1
|
Ebisine K, Quist D, Findlay-Wilson S, Kennedy E, Dowall S. A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions. Pathogens 2024; 13:856. [PMID: 39452727 PMCID: PMC11510021 DOI: 10.3390/pathogens13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral disease that primarily affects animals, especially ruminants, but has the capacity to infect humans and result in outbreaks. Infection with the causative agent, RVF virus (RVFV), causes severe disease in domestic animals, especially sheep, resulting in fever, anorexia, immobility, abortion, and high morbidity and mortality rates in neonate animals. Humans become infected through exposure to infected animals and, less frequently, directly via a mosquito bite. A greater awareness of RVFV and its epidemic potential has resulted in increased investment in the development of interventions, especially vaccines. There is currently no substitute for the use of animal models in order to evaluate these vaccines. As outbreaks of RVF disease are difficult to predict or model, conducting Phase III clinical trials will likely not be feasible. Therefore, representative animal model systems are essential for establishing efficacy data to support licensure. Nonhuman primate (NHP) species are often chosen due to their closeness to humans, reflecting similar susceptibility and disease kinetics. This review covers the use of NHP models in RVFV research, with much of the work having been conducted in rhesus macaques and common marmosets. The future direction of RVF work conducted in NHP is discussed in anticipation of the importance of it being a key element in the development and approval of a human vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Stuart Dowall
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK; (K.E.); (D.Q.); (S.F.-W.); (E.K.)
| |
Collapse
|
2
|
Connors KA, Chapman NS, McMillen CM, Hoehl RM, McGaughey JJ, Frey ZD, Midgett M, Williams C, Reed DS, Crowe JE, Hartman AL. Potent neutralizing human monoclonal antibodies protect from Rift Valley fever encephalitis. JCI Insight 2024; 9:e180151. [PMID: 39088277 PMCID: PMC11457859 DOI: 10.1172/jci.insight.180151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Rift Valley fever (RVF) is an emerging arboviral disease affecting both humans and livestock. In humans, RVF displays a spectrum of clinical manifestations, including encephalitis. To date, there are no FDA-approved vaccines or therapeutics for human use, although several are in preclinical development. Few small-animal models of RVF encephalitis exist, further complicating countermeasure assessment. Human mAbs RVFV-140, RVFV-268, and RVFV-379 are recombinant potently neutralizing antibodies that prevent infection by binding the RVFV surface glycoproteins. Previous studies showed that both RVFV-268 and RVFV-140 improve survival in a lethal mouse model of disease, and RVFV-268 has prevented vertical transmission in a pregnant rat model of infection. Despite these successes, evaluation of mAbs in the context of brain disease has been limited. This is the first study to our knowledge to assess neutralizing antibodies for prevention of RVF neurologic disease using a rat model. Administration of RVFV-140, RVFV-268, or RVFV-379 24 hours prior to aerosol exposure to the virulent ZH501 strain of RVFV resulted in substantially enhanced survival and lack of neurological signs of disease. These results using a stringent and highly lethal aerosol infection model support the potential use of human mAbs to prevent the development of RVF encephalitis.
Collapse
Affiliation(s)
- Kaleigh A. Connors
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel S. Chapman
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cynthia M. McMillen
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zachary D. Frey
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, School of Public Health, and
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Lackemeyer MG, Bohannon JK, Holbrook MR. Nipah Virus Aerosol Challenge of Three Distinct Particle Sizes in Nonhuman Primates. Methods Mol Biol 2023; 2682:175-189. [PMID: 37610582 DOI: 10.1007/978-1-0716-3283-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aerosol and inhalational studies of high-consequence pathogens allow researchers to study the disease course and effects of biologicals transmitted through aerosol in a laboratory-controlled environment. Inhalational studies involving Nipah virus with small (1-3 μm), intermediate (6-8 μm), and large particles (10-14 μm) were explored in African green nonhuman primates to determine if the subsequent disease course more closely recapitulated what is observed in Nipah virus human disease. The aerosol procedures outlined describe the different equipment/techniques used to generate the three particle sizes and control the site of particle deposition within this animal model.
