1
|
Makalakshmi MK, Banerjee A, Pathak S, Paul S, Sharma NR, Anandan B. A pilot study on the efficacy of a telomerase activator in regulating the proliferation of A375 skin cancer cell line. Mol Biol Rep 2024; 52:69. [PMID: 39704853 DOI: 10.1007/s11033-024-10161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION The changes in histone modifications are linked to the progression of benign and normal tissue to malignancy. Thus, numerous findings suggest that targeting epigenetic factors might be a focus for anti-cancer treatment. In this study, we tested the hypothesis that telomerase activator might be a potential epigenetic regulator in combatting skin cancer cell proliferation. METHODS Melanoma cell line A375 cells were treated with telomerase activator TA-65. Cell senescence assay was done to evaluate the senescence induction. Morphological changes and differences in expression of HDACs and hTERT genes were studied. Further, hyaluronidase and anti-oxidant assays were also performed. Additionally, telomerase enzyme and 20S proteasome activity was also studied. RESULTS Morphological changes were observed in treated cells and it is evident that telomerase activator induced cellular senescence in high concentrations. From our results, it is evident that HDAC8 and HDAC10 expression was upregulated, whereas hTERT gene expression was downregulated in treated groups. This suggests that the telomerase activator has a regulatory role in skin cancer cells proliferation by targeting the epigenetic factors. CONCLUSION Targeting HDACs and hTERT in the treatment of melanoma is a prominent concern. In our current study, we highlight the most recent research, although in its initial stage, involving various epigenetic factors involved in melanoma cells proliferation.
Collapse
Affiliation(s)
- M K Makalakshmi
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India.
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, 603103, India.
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India.
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, 603103, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro, CP 76130, Mexico
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - B Anandan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, 600113, India.
| |
Collapse
|
2
|
Daniels RD, Bertke SJ, Kelly-Reif K, Richardson DB, Haylock R, Laurier D, Leuraud K, Moissonnier M, Thierry-Chef I, Kesminiene A, Schubauer-Berigan MK. Updated findings on temporal variation in radiation-effects on cancer mortality in an international cohort of nuclear workers (INWORKS). Eur J Epidemiol 2024; 39:1277-1286. [PMID: 39576361 DOI: 10.1007/s10654-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The International Nuclear Workers Study (INWORKS) contributes knowledge on the dose-response association between predominantly low dose, low dose rate occupational exposures to penetrating forms of ionizing radiation and cause-specific mortality. By extending follow-up of 309,932 radiation workers from France (1968-2014), the United Kingdom (1955-2012), and the United States (1944-2016) we increased support for analyses of temporal variation in radiation-cancer mortality associations. Here, we examine whether age at exposure, time since exposure, or attained age separately modify associations between radiation and mortality from all solid cancers, solid cancers excluding lung cancer, lung cancer, and lymphohematopoietic cancers. Multivariable Poisson regression was used to fit general relative rate models that describe modification of the linear excess relative rate per unit organ absorbed dose. Given indication of greater risk per unit dose for solid cancer mortality among workers hired in more recent calendar years, sensitivity analyses considering the impact of year of hire on results were performed. Findings were reasonably compatible with those from previous pooled and country-specific analyses within INWORKS showing temporal patterns of effect measure modification that varied among cancers, with evidence of persistent radiation-associated excess cancer risk decades after exposure, although statistically significant temporal modification of the radiation effect was not observed. Analyses stratified by hire period (< 1958, 1958+) showed temporal patterns that varied; however, these analyses did not suggest that this was due to differences in distribution of these effect measure modifiers by hire year.
Collapse
Affiliation(s)
- Robert D Daniels
- National Institute for Occupational Safety and Health (NIOSH), 1090 Tusculum Avenue, Mailstop 12, Cincinnati, OH, 45226, USA.
| | - Stephen J Bertke
- National Institute for Occupational Safety and Health (NIOSH), 1090 Tusculum Avenue, Mailstop 12, Cincinnati, OH, 45226, USA
| | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health (NIOSH), 1090 Tusculum Avenue, Mailstop 12, Cincinnati, OH, 45226, USA
| | - David B Richardson
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
3
|
Burraco P, Gabor C, Bryant A, Gardette V, Lengagne T, Bonzom JM, Orizaola G. Ionizing radiation has negligible effects on the age, telomere length and corticosterone levels of Chornobyl tree frogs. Biol Lett 2024; 20:20240287. [PMID: 39500371 PMCID: PMC11537762 DOI: 10.1098/rsbl.2024.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/09/2024] Open
Abstract
The accident that occurred at the Chornobyl nuclear power plant (Ukraine, 1986) contaminated a large extension of territory after the deposition of radioactive material. It is still under debate whether the chronic exposure to the radiation levels currently present in the area has long-term effects on organisms, such as decreases in longevity. Here, we investigate whether current levels of radiation in Chornobyl negatively impact the age of the Eastern tree frog Hyla orientalis. We also explore whether radiation induces changes in an ageing marker, telomere length or the stress hormone corticosterone. We found no effect of total individual absorbed radiation (including both external and internal exposure) on frog age (n = 197 individuals sampled in 3 consecutive years). We also did not find any relationship between individual absorbed radiation and telomere length, nor between individual absorbed radiation and corticosterone levels. Our results suggest that radiation levels currently experienced by Chornobyl tree frogs may not be high enough to cause severe chronic damage to semi-aquatic vertebrates such as this species. This is the first study addressing age and stress hormones in Chornobyl wildlife, and thus future research will confirm if these results can be extended to other taxa.
