis at the time of diagnosis. We analysed the correlation between the amount and pattern of αSMA and FAPα expressing CAFs and tumour cells and postoperative tumour relapse. Stromal fibroblasts of each cRCC displayed αSMA immunreaction but only 142 of the 736 tumours showed positive FAPα staining. There was no correlation between the amount of αSMA and or FAPα positive CAFs and tumour progression. However, tumours with large tourtous vessels with strong αSMA positive immunreaction have more then two times higher risk of postoperative tumour relapse (RR=2.198, p = 0.005). Patients with cRCC (57) showing cytoplasmic αSMA staining of tumour cells had a nearly two times higher risk for postoperative progression (RR=1.776, p = 0.014). There is no significant correlation between the density of αSMA or FAPα positive CAFs and postoperative relapse of cRCCs, therefore CAFs in cRCC are not suitable targets for therapy. Further limitation of anti-CAF therapy of cRCC that stromal cells of normal kidney are positive with αSMA antibody.
Collapse
Affiliation(s)
- Lehel Peterfi
- Department of Urology, Medical School, University of Pecs, Hungary
| | - Maria V. Yusenko
- Institute of Biochemistry, University of Muenster, Muenster, Germany
| | - Gyula Kovacs
- Department of Urology, Medical School, University of Pecs, Hungary,Medical Faculty, Ruprecht-Karls-University, Heidelberg, Germany,Correspondending author at: Department of Urology, Munkacsy M utca 2, 7621 Pecs, Hungary.
| | - Tamas Beothe
- Department of Urology, Peterfy Sandor Hospital, Budapest, Hungary
| |
Collapse
|
8
|
Zhou J, Schwenk-Zieger S, Kranz G, Walz C, Klauschen F, Dhawan S, Canis M, Gires O, Haubner F, Baumeister P, Kohlbauer V. Isolation and characterization of head and neck cancer-derived peritumoral and cancer-associated fibroblasts. Front Oncol 2022; 12:984138. [PMID: 36544698 PMCID: PMC9760815 DOI: 10.3389/fonc.2022.984138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/16/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Head and neck squamous cell carcinomas (HNSCC) are characterized by strong cellular and molecular heterogeneity and treatment resistance entailing poor survival. Besides cell-intrinsic properties, carcinoma cells receive important cues from non-malignant cells within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a major component of the TME that impact on the molecular make-up of malignant cells and have a decisive function in tumor progression. However, the potential functionality of fibroblasts within tumor-adjacent, macroscopically normal tissue remains poorly explored. Methods Here, we isolated primary peritumoral fibroblasts (PtFs) from macroscopically normal tissue in vicinity of primary human papillomavirus-negative and -positive oropharyngeal HNSCC and compared their phenotype and functionality with matched CAFs (n = 5 pairs) and with human oral fibroblasts (hOFs). Results Expression patterns of CD90, CD73, CD105, smooth muscle actin, Vimentin, and S100A4 were comparable in PtFs, CAFs, and hOFs. Cell proliferation and doubling times of CAFs and PtFs were heterogeneous across patients (n =2 PtF>CAF; n = 1 CAF>PtF; n = 2 CAF=PtF) and reflected inferior growth than hOFs. Furthermore, PtFs displayed an reduced heterogeneity in cell size compared to matched CAFs, which were characterized by the presence of single large cells. Overall, conditioned supernatants from CAFs had more frequently growth-promoting effects on a panel of carcinoma cell lines of the upper aerodigestive tract carcinoma cell lines (Cal27, Cal33, FaDu, and Kyse30), whereas significant differences in migration-inducing effects demonstrated a higher potential of PtFs. Except for Kyse30, CAFs were significantly superior to hOFs in promoting proliferation, while PtFs induced stronger migration than hOFs in all carcinoma lines tested. Analysis of soluble factors demonstrated significantly increased VEGF-A production in CAFs (except in pat.8), and significantly increased PDGF-BB production in PtFs of two patients. Tube formation assays confirmed a significantly enhanced angiogenic potential of conditioned supernatants from CAFs compared to hOFs on human umbilical vascular endothelial cells (HUVECs) in vitro. Discussion Hence, matched CAFs and PtFs present in HNSCC patients are heterogeneous in their proliferation-, migration-, and angiogenesis-promoting capacity. Despite this heterogeneity, CAFs induced stronger carcinoma cell proliferation and HUVEC tube formation overall, whereas PtFs promoted migration of tumor cells more strongly.