Collapse
Affiliation(s)
| | - J Kyle Bohannon
- NIAID Integrated Research Facility, Ft. Detrick, Frederick, MD, USA
| | | |
Collapse
|
4
|
Gerken KN, Maluni J, Mutuku FM, Ndenga BA, Mwashee L, Ichura C, Shaita K, Mwaniki M, Orwa S, Seetah K, LaBeaud AD. Exploring potential risk pathways with high risk groups for urban Rift Valley fever virus introduction, transmission, and persistence in two urban centers of Kenya. PLoS Negl Trop Dis 2023; 17:e0010460. [PMID: 36634153 PMCID: PMC9876242 DOI: 10.1371/journal.pntd.0010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/25/2023] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus that has profound impact on domestic ruminants and can also be transmitted to humans via infected animal secretions. Urban areas in endemic regions across Africa have susceptible animal and human hosts, dense vector distributions, and source livestock (often from high risk locations to meet the demand for animal protein). Yet, there has never been a documented urban outbreak of RVF. To understand the likely risk of RVFV introduction to urban communities from their perspective and guide future initiatives, we conducted focus group discussions with slaughterhouse workers, slaughterhouse animal product traders, and livestock owners in Kisumu City and Ukunda Town in Kenya. For added perspective and data triangulation, in-depth interviews were conducted one-on-one with meat inspector veterinarians from selected slaughterhouses. A theoretical framework relevant to introduction, transmission, and potential persistence of RVF in urban areas is presented here. Urban livestock were primarily mentioned as business opportunities, but also had personal sentiment. In addition to slaughtering risks, perceived risk factors included consumption of fresh milk. High risk groups' knowledge and experience with RVFV and other zoonotic diseases impacted their consideration of personal risk, with consensus towards lower risk in the urban setting compared to rural areas as determination of health risk was said to primarily rely on hygiene practices rather than the slaughtering process. Groups relied heavily on veterinarians to confirm animal health and meat safety, yet veterinarians reported difficulty in accessing RVFV diagnostics. We also identified vulnerable public health regulations including corruption in meat certification outside of the slaughterhouse system, and blood collected during slaughter being used for food and medicine, which could provide a means for direct RVFV community transmission. These factors, when compounded by diverse urban vector breeding habitats and dense human and animal populations, could create suitable conditions for RVFV to arrive an urban center via a viremic imported animal, transmit to locally owned animals and humans, and potentially adapt to secondary vectors and persist in the urban setting. This explorative qualitative study proposes risk pathways and provides initial insight towards determining how urban areas could adapt control measures and plan future initiatives to better understand urban RVF potential.
Collapse
Affiliation(s)
- Keli Nicole Gerken
- Stanford University Division of Infectious Diseases Department of Pediatrics, Stanford California, United States of America
| | - Justinah Maluni
- Kenya Medical Research Institute Centre for Global Health Research, Kisumu, Kenya
| | - Francis Maluki Mutuku
- Technical University of Mombasa Department of Environment and Health Sciences, Mombasa, Kenya
| | | | - Luti Mwashee
- Technical University of Mombasa Department of Environment and Health Sciences, Mombasa, Kenya
| | - Caroline Ichura
- Stanford University Division of Infectious Diseases Department of Pediatrics, Stanford California, United States of America
| | - Karren Shaita
- Kenya Medical Research Institute Centre for Global Health Research, Kisumu, Kenya
| | - Makena Mwaniki
- Technical University of Mombasa Department of Environment and Health Sciences, Mombasa, Kenya
| | - Stella Orwa
- Kenya Medical Research Institute Centre for Global Health Research, Kisumu, Kenya
| | - Krish Seetah
- Stanford University Department of Anthropology, Stanford California, United States of America
| | - A. Desiree LaBeaud
- Stanford University Division of Infectious Diseases Department of Pediatrics, Stanford California, United States of America
| |
Collapse
|
5
|
Intranasal Exposure to Rift Valley Fever Virus Live-Attenuated Strains Leads to High Mortality Rate in Immunocompetent Mice. Viruses 2022; 14:v14112470. [PMID: 36366567 PMCID: PMC9694885 DOI: 10.3390/v14112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.
Collapse
|
6
|
Inherent heterogeneity of influenza A virus stability following aerosolization. Appl Environ Microbiol 2022; 88:e0227121. [PMID: 34985975 DOI: 10.1128/aem.02271-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employ a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, and avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. Importance Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization, and if influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared with seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.