Collapse
Affiliation(s)
- Pablo Burraco
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), Sevilla41092, Spain
| | - Caitlin Gabor
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Amanda Bryant
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Vanessa Gardette
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, VilleurbanneF-69622, France
| | - Thierry Lengagne
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, VilleurbanneF-69622, France
| | - Jean Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance13115, France
| | - Germán Orizaola
- Biodiversity Research Institute (IMIB), CSIC—University of Oviedo—Principality of Asturias, Mieres, Asturias33600, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, Oviedo, Asturias33071, Spain
| |
Collapse
|
4
|
DeLano FA, Schmid-Schönbein GW. Aging by autodigestion. PLoS One 2024; 19:e0312149. [PMID: 39418235 PMCID: PMC11486419 DOI: 10.1371/journal.pone.0312149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanism that triggers the progressive dysregulation of cell functions, inflammation, and breakdown of tissues during aging is currently unknown. We propose here a previously unknown mechanism due to tissue autodigestion by the digestive enzymes. After synthesis in the pancreas, these powerful enzymes are activated and transported inside the lumen of the small intestine to which they are compartmentalized by the mucin/epithelial barrier. We hypothesize that this barrier leaks active digestive enzymes (e.g. during meals) and leads to their accumulation in tissues outside the gastrointestinal tract. Using immune-histochemistry we provide evidence in young (4 months) and old (24 months) rats for significant accumulation of pancreatic trypsin, elastase, lipase, and amylase in peripheral organs, including liver, lung, heart, kidney, brain, and skin. The mucin layer density on the small intestine barrier is attenuated in the old and trypsin leaks across the tip region of intestinal villi with depleted mucin. The accumulation of digestive enzymes is accompanied in the same tissues of the old by damage to collagen, as detected with collagen fragment hybridizing peptides. We provide evidence that the hyperglycemia in the old is accompanied by proteolytic cleavage of the extracellular domain of the insulin receptor. Blockade of pancreatic trypsin in the old by a two-week oral treatment with a serine protease inhibitor (tranexamic acid) serves to significantly reduce trypsin accumulation in organs outside the intestine, collagen damage, as well as hyperglycemia and insulin receptor cleavage. These results support the hypothesis that the breakdown of tissues in aging is due to autodigestion and a side-effect of the fundamental requirement for digestion.
Collapse
Affiliation(s)
- Frank A. DeLano
- Shu Chien-Gene Ley Department of Bioengineering, Center for Autodigestion Innovation, University of California San Diego, La Jolla, California, United States of America
| | - Geert W. Schmid-Schönbein
- Shu Chien-Gene Ley Department of Bioengineering, Center for Autodigestion Innovation, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Li L, Ran Y, Zhuang Y, Wang L, Chen J, Sun Y, Lu S, Ye F, Mei L, Ning Y, Dai F. Risk analysis of air pollutants and types of anemia: a UK Biobank prospective cohort study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1343-1356. [PMID: 38607561 DOI: 10.1007/s00484-024-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Previous studies have suggested that exposure to air pollutants may be associated with specific blood indicators or anemia in certain populations. However, there is insufficient epidemiological data and prospective evidence to evaluate the relationship between environmental air pollution and specific types of anemia. We conducted a large-scale prospective cohort study based on the UK Biobank. Annual average concentrations of NO2, PM2.5, PM2.5-10, and PM10 were obtained from the ESCAPE study using the Land Use Regression (LUR) model. The association between atmospheric pollutants and different types of anemia was investigated using the Cox proportional hazards model. Furthermore, restricted cubic splines were used to explore exposure-response relationships for positive associations, followed by stratification and effect modification analyses by gender and age. After adjusting for demographic characteristics, 3-4 of the four types of air pollution were significantly associated with an increased risk of iron deficiency, vitamin B12 deficiency and folate deficiency anemia, while there was no significant association with other defined types of anemia. After full adjustment, we estimated that the hazard ratios (HRs) of iron deficiency anemia associated with each 10 μg/m3 increase in NO2, PM2.5, and PM10 were 1.04 (95%CI: 1.02, 1.07), 2.00 (95%CI: 1.71, 2.33), and 1.10 (95%CI: 1.02, 1.20) respectively. The HRs of folate deficiency anemia with each 10 μg/m3 increase in NO2, PM2.5, PM2.5-10, and PM10 were 1.25 (95%CI: 1.12, 1.40), 4.61 (95%CI: 2.03, 10.47), 2.81 (95%CI: 1.11, 7.08), and 1.99 (95%CI: 1.25, 3.15) respectively. For vitamin B12 deficiency anemia, no significant association with atmospheric pollution was found. Additionally, we estimated almost linear exposure-response curves between air pollution and anemia, and interaction analyses suggested that gender and age did not modify the association between air pollution and anemia. Our research provided reliable evidence for the association between long-term exposure to PM10, PM2.5, PM2.5-10, NO2, and several types of anemia. NO2, PM2.5, and PM10 significantly increased the risk of iron deficiency anemia and folate deficiency anemia. Additionally, we found that the smaller the PM diameter, the higher the risk, and folate deficiency anemia was more susceptible to air pollution than iron deficiency anemia. No association was observed between the four types of air pollution and hemolytic anemia, aplastic anemia, and other types of anemia. Although the mechanisms are not well understood, we emphasize the need to limit the levels of PM and NO2 in the environment to reduce the potential impact of air pollution on folate and iron deficiency anemia.
Collapse
Affiliation(s)
- Laifu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yan Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yan Zhuang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Lianli Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Jiamiao Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yating Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Shiwei Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fangchen Ye
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Lin Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yu Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fei Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China.
| |
Collapse
|
6
|
Ruprecht NA, Singhal S, Sens D, Singhal SK. Translating genetic findings to epigenetics: identifying the mechanisms associated with aging after high-radiation exposure on earth and in space. Front Public Health 2024; 12:1333222. [PMID: 38584916 PMCID: PMC10995328 DOI: 10.3389/fpubh.2024.1333222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Exposure to radiation is a health concern within and beyond the Earth's atmosphere for aircrew and astronauts in their respective austere environments. The biological effects of radiation exposure from a multiomics standpoint are relatively unexplored and stand to shed light on tailored monitoring and treatment for those in these career fields. To establish a reference variable for genetic damage, biological age seems to be closely associated with the effect of radiation. Following a genetic-based study, this study explores the epigenetic landscape of radiation exposure along with its associative effects on aging processes. Methods We imported the results of the genetics-based study that was a secondary analysis of five publicly available datasets (noted as Data1). The overlap of these genes with new data involving methylation data from two datasets (noted as Data2) following similar secondary analysis procedures is the basis of this study. We performed the standard statistical analysis on these datasets along with supervised and unsupervised learning to create preranked gene lists used for functional analysis in Ingenuity Pathway Analysis (IPA). Results There were 664 genes of interest from Data1 and 577 genes from Data2. There were 40 statistically significant methylation probes within 500 base pairs of the gene's transcription start site and 10 probes within 100 base pairs, which are discussed in depth. IPA yielded 21 significant pathways involving metabolism, cellular development, cell death, and diseases. Compared to gold standards for gestational age, we observed relatively low error and standard deviation using newly identified biomarkers. Conclusion We have identified 17 methylated genes that exhibited particular interest and potential in future studies. This study suggests that there are common trends in oxidative stress, cell development, and metabolism that indicate an association between aging processes and the effects of ionizing radiation exposure.