Collapse
Affiliation(s)
- Jiefu Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Frederik Klauschen
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sharduli Dhawan
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany,Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany,Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany,Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University (LMU), Munich, Germany,*Correspondence: Vera Kohlbauer,
| |
Collapse
|
9
|
Wong KY, Cheung AH, Chen B, Chan WN, Yu J, Lo KW, Kang W, To KF. Cancer-associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. Int J Cancer 2022; 151:1195-1215. [PMID: 35603909 PMCID: PMC9545594 DOI: 10.1002/ijc.34127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Alvin Ho‐Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongSARChina
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
10
|
Abstract
ABSTRACT Brain metastasis (BM) is the leading cause of mortality in lung cancer patients. The process of BM (from initial primary tumor development, migration and intravasation, dissemination and survival in the bloodstream, extravasation, to colonization and growth to metastases) is a complex process for which few tumor cells complete the entire process. Recent research on BM of lung cancer has recently stressed the essential role of tumor microenvironment (TME) in assisting tumor cells in the completion of each BM step. This review summarizes recent studies regarding the effects of TME on tumor cells in the entire process of BM derived from lung cancer. The identification of vulnerable targets in the TME and their prospects to provide novel therapeutic opportunities are also discussed.
Collapse
|
11
|
IGF1R acts as a cancer-promoting factor in the tumor microenvironment facilitating lung metastasis implantation and progression. Oncogene 2022; 41:3625-3639. [PMID: 35688943 PMCID: PMC9184253 DOI: 10.1038/s41388-022-02376-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Given the long-term ineffectiveness of current therapies and late-stage diagnoses, lung cancer is a leading cause of malignant diseases. Tumor progression is influenced by cancer cell interactions with the tumor microenvironment (TME). Insulin-like growth factor 1 receptor (IGF1R) was reported to affect the TME; however, the role of IGF1R in lung TME has not been investigated. First, we assessed IGF1R genomic alterations and expression in NSCLC patient tissue samples, as well as IGF1R serum levels. Next, we performed tumor heterotopic transplantation and pulmonary metastases in IGF1R-deficient mice using melanoma and Lewis lung carcinoma (LLC) cells. Herein we report increased amplification and mRNA expression, as well as increased protein expression (IGF1R/p-IGF1R) and IGF1R levels in tumor samples and serum from NSCLC patients, respectively. Moreover, IGF1R deficiency in mice reduced tumor growth, proliferation, inflammation and vascularization, and increased apoptosis after tumor heterotopic transplantation. Following induction of lung metastasis, IGF1R-deficient lungs also demonstrated a reduced tumor burden, and decreased expression of tumor progression markers, p-IGF1R and p-ERK1/2. Additionally, IGF1R-deficient lungs showed increased apoptosis and diminished proliferation, vascularization, EMT and fibrosis, along with attenuated inflammation and immunosuppression. Accordingly, IGF1R deficiency decreased expression of p-IGF1R in blood vessels, fibroblasts, tumor-associated macrophages and FOXP3+ tumor-infiltrating lymphocytes. Our results demonstrate that IGF1R promotes metastatic tumor initiation and progression in lung TME. Furthermore, our research indicates that IGF1R could be a potential biomarker for early prediction of drug response and clinical evolution in NSCLC patients.
Collapse
|
12
|
High Expression of NT5DC2 Is a Negative Prognostic Marker in Pulmonary Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14061395. [PMID: 35326547 PMCID: PMC8946072 DOI: 10.3390/cancers14061395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Via immunohistochemistry (IHC) on tissue micro arrays (TMA) clinical and prognostic impact of p53 co-playing 5′-Nucleotidase Domain-Containing Protein 2 (NT5DC2) protein expression was evaluated in 252 NSCLC patients. Confirmatory, gene expression database. mRNA levels of NT5DC2 were studied in 1925 NSCLC patients. High protein expression of NT5DC2 resulted in reduced median overall survival (OS) of patients with stage I-III adenocarcinoma (ADC) (Log Rank p = 0.026, HR 2.04 (1.08−3.87)), but not in squamous cell carcinoma (SCC) (p = 0.514, HR 0.87 (0.57−1.33)). Findings on OS were reproduced via gene expression analysis in ADC (p < 0.001, HR 1.64 (1.30−2.08)) and SCC (p = 0.217, HR 0.86 (0.68−1.09)). Yet, NT5DC2 mRNA levels were higher in SCC compared to ADC (p < 0.001) and in pN2 tumors compared to pN0/1 tumors (p = 0.001). Likewise, NT5DC2 protein expression associated with high-grade SCC. Moreover, NT5DC2 expression was positively correlated with p53 protein (p = 0.018) and TP53 gene expression (p < 0.001) and its survival effect was p53 dependent. While p53 expression was negatively associated with the presence of CD34+ cancer associated fibroblasts (CAFs), NT5DC2 expression insignificantly tended to higher levels of SMA+ CAFs (p = 0.065).