Collapse
|
7
|
Gerken KN, Mutuku FM, Ndenga BA, Agola GA, Migliore E, Fabre EP, Malumbo S, Shaita KN, Rezende IM, LaBeaud AD. Urban risk factors for human Rift Valley fever virus exposure in Kenya. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000505. [PMID: 36962424 PMCID: PMC10021321 DOI: 10.1371/journal.pgph.0000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Abstract
The Rift Valley fever virus (RVFV) is a zoonotic arbovirus that can also transmit directly to humans from livestock. Previous studies have shown consumption of sick animal products are risk factors for RVFV infection, but it is difficult to disentangle those risk factors from other livestock rearing activities. Urban areas have an increased demand for animal source foods, different vector distributions, and various arboviruses are understood to establish localized urban transmission cycles. Thus far, RVFV is an unevaluated public health risk in urban areas within endemic regions. We tested participants in our ongoing urban cohort study on dengue (DENV) and chikungunya (CHIKV) virus for RVFV exposure and found 1.6% (57/3,560) of individuals in two urban areas of Kenya had anti-RVFV IgG antibodies. 88% (50/57) of RVFV exposed participants also had antibodies to DENV, CHIKV, or both. Although livestock ownership was very low in urban study sites, RVFV exposure was overall significantly associated with seeing goats around the homestead (OR = 2.34 (CI 95%: 1.18-4.69, p = 0.02) and in Kisumu, RVFV exposure was associated with consumption of raw milk (OR = 6.28 (CI 95%: 0.94-25.21, p = 0.02). In addition, lack of piped water and use of small jugs (15-20 liters) for water was associated with a higher risk of RVFV exposure (OR = 5.36 (CI 95%: 1.23-16.44, p = 0.01) and this may contribute to interepidemic vector-borne maintenance of RVFV. We also investigated perception towards human vaccination for RVFV and identified high acceptance (91% (97/105) at our study sites. This study provides baseline evidence to guide future studies investigating the urban potential of RVFV and highlights the unexplored role of animal products in continued spread of RVFV.
Collapse
Affiliation(s)
- Keli Nicole Gerken
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Francis Maluki Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | | | | | - Eleonora Migliore
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Eduardo Palacios Fabre
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Said Malumbo
- Vector Borne Disease Control Unit, Msambweni County Referral Hospital, Kwale, Kenya
| | | | - Izabela Mauricio Rezende
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
8
|
Ma H, Lundy JD, Cottle EL, O’Malley KJ, Trichel AM, Klimstra WB, Hartman AL, Reed DS, Teichert T. Applications of minimally invasive multimodal telemetry for continuous monitoring of brain function and intracranial pressure in macaques with acute viral encephalitis. PLoS One 2020; 15:e0232381. [PMID: 32584818 PMCID: PMC7316240 DOI: 10.1371/journal.pone.0232381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Alphaviruses such as Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) are arboviruses that can cause severe zoonotic disease in humans. Both VEEV and EEEV are highly infectious when aerosolized and can be used as biological weapons. Vaccines and therapeutics are urgently needed, but efficacy determination requires animal models. The cynomolgus macaque (Macaca fascicularis) provides a relevant model of human disease, but questions remain whether vaccines or therapeutics can mitigate CNS infection or disease in this model. The documentation of alphavirus encephalitis in animals relies on traditional physiological biomarkers and behavioral/neurological observations by veterinary staff; quantitative measurements such as electroencephalography (EEG) and intracranial pressure (ICP) can recapitulate underlying encephalitic processes. We detail a telemetry implantation method suitable for continuous monitoring of both EEG and ICP in awake macaques, as well as methods for collection and analysis of such data. We sought to evaluate whether changes in EEG/ICP suggestive of CNS penetration by virus would be seen after aerosol exposure of naïve macaques to VEEV IC INH9813 or EEEV V105 strains compared to mock-infection in a cohort of twelve adult cynomolgus macaques. Data collection ran continuously from at least four days preceding aerosol exposure and up to 50 days thereafter. EEG signals were processed into frequency spectrum bands (delta: [0.4 - 4Hz); theta: [4 - 8Hz); alpha: [8-12Hz); beta: [12-30] Hz) and assessed for viral encephalitis-associated changes against robust background circadian variation while ICP data was assessed for signal fidelity, circadian variability, and for meaningful differences during encephalitis. Results indicated differences in delta, alpha, and beta band magnitude in infected macaques, disrupted circadian rhythm, and proportional increases in ICP in response to alphavirus infection. This novel enhancement of the cynomolgus macaque model offers utility for timely determination of onset, severity, and resolution of encephalitic disease and for the evaluation of vaccine and therapeutic candidates.