Collapse
Affiliation(s)
- Nathan A. Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| | - Sandeep K. Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Pathology, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
7
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
8
|
Li C, Qin J, Xue F, Shen Z, Lin Q, Xue Y, Chen X. Rethinking the effects of adjuvant beam radiation therapy on overall survival in atypical meningioma patients: age considerations. Front Neurol 2024; 15:1360741. [PMID: 38560728 PMCID: PMC10978650 DOI: 10.3389/fneur.2024.1360741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background This study aimed to investigate the effects of adjuvant beam radiation therapy (ABRT) on overall survival (OS) in patients with primary single intracranial atypical meningioma (AM), with a focus on age-related outcomes. Methods We conducted a retrospective study using data from SEER database. Our cohort consisted of patients diagnosed with a primary single intracranial AM tumor and had undergone surgery. The primary endpoint was OS. For survival analysis, univariable and multivariable Cox regression analysis were performed. A multivariable additive Cox model was used to assess the functional relationship between age and OS in patients with or without ABRT. Results Of the 2,759 patients included, 1,650 underwent gross total resection and 833 received ABRT. Multivariable Cox analysis indicated that ABRT did not significantly influence OS across the entire cohort. According to the multivariable generalized additive Cox model, the relative risk of all-cause mortality increased with advancing age in both ABRT-yes and ABRT-no group. ABRT-yes had a lower relative risk than ABRT-no when age ≤ 55 years old while a higher relative risk when age > 55 years old. Subsequent multivariable Cox analysis showed that ABRT was associated with a significant lower risk for all-cause mortality in patients with age ≤ 55 years old while a significant higher risk in patients with age > 55 years old. Conclusion Our study found that ABRT enhanced OS in younger primary single intracranial AM patients. But we also revealed a negative correlation between OS and ABRT in older patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajun Qin
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Xue
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhaoli Shen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Lin
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yajun Xue
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Zhou Z, Yao J, Wu D, Huang X, Wang Y, Li X, Lu Q, Qiu Y. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity 2024; 57:513-527.e6. [PMID: 38262419 DOI: 10.1016/j.immuni.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Accumulation of senescent cells in organs and tissues is a hallmark of aging and known to contribute to age-related diseases. Although aging-associated immune dysfunction, or immunosenescence, is known to contribute to this process, the underlying mechanism remains elusive. Here, we report that type 2 cytokine signaling deficiency accelerated aging and, conversely, that the interleukin-4 (IL-4)-STAT6 pathway protected macrophages from senescence. Mechanistically, activated STAT6 promoted the expression of genes involved in DNA repair both via homologous recombination and Fanconi anemia pathways. Conversely, STAT6 deficiency induced release of nuclear DNA into the cytoplasm to promote tissue inflammation and organismal aging. Importantly, we demonstrate that IL-4 treatment prevented macrophage senescence and improved the health span of aged mice to an extent comparable to senolytic treatment, with further additive effects when combined. Together, our findings support that type 2 cytokine signaling protects macrophages from immunosenescence and thus hold therapeutic potential for improving healthy aging.
Collapse
Affiliation(s)
- Zhao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xun Huang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yushuang Wang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xinmeng Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Qiang Lu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
He L, Zhong C, Chang H, Inman JL, Celniker SE, Ioakeim-Ioannidou M, Liu KX, Haas-Kogan D, MacDonald SM, Threadgill DW, Kogan SC, Mao JH, Snijders AM. Genetic architecture of the acute and persistent immune cell response after radiation exposure. CELL GENOMICS 2023; 3:100422. [PMID: 38020972 PMCID: PMC10667298 DOI: 10.1016/j.xgen.2023.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Hematologic toxicity is a common side effect of multimodal cancer therapy. Nearly all animal studies investigating the causes of radiotherapy-induced hematologic toxicity use inbred strains with limited genetic diversity and do not reflect the diverse responses observed in humans. We used the population-based Collaborative Cross (CC) mouse resource to investigate the genetic architecture of the acute and persistent immune response after radiation exposure by measuring 22 immune parameters in 1,720 CC mice representing 35 strains. We determined relative acute and persistent radiation resistance scores at the individual strain level considering contributions from all immune parameters. Genome-wide association analysis identified quantitative trait loci associated with baseline and radiation responses. A cross-species radiation resistance score predicted recurrence-free survival in medulloblastoma patients. We present a community resource of immune parameters and genome-wide association analyses before and after radiation exposure for future investigations of the contributions of host genetics on radiosensitivity.
Collapse
Affiliation(s)
- Li He
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430079, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jamie L. Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon M. MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
- Departments of Nutrition and Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
12
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Li Y, Zhou Z, Xu S, Jiang J, Xiao J. Review of the Pathogenesis, Diagnosis, and Management of Osteoradionecrosis of the Femoral Head. Med Sci Monit 2023; 29:e940264. [PMID: 37310931 PMCID: PMC10276533 DOI: 10.12659/msm.940264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoradionecrosis (ORN) of the femoral head is an important issue for orthopedists and radiologists in clinical practice. With the rapid development of technological advances in radiation therapy and the improvement in cancer survival rates, the incidence of ORN is rising, and there is an unmet need for basic and clinical research. The pathogenesis of ORN is complex, and includes vascular injury, mesenchymal stem cell injury, bone loss, reactive oxygen species, radiation-induced fibrosis, and cell senescence. The diagnosis of ORN is challenging and requires multiple considerations, including exposure to ionizing radiation, clinical manifestations, and findings on physical examination and imaging. Differential diagnosis is essential, as clinical symptoms of ORN of the femoral head can resemble many other hip conditions. Hyperbaric oxygen therapy, total hip arthroplasty, and Girdlestone resection arthroplasty are effective treatments, each with their own advantages and disadvantages. The literature on ORN of the femoral head is incomplete and there is no criterion standard or clear consensus on management. Clinicians should gain a better and more comprehensive understanding on this disease to facilitate its early and better prevention, diagnosis, and treatment. This article aims to review the pathogenesis, diagnosis, and management of osteoradionecrosis of the femoral head.