Collapse
|
13
|
Liang X, Chen Y, Fan Y. Bioinformatics approach to identify common gene signatures of patients with coronavirus 2019 and lung adenocarcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22012-22030. [PMID: 34775559 PMCID: PMC8590527 DOI: 10.1007/s11356-021-17321-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues as a global pandemic. Patients with lung cancer infected with COVID-19 may develop severe disease or die. Treating such patients severely burdens overwhelmed healthcare systems. Here, we identified potential pathological mechanisms shared between patients with COVID-19 and lung adenocarcinoma (LUAD). Co-expressed, differentially expressed genes (DEGs) in patients with COVID-19 and LUAD were identified and used to construct a protein-protein interaction (PPI) network and to perform enrichment analysis. We used the NetworkAnalyst platform to establish a co-regulatory of the co-expressed DEGs, and we used Spearman's correlation to evaluate the significance of associations of hub genes with immune infiltration and immune checkpoints. Analysis of three datasets identified 112 shared DEGs, which were used to construct a protein-PPI network. Subsequent enrichment analysis revealed co-expressed genes related to biological process (BP), molecular function (MF), and cellular component (CC) as well as to pathways, specific organs, cells, and diseases. Ten co-expressed hub genes were employed to construct a gene-miRNA, transcription factor (TF)-gene, and TF-miRNA network. Hub genes were significantly associated with immune infiltration and immune checkpoints. Finally, methylation level of hub genes in LUAD was obtained via UALCAN database. The present multi-dimensional study reveals commonality in specific gene expression by patients with COVID-19 and LUAD. These findings provide insights into developing strategies for optimising the management and treatment of patients with LUAD with COVID-19.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
14
|
Sentek H, Klein D. Lung-Resident Mesenchymal Stem Cell Fates within Lung Cancer. Cancers (Basel) 2021; 13:cancers13184637. [PMID: 34572864 PMCID: PMC8472774 DOI: 10.3390/cancers13184637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer remains the leading cause of cancer-related deaths worldwide. Herein, the heterogeneous tumor stroma decisively impacts on tumor progression, therapy resistance, and, thus, poor clinical outcome. Among the numerous non-epithelial cells constructing the complex environment of lung carcinomas, mesenchymal stem cells (MSC) gained attraction being stromal precursor cells that could be recruited and ‘educated’ by lung cancer cells to adopt a tumor-associated MSC phenotype, serve as source for activated fibroblasts and presumably for vascular mural cells finally reinforcing tumor progression. Lung-resident MSCs should be considered as ‘local MSCs in stand by’ ready to be arranged within the cancer stroma. Abstract Lung-resident mesenchymal stem cells (LR-MSCs) are non-hematopoietic multipotent stromal cells that predominately reside adventitial within lung blood vessels. Based on their self-renewal and differentiation properties, LR-MSCs turned out to be important regulators of normal lung homeostasis. LR-MSCs exert beneficial effects mainly by local secretion of various growth factors and cytokines that in turn foster pulmonary regeneration including suppression of inflammation. At the same time, MSCs derived from various tissues of origins represent the first choice of cells for cell-based therapeutic applications in clinical medicine. Particularly for various acute as well as chronic lung diseases, the therapeutic applications of exogenous MSCs were shown to mediate beneficial effects, hereby improving lung function and survival. In contrast, endogenous MSCs of normal lungs seem not to be sufficient for lung tissue protection or repair following a pathological trigger; LR-MSCs could even contribute to initiation and/or progression of lung diseases, particularly lung cancer because of their inherent tropism to migrate towards primary tumors and metastatic sites. However, the role of endogenous LR-MSCs to be multipotent tumor-associated (stromal) precursors remains to be unraveled. Here, we summarize the recent knowledge how ‘cancer-educated’ LR-MSCs impact on lung cancer with a focus on mesenchymal stem cell fates.