Collapse
Affiliation(s)
- Henry Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita M. Trichel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Ma H, Lundy JD, O’Malley KJ, Klimstra WB, Hartman AL, Reed DS. Electrocardiography Abnormalities in Macaques after Infection with Encephalitic Alphaviruses. Pathogens 2019; 8:pathogens8040240. [PMID: 31744158 PMCID: PMC6969904 DOI: 10.3390/pathogens8040240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023] Open
Abstract
Eastern (EEEV) and Venezuelan (VEEV) equine encephalitis viruses (EEVs) are related, (+) ssRNA arboviruses that can cause severe, sometimes fatal, encephalitis in humans. EEVs are highly infectious when aerosolized, raising concerns for potential use as biological weapons. No licensed medical countermeasures exist; given the severity/rarity of natural EEV infections, efficacy studies require animal models. Cynomolgus macaques exposed to EEV aerosols develop fever, encephalitis, and other clinical signs similar to humans. Fever is nonspecific for encephalitis in macaques. Electrocardiography (ECG) metrics may predict onset, severity, or outcome of EEV-attributable disease. Macaques were implanted with thermometry/ECG radiotransmitters and exposed to aerosolized EEV. Data was collected continuously, and repeated-measures ANOVA and frequency-spectrum analyses identified differences between courses of illness and between pre-exposure and post-exposure states. EEEV-infected macaques manifested widened QRS-intervals in severely ill subjects post-exposure. Moreover, QT-intervals and RR-intervals decreased during the febrile period. VEEV-infected macaques suffered decreased QT-intervals and RR-intervals with fever onset. Frequency-spectrum analyses revealed differences in the fundamental frequencies of multiple metrics in the post-exposure and febrile periods compared to baseline and confirmed circadian dysfunction. Heart rate variability (HRV) analyses revealed diminished variability post-exposure. These analyses support using ECG data alongside fever and clinical laboratory findings for evaluating medical countermeasure efficacy.
Collapse
|
10
|
Bowling JD, O'Malley KJ, Klimstra WB, Hartman AL, Reed DS. A Vibrating Mesh Nebulizer as an Alternative to the Collison Three-Jet Nebulizer for Infectious Disease Aerobiology. Appl Environ Microbiol 2019; 85:e00747-19. [PMID: 31253680 PMCID: PMC6696971 DOI: 10.1128/aem.00747-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/23/2019] [Indexed: 11/20/2022] Open
Abstract
Experimental infection of animals with aerosols containing pathogenic agents is essential for an understanding of the natural history and pathogenesis of infectious disease as well as evaluation of potential treatments. We evaluated whether the Aeroneb nebulizer, a vibrating mesh nebulizer, would serve as an alternative to the Collison nebulizer, the "gold standard" for generating infectious bioaerosols. While the Collison possesses desirable properties that have contributed to its longevity in infectious disease aerobiology, concerns have lingered about the liquid volume and concentration of the infectious agent required to cause disease and the damage that jet nebulization causes to the agent. Fluorescein salt was added to the nebulizer contents to assess pathogen loss during aerosolization. Relative to fluorescein salt, loss of influenza virus during aerosolization was worse with the Collison than with the Aeroneb. Four other viruses also had superior aerosol performance with the Aeroneb. The Aeroneb did not improve the aerosol performance for a vegetative bacterium, Francisella tularensis Environmental parameters collected during the aerosol challenges indicated that the Aeroneb generated a higher relative humidity in exposure chambers while not affecting other environmental parameters. The aerosol mass median aerodynamic diameter (MMAD) was generally larger and more disperse for aerosols generated by the Aeroneb than what is seen with the Collison, but ≥80% of particles were within the range that would reach the lower respiratory tract and alveolar regions. The improved aerosol performance and generated particle size range suggest that for viral pathogens, the Aeroneb is a suitable alternative to the Collison three-jet nebulizer for use in experimental infection of animals.IMPORTANCE Respiratory infection by pathogens via aerosol remains a major concern for both natural disease transmission as well as intentional release of biological weapons. Critical to understanding the disease course and pathogenesis of inhaled pathogens are studies in animal models conducted under tightly controlled experimental settings, including the inhaled dose. The route of administration, particle size, and dose can affect disease progression and outcome. Damage to or loss of pathogens during aerosolization could increase the dose required to cause disease and could stimulate innate immune responses, altering outcome. Aerosol generators that reduce pathogen loss would be ideal. This study compares two aerosol generators to determine which is superior for animal studies. Aerosol research methods and equipment need to be well characterized to optimize the development of animal models for respiratory pathogens, including bioterrorism agents. This information will be critical for pivotal efficacy studies in animals to evaluate potential vaccines or treatments against these agents.