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhongsheng Zhou
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Shenghao Xu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jianlin Xiao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
14
|
Broustas CG, Shuryak I, Duval AJ, Amundson SA. Effect of Age and Sex on Gene Expression-Based Radiation Biodosimetry Using Mouse Peripheral Blood. Cytogenet Genome Res 2023; 163:197-209. [PMID: 36928338 PMCID: PMC10585707 DOI: 10.1159/000530172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023] Open
Abstract
Blood-based gene expression profiles that can reconstruct radiation exposure are being developed as a practical approach to radiation biodosimetry. However, age and sex could potentially limit the accuracy of the approach. In this study, we determined the impact of age on the peripheral blood cell gene expression profile of female mice exposed to radiation and identified differences and similarities with a previously obtained transcriptomic signature of male mice. Young (2 months) and old (24 months) female mice were irradiated with 4 Gy X-rays, total RNA was isolated from blood 24 hours later and subjected to whole-genome microarray analysis. Dose reconstruction analyses using a gene signature trained on gene expression data from irradiated young male mice showed accurate reconstruction of 0 or 4 Gy doses with root mean square error of ±0.75 Gy (R2 = 0.90) in young female mice. Although dose reconstruction for irradiated old female mice was less accurate than young female mice, the deviation from the actual radiation dose was not statistically significant. Pathway analysis of differentially expressed genes revealed that after irradiation, apoptosis-related functions were overrepresented, whereas functions related to quantities of various immune cell subtypes were underrepresented, among differentially expressed genes from young female mice, but not older animals. Furthermore, young mice significantly upregulated genes involved in phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. Both functions were also overrepresented in young, but not old, male mice following 4 Gy X-irradiation. Lastly, functions associated with neutrophil activation that is essential for killing invading pathogens and regulating the inflammatory response were predicted to be uniquely enriched in young but not old female mice. This work supports the concept that peripheral blood gene expression profiles can be identified in mice that accurately predict physical radiation dose exposure irrespective of age and sex.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Axel J. Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Winters TA, Cassatt DR, Harrison-Peters JR, Hollingsworth BA, Rios CI, Satyamitra MM, Taliaferro LP, DiCarlo AL. Considerations of Medical Preparedness to Assess and Treat Various Populations During a Radiation Public Health Emergency. Radiat Res 2023; 199:301-318. [PMID: 36656560 PMCID: PMC10120400 DOI: 10.1667/rade-22-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
During a radiological or nuclear public health emergency, given the heterogeneity of civilian populations, it is incumbent on medical response planners to understand and prepare for a potentially high degree of interindividual variability in the biological effects of radiation exposure. A part of advanced planning should include a comprehensive approach, in which the range of possible human responses in relation to the type of radiation expected from an incident has been thoughtfully considered. Although there are several reports addressing the radiation response for special populations (as compared to the standard 18-45-year-old male), the current review surveys published literature to assess the level of consideration given to differences in acute radiation responses in certain sub-groups. The authors attempt to bring clarity to the complex nature of human biology in the context of radiation to facilitate a path forward for radiation medical countermeasure (MCM) development that may be appropriate and effective in special populations. Consequently, the focus is on the medical (as opposed to logistical) aspects of preparedness and response. Populations identified for consideration include obstetric, pediatric, geriatric, males, females, individuals of different race/ethnicity, and people with comorbidities. Relevant animal models, biomarkers of radiation injury, and MCMs are highlighted, in addition to underscoring gaps in knowledge and the need for consistent and early inclusion of these populations in research. The inclusion of special populations in preclinical and clinical studies is essential to address shortcomings and is an important consideration for radiation public health emergency response planning. Pursuing this goal will benefit the population at large by considering those at greatest risk of health consequences after a radiological or nuclear mass casualty incident.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Jenna R. Harrison-Peters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
16
|
The Normal, the Radiosensitive, and the Ataxic in the Era of Precision Radiotherapy: A Narrative Review. Cancers (Basel) 2022; 14:cancers14246252. [PMID: 36551737 PMCID: PMC9776433 DOI: 10.3390/cancers14246252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: radiotherapy is a cornerstone of cancer treatment. When delivering a tumoricidal dose, the risk of severe late toxicities is usually kept below 5% using dose-volume constraints. However, individual radiation sensitivity (iRS) is responsible (with other technical factors) for unexpected toxicities after exposure to a dose that induces no toxicity in the general population. Diagnosing iRS before radiotherapy could avoid unnecessary toxicities in patients with a grossly normal phenotype. Thus, we reviewed iRS diagnostic data and their impact on decision-making processes and the RT workflow; (2) Methods: following a description of radiation toxicities, we conducted a critical review of the current state of the knowledge on individual determinants of cellular/tissue radiation; (3) Results: tremendous advances in technology now allow minimally-invasive genomic, epigenetic and functional testing and a better understanding of iRS. Ongoing large translational studies implement various tests and enriched NTCP models designed to improve the prediction of toxicities. iRS testing could better support informed radiotherapy decisions for individuals with a normal phenotype who experience unusual toxicities. Ethics of medical decisions with an accurate prediction of personalized radiotherapy's risk/benefits and its health economics impact are at stake; (4) Conclusions: iRS testing represents a critical unmet need to design personalized radiotherapy protocols relying on extended NTCP models integrating iRS.
Collapse
|
17
|
Anim-Sampong S, Ohene-Botwe B, Adom EB, Tagoe SNA. Dose optimization of adult head computed tomography examination in an academic hospital in Ghana. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Surniyantoro HNE, Yusuf D, Rahardjo T, Rahajeng N, Kisnanto T, Nurhayati S, Lusiyanti Y, Syaifudin M, Hande MP. Assessment of hOGG1 Genetic Polymorphism (rs1052133) and DNA Damage in Radiation-Exposed Workers. Asian Pac J Cancer Prev 2022; 23:4005-4012. [PMID: 36579980 PMCID: PMC9971479 DOI: 10.31557/apjcp.2022.23.12.4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The aim of this study was to assess the effect of radiation exposure, human 8-oxoguanine DNA N-glycosylase-1 (hOGG1) exon 7 genetic polymorphism and confounding factors on DNA damage response. METHODS Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and alkaline Comet assay method were applied to determine the hOGG1 genetic polymorphisms and DNA damage response. A total of 80 participants were enrolled in this study, consisting of 40 radiation-exposed workers as a case group and 40 non-radiation workers as a control group. RESULT The genotypes frequencies for controls were Ser/Ser (35%), Ser/Cys (32.5%), and Cys/Cys (32.5%), with frequencies of alleles being 326Ser (0.52) and 326Cys (0.48), whereas the genotypes frequencies for radiation-exposed workers (cases group) were Ser/Ser (17.5%), Ser/Cys (57.5%), and Cys/Cys (25%), with frequencies of alleles being 326Ser (0.46) and 326Cys (0.54). The results indicated that DNA damage response were not significantly higher in the exposed workers than in controls (22.55 ± 6.02 versus 21.72 ± 7.14; P=0.58). The time of exposure has a significantly negative correlation with comet tail length value among radiation workers. In addition, it was found that the DNA damage response was strongly associated with age and time of exposure with a decrease of 0.6 percent (P-value: 0.008) and 0.58 percent (P-value: 0.009), respectively. Whereas gender, smoking habit, and equivalent dose were not correlated with DNA damage. CONCLUSION The single-nucleotide polymorphism of hOGG1 exon 7 (rs1052133) demonstrated no association with the extent of DNA damage in radiation-exposed workers.