Collapse
Affiliation(s)
| | - Diana Klein
- Correspondence: ; Tel.: +49-(0)-201-7238-3342
| |
Collapse
|
15
|
Hongxia W, Qingqing Y, Chunfang Z, Jun C, Jing L, Guofeng L, Rong Y. Auxiliary diagnostic value of D2-40 in early lung adenocarcinoma and precursor lesions. J Clin Pathol 2021; 75:632-635. [PMID: 34193534 DOI: 10.1136/jclinpath-2021-207574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/06/2021] [Indexed: 11/03/2022]
Abstract
AIMS Objective to investigate whether D2-40 can be used as a marker of early lung adenocarcinoma and precursor lesions. METHODS In order to explore the value of D2-40, a monoclonal antibody that recognises the podoplanin, as an auxiliary diagnostic marker to aid the diagnosis of these conditions, we performed the immunohistochemical (IHC) staining using early lung adenocarcinoma, infiltrating adenocarcinoma, benign lung lesions and relevant peritumour normal tissues. The microscopic examination was performed to analyse the D2-40 IHC staining. RESULTS We found that there was no D2-40 staining in 47 cases of early stage lung adenocarcinoma and precursor lesions; only 1 of the 32 cases (3.13%) of infiltrating adenocarcinoma stained positive. There was 100% D2-40 staining in 30 cases of benign lung lesions and 79 cases of peritumour normal tissues. The positivity rate in carcinoma group was 1.27% and the normal tissue group was 100%, (p<0.01). Based on our findings, we concluded that D2-40 IHC staining in lung adenocarcinoma and precursor lesions compared with normal alveolar epithelia displayed the 'none or all' phenomenon. CONCLUSIONS The results from our study suggested that D2-40 can be sued as auxiliary diagnostic tool in early lung adenocarcinoma and its precursor lesions.
Collapse
Affiliation(s)
- Wang Hongxia
- Department of Pathology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Qingqing
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhang Chunfang
- Department of Pathology, The First People's Hospital of Lianyungang city, Jiangsu, China
| | - Chen Jun
- Department of Pathology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Li Jing
- Department of Pathology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lu Guofeng
- Department of Pathology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yang Rong
- Department of Pathology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
16
|
IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches on their protumorigenic functions. Proc Natl Acad Sci U S A 2021; 118:2020395118. [PMID: 33526692 DOI: 10.1073/pnas.2020395118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/IL17A-/- mice. Fibroblasts isolated from IL17A+/+ and IL17A-/- KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A-/- fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A-/- mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A-/- cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.
Collapse
|
17
|
Chen C, Hou J, Yu S, Li W, Wang X, Sun H, Qin T, Claret FX, Guo H, Liu Z. Role of cancer-associated fibroblasts in the resistance to antitumor therapy, and their potential therapeutic mechanisms in non-small cell lung cancer. Oncol Lett 2021; 21:413. [PMID: 33841574 PMCID: PMC8020389 DOI: 10.3892/ol.2021.12674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality rates, which seriously endangers human health. Although treatment methods continue to evolve, the emergence of drug resistance is inevitable and seriously hinders the treatment of NSCLC. The tumor microenvironment (TME) protects tumor cells from the effects of chemotherapeutic drugs, which can lead to drug resistance. Cancer-associated fibroblasts (CAFs) are an important component of the TME, and various studies have demonstrated that CAFs play a crucial role in drug resistance in NSCLC. However, the drug resistance mechanism of CAFs and whether CAFs can be used as a target to reverse the resistance of tumor cells remain unclear. The present review discusses this issue and describes the heterogeneity of CAF markers, as well as their origins and resident organs, and the role and mechanism of this heterogeneity in NSCLC progression. Furthermore, the mechanism of CAF-mediated NSCLC resistance to chemotherapy, targeted therapy and immunotherapy is introduced, and strategies to reverse this resistance are described.