Collapse
Affiliation(s)
- Jennifer D Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine J O'Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Wonderlich ER, Caroline AL, McMillen CM, Walters AW, Reed DS, Barratt-Boyes SM, Hartman AL. Peripheral Blood Biomarkers of Disease Outcome in a Monkey Model of Rift Valley Fever Encephalitis. J Virol 2018; 92:e01662-17. [PMID: 29118127 PMCID: PMC5774883 DOI: 10.1128/jvi.01662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8+ T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4+ and CD8+ T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model.IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which we lack both an effective human vaccine and treatment. Encephalitis and neurological disease resulting from RVF lead to death or significant long-term disability for infected people. African green monkeys (AGM) develop lethal neurological disease when infected with RVF virus by inhalation. Here we report the similarities in disease course between infected AGM and humans. For the first time, we examine the peripheral immune response during the course of infection in AGM and show that there are very early differences in the immune response between animals that survive infection and those that succumb. We conclude that AGM are a novel and suitable monkey model for studying the neuropathogenesis of RVF and for testing vaccines and therapeutics against this emerging viral pathogen.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Caroline
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia M McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aaron W Walters
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Dabisch PA, Xu Z, Boydston JA, Solomon J, Bohannon JK, Yeager JJ, Taylor JR, Reeder RJ, Sayre P, Seidel J, Mollura DJ, Hevey MC, Jahrling PB, Lackemeyer MG. Quantification of regional aerosol deposition patterns as a function of aerodynamic particle size in rhesus macaques using PET/CT imaging. Inhal Toxicol 2017; 29:506-515. [DOI: 10.1080/08958378.2017.1409848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P. A. Dabisch
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - Z. Xu
- Center for Disease Imaging, Radiology, and Imaging Services, National Institutes of Health, Bethesda, MD, USA
| | - J. A. Boydston
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - J. Solomon
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD, USA
| | - J. K. Bohannon
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - J. J. Yeager
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - J. R. Taylor
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - R. J. Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - P. Sayre
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - J. Seidel
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - D. J. Mollura
- Center for Disease Imaging, Radiology, and Imaging Services, National Institutes of Health, Bethesda, MD, USA
| | - M. C. Hevey
- Battelle National Biodefense Institute for the US Department of Homeland Security, National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA
| | - P. B. Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| | - M. G. Lackemeyer
- Integrated Research Facility, National Institute of Allergy and Infectious Disease (NIAID), Frederick, MD, USA
| |
Collapse
|
13
|
Ribbon scanning confocal for high-speed high-resolution volume imaging of brain. PLoS One 2017; 12:e0180486. [PMID: 28686653 PMCID: PMC5501561 DOI: 10.1371/journal.pone.0180486] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.
Collapse
|
14
|
Caroline AL, Kujawa MR, Oury TD, Reed DS, Hartman AL. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model. Front Microbiol 2016; 6:1509. [PMID: 26779164 PMCID: PMC4703790 DOI: 10.3389/fmicb.2015.01509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1-2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3-5 dpi) followed by brain (5-7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Amy L Caroline
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA, USA
| | - Michael R Kujawa
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, PittsburghPA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Douglas S Reed
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Immunology, University of Pittsburgh School of Medicine, PittsburghPA, USA
| | - Amy L Hartman
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, PittsburghPA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, PittsburghPA, USA
| |
Collapse
|