Collapse
Affiliation(s)
- Harry Nugroho Eko Surniyantoro
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia. ,For Correspondence:
| | - Darlina Yusuf
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Indonesia.
| | - Tur Rahardjo
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Indonesia.
| | - Nastiti Rahajeng
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Indonesia.
| | - Teja Kisnanto
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia.
| | - Siti Nurhayati
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Indonesia.
| | - Yanti Lusiyanti
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Indonesia.
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia.
| | | |
Collapse
|
19
|
Zhao X, Zhang M, Wang J, Ji K, Wang Y, Sun X, Xu C, Wang Q, He N, Song H, Du L, Wang F, Huang H, Liu Y, Liu Q. NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7. Free Radic Biol Med 2022; 193:342-353. [PMID: 36252808 DOI: 10.1016/j.freeradbiomed.2022.10.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Risk of cancer often increases with aging, and radiotherapy is an essential component of treatment. As for abdominal and pelvic cancer, radiotherapy always inevitably causes injury to intestines through direct DNA damage or overload of reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (NRF2) has been identified as a key protective factor against ionizing-radiation induced damage through promoting DNA damage repair and antioxidant modulation. However, the level of NRF2 always decreases with aging. Here, we demonstrated that NRF2 deficiency aggravated cellular DNA damage and the intestinal pathological lesion. Overexpression of SIRT6 or SIRT7 could improve cell proliferation and protect against radiation injury in NRF2 knock-out (KO) cells by modulating oxidative-stress and DNA damage repair. Consistently, supplement of nicotinamide mononucleotide (NMN), the agonist of sirtuins, increased the level of SIRT6 and SIRT7 in NRF2 KO cells, concomitant with reduced cellular ROS level and ameliorated DNA damage. In vivo, long-term oral administration of NMN attenuated the radiation-induced injury of jejunum, increased the number of intestinal stem cells, and promoted the ability of intestinal proliferation in NRF2-/- mice. Together, our results indicated that SIRT6 and SIRT7 had involved in scavenging ROS and repairing DNA damage, and NMN could be a promising candidate for preventing radiation damage when NRF2 is lacking.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiaohui Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Huang
- Effepharm (Shanghai) Co. Ltd, No.1 Mid Wangdong Rd, Songjiang District, Shanghai, 201601, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
20
|
Jiang GJ, You XG, Fan TJ. Ultraviolet B irradiation induces senescence of human corneal endothelial cells in vitro by DNA damage response and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112568. [PMID: 36137302 DOI: 10.1016/j.jphotobiol.2022.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated β-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-β1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China
| | - Xin-Guo You
- School of bioscience and technology, Weifang medical university, Weifang, Shandong province 261053, China
| | - Ting-Jun Fan
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China.
| |
Collapse
|
21
|
Mohtashami M, Li YR, Lee CR, Zúñiga-Pflücker JC. Thymus Reconstitution in Young and Aged Mice Is Facilitated by In Vitro-Generated Progenitor T Cells. Front Immunol 2022; 13:926773. [PMID: 35874726 PMCID: PMC9304753 DOI: 10.3389/fimmu.2022.926773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged lag in T cell recovery seen in older patients undergoing hematopoietic stem cell transplant (HSCT), after chemo-/radiotherapy, can lead to immune dysfunction. As a result, recovering patients may experience a relapse in malignancies and opportunistic infections, leading to high mortality rates. The delay in T cell recovery is partly due to thymic involution, a natural collapse in the size and function of the thymus, as individuals age, and partly due to the damage sustained by the thymic stromal cells through exposure to chemo-/radiotherapy. There is a clear need for new strategies to accelerate intrathymic T cell reconstitution when treating aged patients to counter the effects of involution and cancer therapy regimens. Adoptive transfer of human progenitor T (proT) cells has been shown to accelerate T cell regeneration in radiation-treated young mice and to restore thymic architecture in immunodeficient mice. Here, we demonstrate that the adoptive transfer of in vitro-generated proT cells in aged mice (18-24 months) accelerated thymic reconstitution after treatment with chemotherapy and gamma irradiation compared to HSCT alone. We noted that aged mice appeared to have a more limited expansion of CD4-CD8- thymocytes and slower temporal kinetics in the development of donor proT cells into mature T cells, when compared to younger mice, despite following the same chemo/radiation regimen. This suggests a greater resilience of the young thymus compared to the aged thymus. Nevertheless, newly generated T cells from proT cell engrafted aged and young mice were readily present in the periphery accelerating the reappearance of new naïve T cells. Accelerated T cell recovery was also observed in both aged and young mice receiving both proT cells and HSCT. The strategy of transferring proT cells can potentially be used as an effective cellular therapy in aged patients to improve immune recovery and reduce the risk of opportunistic infections post-HSCT.
Collapse
Affiliation(s)
| | - Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Diplas BH, Santos PMG, Shahrokni A, Warner A, Iyengar P, Yang JT, Gomez DR, Palma DA, Tsai CJ. The Role of Ablative Radiotherapy in Older Adults With Limited Metastatic Disease. Semin Radiat Oncol 2022; 32:135-141. [PMID: 35307115 PMCID: PMC10898514 DOI: 10.1016/j.semradonc.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For patients with oligometastatic cancer, radiotherapy presents a promising avenue for achieving meaningful symptom relief and durable disease control. Data from recently published and ongoing randomized studies are helping to define the appropriate contexts for effective intervention with stereotactic ablative body radiotherapy (SABR) in the oligometastatic setting. Importantly, older adults represent a significant portion of patients with oligometastatic disease, yet often comprise a minority of patients in clinical trials. Moreover, older adults of the same chronologic age may have variable degrees of fitness and frailty. In this review, we highlight the specific challenges and considerations for the use of radiotherapy for older adults with oligometastatic disease-noting the importance of geriatric assessments in clinical decision-making about the appropriateness of SABR and other metastasis-directed therapies in this population. We then review data from existing trials, including a subset analysis of adverse events and survival estimates among older adults enrolled in the landmark SABR-COMET trial. Finally, we discuss future directions for research, including the need for focused clinical trials in older adult cohorts. Ultimately, a multidisciplinary approach is critical when carefully balancing the potential risks and benefits of this emerging treatment paradigm in the older adult population.
Collapse
Affiliation(s)
- Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Patricia Mae G Santos
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Armin Shahrokni
- Department of Medicine, Geriatrics Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew Warner
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Puneeth Iyengar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Jonathan T Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - C Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
23
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
24
|
Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. mBio 2022; 13:e0339421. [PMID: 35012337 PMCID: PMC8749422 DOI: 10.1128/mbio.03394-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.