Collapse
Affiliation(s)
- Congcong Chen
- School of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Sun
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Qin
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Francois X. Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston TX77030, USA
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, P.R. China
| | - Zhiyan Liu
- School of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Department of Respiratory and Critical Care Medicine, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| |
Collapse
|
18
|
Pan SP, Zheng XL, Zhang N, Lin XM, Li KJ, Xia XF, Zou CL, Zhang WY. A novel nomogram for predicting the risk of epilepsy occurrence after operative in gliomas patients without preoperative epilepsy history. Epilepsy Res 2021; 174:106641. [PMID: 33878595 DOI: 10.1016/j.eplepsyres.2021.106641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Epilepsy is a common complication in glioma patients after undergoing brain tumor surgery combined with chemotherapy and/or radiotherapy. Whether antiepileptic drug prophylaxis could be used in these patients remains an open question. The purpose of this study was to produce a model for predicting the risk of epilepsy occurrence in such patients. METHODS The clinicopathologic data of glioma patients after tumor treatment were reviewed in this study. Univariate and multivariate logistic regression analyses were carried out to analyze the correlation between the clinicopathologic data and the risk of epilepsy occurrence. A nomogram was built according to the multivariate logistic regression model results. RESULTS A total of 219 patients with gliomas were reviewed. Univariate analyses revealed that age, WHO glioma classification, CD34, EGFR, Ki67, MGMT, P53 and VIM were significantly associated with the risk of epilepsy occurrence. Multivariate analyses revealed that age, WHO glioma classification, CD34, EGFR, MGMT, and VIM were predictors of risk of epilepsy occurrence. A nomogram of the risk of epilepsy occurrence was built based on statistically significant variables from the multivariate logistic regression analysis. The c-index of the nomogram was 0.755 (95 % confidence interval (CI), 0.742-0.769). SIGNIFICANCE This nomogram model provides reliable information about the risk of epilepsy occurrence for oncologists and neurological physicians.
Collapse
Affiliation(s)
- Si-Pei Pan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Xiao-Lu Zheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Nan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Xiao-Min Lin
- Department of Neurology, The People's Hospital of Wencheng, WenZhou, China
| | - Ke-Jie Li
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Xiao-Fang Xia
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Chang-Lin Zou
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Wen-Yi Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China.
| |
Collapse
|
19
|
CD34+ Stromal Cells/Telocytes as a Source of Cancer-Associated Fibroblasts (CAFs) in Invasive Lobular Carcinoma of the Breast. Int J Mol Sci 2021; 22:ijms22073686. [PMID: 33916213 PMCID: PMC8037555 DOI: 10.3390/ijms22073686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Several origins have been proposed for cancer-associated fibroblasts (CAFs), including resident CD34+ stromal cells/telocytes (CD34+SCs/TCs). The characteristics and arrangement of mammary CD34+SCs/TCs are well known and invasive lobular carcinoma of the breast (ILC) is one of the few malignant epithelial tumours with stromal cells that can express CD34 or αSMA, which could facilitate tracking these cells. Our objective is to assess whether tissue-resident CD34+SCs/TCs participate in the origin of CAFs in ILCs. For this purpose, using conventional and immunohistochemical procedures, we studied stromal cells in ILCs (n:42) and in normal breasts (n:6, also using electron microscopy). The results showed (a) the presence of anti-CD34+ or anti-αSMA+ stromal cells in varying proportion (from very rare in one of the markers to balanced) around nests/strands of neoplastic cells, (b) a similar arrangement and location of stromal cells in ILC to CD34+SCs/TCs in the normal breast, (c) both types of stromal cells coinciding around the same nest of neoplastic cells and (d) the coexpression of CD34 and αSMA in stromal cells in ILC. In conclusion, our findings support the hypothesis that resident CD34+SCs/TCs participate as an important source of CAFs in ILC. Further studies are required in this regard in other tumours.
Collapse
|
20
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
21
|
Musa M, Ali A. Cancer-associated fibroblasts of colorectal cancer and their markers: updates, challenges and translational outlook. Future Oncol 2020; 16:2329-2344. [PMID: 32687721 DOI: 10.2217/fon-2020-0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
Collapse
Affiliation(s)
- Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Adli Ali
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Wilayah Persekutuan, 56000 Kuala Lumpur, Malaysia.,Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| |
Collapse
|