Collapse
|
25
|
Akaba K, Igwilo H, Akaba E. Blood Use in Haematological Malignancies in Calabar. NIGERIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4103/njm.njm_11_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Balasubramanyam P, Basavarajegowda A, Hanumanthappa N, Negi VS, Harichandrakumar KT. Irradiating stored blood and storing irradiated blood: Is it different? - A study of serial changes in biochemical parameters of red blood cell units. Asian J Transfus Sci 2021; 15:172-178. [PMID: 34908750 PMCID: PMC8628233 DOI: 10.4103/ajts.ajts_71_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Gamma Irradiation of blood products accentuates biochemical changes in the blood stored at 4°C. This study tried to compare the changes in potassium, sodium, glucose, lactate, and lactate dehydrogenase (LDH) levels in packed red blood cell (PRBC) units irradiated at various time points and then stored versus those stored for a particular period then irradiated. METHODOLOGY One hundred and eighty units of RBCs were randomly assigned equally to be irradiated or not. Eighteen units each were irradiated by gamma irradiator using cobalt 60 (BI 2000) on day 1, 7, 14, 21, and 28 of their storage, respectively, in the irradiation group. All the units were assessed for their plasma levels of potassium, sodium, glucose, LDH, and lactate by clinical chemistry auto analyzer Beckman coulter AU680 weekly. The values were documented and analyzed by SPSS. RESULTS Baseline values on day 1 for studied biochemical parameters were comparable between irradiated and nonirradiated groups. Mean values of potassium, lactate and LDH were higher in irradiated than nonirradiated PRBC bags. In contrast, Sodium and Glucose mean values were lower than baseline values. Maximum cumulative mean values were noted in day-21 irradiated bags when the parameters were measured on day-28 for potassium and lactate levels. This was followed by day 14 irradiated bags, followed by day 7 irradiated bags. CONCLUSION The study indicates that irradiation of red cells later in their storage period had comparatively more detrimental changes in relation to potassium and lactate than irradiation in earlier days. Consideration of irradiation to be performed as close to the issue as possible to reduce a lesser number of days of storage postirradiation is to be explored.
Collapse
Affiliation(s)
- Pramanya Balasubramanyam
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Abhishekh Basavarajegowda
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Nandeesha Hanumanthappa
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - K T Harichandrakumar
- Department of Biostatistics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
27
|
Raices M, Bowman R, Smolikove S, Yanowitz JL. Aging Negatively Impacts DNA Repair and Bivalent Formation in the C. elegans Germ Line. Front Cell Dev Biol 2021; 9:695333. [PMID: 34422819 PMCID: PMC8371636 DOI: 10.3389/fcell.2021.695333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Defects in crossover (CO) formation during meiosis are a leading cause of birth defects, embryonic lethality, and infertility. In a wide range of species, maternal aging increases aneuploidy and decreases oocyte quality. In C. elegans which produce oocytes throughout the first half of adulthood, aging both decreases oocytes quality and increases meiotic errors. Phenotypes of mutations in genes encoding double-strand break (DSB)-associated proteins get more severe with maternal age suggesting that early meiosis reflects a particularly sensitive node during reproductive aging in the worm. We observed that aging has a direct effect on the integrity of C. elegans meiotic CO formation, as observed by an increase of univalent chromosomes and fusions at diakinesis, with a considerable increase starting at 4 days. We also characterize the possible causes for the age-related changes in CO formation by analyzing both steady-state levels and kinetics of the ssDNA binding proteins RPA-1 and RAD-51. Profound reductions in numbers of both RPA-1 and RAD-51 foci suggests that both DSB formation and early meiotic repair are compromised in aging worms. Using laser microirradiation and γ-irradiation to induce exogenous damage, we show specifically that recruitment of these homologous recombination proteins is altered. Repair defects can be seen in two-and-one-half day-old adults making the loss of germline repair capacity among the earliest aging phenotypes in the worm.
Collapse
Affiliation(s)
- Marilina Raices
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richard Bowman
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Developmental Biology, Microbiology and Molecular Genetics, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Low-dose radiotherapy for painful osteoarthritis of the elderly: A multicenter analysis of 970 patients with 1185 treated sites. Strahlenther Onkol 2021; 197:895-902. [PMID: 34342662 PMCID: PMC8458208 DOI: 10.1007/s00066-021-01816-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Painful osteoarthritis is common in elderly patients, and low-dose radiotherapy has been demonstrated to provide effective symptomatic treatment. We examined the analgesic effects of low-dose radiotherapy for osteoarthritis in the elderly aiming to reveal potential differences in the response rates relating to increasing age. METHODS A retrospective analysis was performed at two university hospitals including elderly patients (≥ 65 years) undergoing radiotherapy for osteoarthritis between 2008 and 2020. Pain intensity and response were quantified using the numerical rating scale (NRS) and the Pannewitz score. Age groups were defined for young old (65-74 years), older old (75-84 years), and oldest old patients (≥ 85 years). RESULTS In all, 970 patients with 1185 treated sites and a median age of 76 years were analyzed. Mean NRS was 66 at baseline (t0), 53 after radiotherapy (t1), and 44 at first follow-up (t2) (p < 0.001 for t0-t1, t1-t2, and t0-t2). At t1, 1.5% exhibited a Pannewitz score of 0 (no pain), 58.5% of 1-2 (less pain), 36.1% of 3 (equal pain), and 3.9% of 4 (worse pain), while at t2, pain response shifted towards 6.9% (0), 58.6% (1-2), 28.1% (3), and 6.3% (4). Pain response did not differ between age groups at t1 (p = 0.172) or t2 (p = 0.684). In addition, pain response after re-irradiation (n = 384 sites) was 61.0% and was comparable between age groups (p = 0.535). CONCLUSION Low-dose radiotherapy results in pain reduction in about two-thirds of treated sites with no difference relating to increasing age, showing that radiotherapy is an effective analgesic treatment for osteoarthritis even at advanced ages.
Collapse
|
29
|
Gradinaru D, Ungurianu A, Margina D, Moreno-Villanueva M, Bürkle A. Procaine-The Controversial Geroprotector Candidate: New Insights Regarding Its Molecular and Cellular Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617042. [PMID: 34373764 PMCID: PMC8349289 DOI: 10.1155/2021/3617042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Since its discovery in 1905 and its employment in everyday medical practice as a local anesthetic, to its highly controversial endorsement as an "anti-aging" molecule in the sixties and seventies, procaine is part of the history of medicine and gerontoprophylaxis. Procaine can be considered a "veteran" drug due to its long-time use in clinical practice, but is also a molecule which continues to incite interest, revealing new biological and pharmacological effects within novel experimental approaches. Therefore, this review is aimed at exploring and systematizing recent data on the biochemical, cellular, and molecular mechanisms involved in the antioxidant and potential geroprotective effects of procaine, focusing on the following aspects: (1) the research state-of-the-art, through an objective examination of scientific literature within the last 30 years, describing the positive, as well as the negative reports; (2) the experimental data supporting the beneficial effects of procaine in preventing or alleviating age-related pathology; and (3) the multifactorial pathways procaine impacts oxidative stress, inflammation, atherogenesis, cerebral age-related pathology, DNA damage, and methylation. According to reviewed data, procaine displayed antioxidant and cytoprotective actions in experimental models of myocardial ischemia/reperfusion injury, lipoprotein oxidation, endothelial-dependent vasorelaxation, inflammation, sepsis, intoxication, ionizing irradiation, cancer, and neurodegeneration. This analysis painted a complex pharmacological profile of procaine: a molecule that has not yet fully expressed its therapeutic potential in the treatment and prevention of aging-associated diseases. The numerous recent reports found demonstrate the rising interest in researching the multiple actions of procaine regulating key processes involved in cellular senescence. Its beneficial effects on cell/tissue functions and metabolism could designate procaine as a valuable candidate for the well-established Geroprotectors database.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, RO-020956 Bucharest, Romania
| | - Maria Moreno-Villanueva
- Department of Sport Science, Human Performance Research Centre, University of Konstanz, D-78457 Konstanz, Germany
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
30
|
Ameri A, Ameri P, Rahnama N, Mokhtari M, Sedaghat M, Hadavand F, Bozorgmehr R, Haghighi M, Taghizadeh-Hesary F. Low-Dose Whole-Lung Irradiation for COVID-19 Pneumonia: Final Results of a Pilot Study. Int J Radiat Oncol Biol Phys 2020; 109:859-866. [PMID: 33278503 PMCID: PMC7709599 DOI: 10.1016/j.ijrobp.2020.11.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Introduction Radiation therapy (RT), commonly used in cancer management, has been considered as one of the potential treatments for COVID-19 pneumonia. Here, we present the results of the pilot trial evaluating low-dose whole-lung irradiation (LD-WLI) in patients with COVID-19 pneumonia. Methods Ten patients with moderate COVID-19 pneumonia were treated with LD-WLI in a single fraction of 0.5 or 1.0 Gy along with the national protocol. The primary endpoint was an improvement in Spo2. The secondary endpoints were the number of days of hospital/intensive care unit stay, the number of intubations after RT, 28-day mortality, and changes in biomarkers. The response rate (RR) was defined as an increase in Spo2 upon RT with a rising or constant trend in the next 2 days, clinical recovery (CR) including patients who were discharged or acquired Spo2 ≥93% on room air, and 28-day mortality rate defined based on days of RT. Results The median age was 75 years (80% male). Five, 1, and 4 patients received single-dose 0.5 Gy, two-dose 0.5 Gy, and single-dose 1.0 Gy LD-WLI, respectively. The mean improvement in Spo2 at days 1 and 2 after RT was 2.4% (±4.8%) and 3.6% (±6.1%), respectively, with improvement in 9 patients after 1 day. Five, 1, and 4 patients were discharged, opted out of the trial, and died in the hospital, respectively. Two of 5 discharged patients died within 3 days at home. Among discharged patients, the Spo2 at discharge was 81% to 88% in 3 patients and 93% in the other 2 patients. Overall, the RR and CR were 63.6% and 55.5%, respectively. The RR, CR, and 28-day mortality of the single 0.5 Gy and 1.0 Gy WLI groups were 71.4% versus 50% (P = .57), 60% versus 50% (P = .64), and 50% versus 75% (P = .57), respectively. Conclusion LD-WLI with a single fraction of 0.5 Gy or 1 Gy is feasible. A randomized trial with patients who do not receive radiation is required to assess the efficacy of LD-WLI for COVID-19.
Collapse
Affiliation(s)
- Ahmad Ameri
- Department of Clinical Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Ameri
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Rahnama
- Department of Clinical Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Hadavand
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rama Bozorgmehr
- Clinical Research Development Unit, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Haghighi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
31
|
Shih YW, O'Brien AP, Hung CS, Chen KH, Hou WH, Tsai HT. Exposure to radiofrequency radiation increases the risk of breast cancer: A systematic review and meta-analysis. Exp Ther Med 2020; 21:23. [PMID: 33262809 PMCID: PMC7690245 DOI: 10.3892/etm.2020.9455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
The present systematic review and meta-analysis investigated the association between exposure to radiofrequency radiation and the risk of breast cancer. The published studies that were available in PubMed, Embase, Cochrane Library, Ovid MEDLINE, CINAHL Plus, Web of Science, Airiti Library, Networked Digital Library of Theses and Dissertations and ProQuest until May 2020 were investigated. A total of eight studies (four case-control and four cohort studies) were eligible for quantitative analysis. A significant association between radiofrequency radiation exposure and breast cancer risk was detected [pooled relative risk (RR)=1.189; 95% confidence interval (CI), 1.056-1.339]. Subgroup analyses indicated that radiofrequency radiation exposure significantly increased the risk of breast cancer susceptibility among subjects aged ≥50 years (RR=2.179; 95% CI, 1.260-3.770). Pooled estimates revealed that the use of electrical appliances, which emit radiofrequency radiation, such as mobile phones and computers, significantly increased breast cancer development (RR=2.057; 95% CI, 1.272-3.327), while occupational radiofrequency exposure and transmitters did not increase breast cancer development (RR=1.274; 95% CI, 0.956-1.697; RR=1.133; 95% CI, 0.987-1.300, respectively). It was concluded that radiofrequency radiation exposure significantly increased the risk of breast cancer, especially in women aged ≥50 years and in individuals who used electric appliances, such as mobile phones and computers. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-analysis, an evaluation protocol was prepared and registered with the PROSPERO database (registration no. CRD42018087283).
Collapse
Affiliation(s)
- Ya-Wen Shih
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Anthony Paul O'Brien
- Faculty of Health and Medicine, School of Nursing and Midwifery, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taipei 11031, Taiwan R.O.C.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taipei 11031, Taiwan R.O.C
| | - Kee-Hsin Chen
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Evidence-based Knowledge Translation Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Cochrane Taiwan, Taipei 11031, Taiwan R.O.C
| | - Wen-Hsuan Hou
- Cochrane Taiwan, Taipei 11031, Taiwan R.O.C.,Department of Physical Medicine and Rehabilitation/Center of Evidence-Based Medicine in Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan R.O.C.,Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Hsiu-Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C.,Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| |
Collapse
|
32
|
Wu T, Plett PA, Chua HL, Jacobsen M, Sandusky GE, MacVittie TJ, Orschell CM. Immune Reconstitution and Thymic Involution in the Acute and Delayed Hematopoietic Radiation Syndromes. HEALTH PHYSICS 2020; 119:647-658. [PMID: 32947490 PMCID: PMC7541734 DOI: 10.1097/hp.0000000000001352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
33
|
Dysregulated Cardiac IGF-1 Signaling and Antioxidant Response Are Associated with Radiation Sensitivity. Int J Mol Sci 2020; 21:ijms21145049. [PMID: 32708958 PMCID: PMC7404117 DOI: 10.3390/ijms21145049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022] Open
Abstract
Acute exposure to ionizing radiation leads to Hematopoietic Acute Radiation Syndrome (H-ARS). To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, adult males of two strains of minipig, one with higher radiosensitivity, the Gottingen minipig (GMP), and another strain with comparatively lower radiosensitivity, the Sinclair minipig (SMP), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling is associated with radiation sensitivity and regulation of cardiovascular homeostasis, we investigated the link between dysregulation of cardiac IGF-1 signaling and radiosensitivity. The adult male GMP; n = 48, and SMP; n = 24, were irradiated using gamma photons at 1.7–2.3 Gy doses. The animals that survived to day 45 after irradiation were euthanized and termed the survivors. Those animals that were euthanized prior to day 45 post-irradiation due to severe illness or health deterioration were termed the decedents. Cardiac tissue analysis of unirradiated and irradiated animals showed that inter-strain radiosensitivity and survival outcomes in H-ARS are associated with activation status of the cardiac IGF-1 signaling and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidant gene expression. Our data link H-ARS with dysregulation of cardiac IGF-1 signaling, and highlight the role of oxidative stress and cardiac antioxidant response in radiation sensitivity.
Collapse
|
34
|
McDonald AM, Chen Y, Wu J, Hageman L, Francisco L, Kung M, Wong FL, Ness E, Landier W, Battles K, Salzman D, Weisdorf DJ, Forman SJ, Arora M, Armenian SH, Bhatia S. Total Body Irradiation and Risk of Breast Cancer After Blood or Marrow Transplantation: A Blood or Marrow Transplantation Survivor Study Report. J Clin Oncol 2020; 38:2872-2882. [PMID: 32673169 DOI: 10.1200/jco.20.00231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To examine the association between total body irradiation (TBI) and subsequent breast cancer in women treated with blood or marrow transplantation (BMT) for hematologic malignancies. PATIENTS AND METHODS Participants were drawn from the BMT Survivor Study (BMTSS), a retrospective cohort study that included patients who underwent transplantation between 1974 and 2014 and survived for ≥ 2 years after BMT. Patients with pre-BMT chest radiation or a history of breast cancer were excluded. Participants completed the BMTSS survey, which included details regarding breast cancer diagnosis. Subsequent breast cancer was confirmed by pathology report review or physician notes. Cox proportional hazards models assessed the association between TBI and subsequent breast cancer. Standardized incidence ratios were calculated to determine the excess risk of subsequent breast cancer compared with that in the general population. RESULTS A total of 1,464 female BMT survivors (allogeneic: n = 788; autologous: n = 676) participated, with a median follow-up of 9.3 years from BMT. TBI was used in 660 patients (46%). Thirty-seven women developed subsequent breast cancer (allogeneic: n = 19; autologous: n = 18). Multivariable analysis revealed that exposure to TBI was associated with an increased risk of subsequent breast cancer among allogeneic BMT survivors (hazard ratio [HR], 3.7 [95% CI, 1.2 to 11.8]; P = .03) and autologous BMT survivors (HR, 2.6 [95% CI, 1.0 to 6.8]; P = .048). Pre-BMT exposure to alkylating agents was associated with an increased risk of subsequent breast cancer among autologous BMT survivors (HR, 3.3 [95% CI, 1.0 to 9.0]; P = .05). Compared with that in the general population, exposure to TBI at age < 30 years was associated with a 4.4-fold higher risk of subsequent breast cancer in allogeneic BMT survivors and a 4.6-fold higher risk in autologous BMT survivors. CONCLUSION The association between TBI and subsequent breast cancer, especially among those exposed at a young age, as well as pre-BMT exposure to alkylating agents, should inform breast cancer screening for early detection.
Collapse
Affiliation(s)
- Andrew M McDonald
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL.,Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Wu
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Liton Francisco
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Michelle Kung
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - F Lennie Wong
- Department of Population Sciences, City of Hope, Los Angeles, CA
| | - Emily Ness
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL.,Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Kevin Battles
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Donna Salzman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel J Weisdorf
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Los Angeles, CA
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Los Angeles, CA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL.,Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
35
|
The Radioprotective Effect of Procaine and Procaine-Derived Product Gerovital H3 in Lymphocytes from Young and Aged Individuals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3580934. [PMID: 32685092 PMCID: PMC7334788 DOI: 10.1155/2020/3580934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Ionizing radiation induces genomic instability in living organisms, and several studies reported an ageing-dependent radiosensitivity. Chemical compounds, such as scavengers, radioprotectors, and modifiers, contribute to reducing the radiation-associated toxicity. These compounds are often antioxidants, and therefore, in order to be effective, they must be present before or during exposure to radiation. However, not all antioxidants provide radioprotection. In this study, we investigated the effects of procaine and of a procaine-based product Gerovital H3 (GH3) on the formation of endogenous and X-ray-induced DNA strand breaks in peripheral blood mononuclear cells (PBMCs) isolated from young and elderly individuals. Interestingly, GH3 showed the strongest radioprotective effects in PBMCs from young subjects, while procaine reduced the endogenous amount of DNA strand breaks more pronounced in aged individuals. Both procaine and GH3 inhibited lipid peroxidation, but procaine was more effective in inhibiting mitochondria free radicals' generation, while GH3 showed a higher antioxidant action on macrophage-induced low-density lipoprotein oxidation. Our findings provide new insights into the mechanisms underlying the distinct effects of procaine and GH3 on DNA damage.
Collapse
|
36
|
Vieira CLZ, Garshick E, Alvares D, Schwartz J, Huang S, Vokonas P, Gold DR, Koutrakis P. Association between ambient beta particle radioactivity and lower hemoglobin concentrations in a cohort of elderly men. ENVIRONMENT INTERNATIONAL 2020; 139:105735. [PMID: 32304940 PMCID: PMC7285998 DOI: 10.1016/j.envint.2020.105735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 05/27/2023]
Abstract
Although ionizing radiation is known to have detrimental effects on red blood cells, the effect of environmental radioactivity associated with ambient particulate matter (PM) is unknown. We hypothesized that exposure to ambient PM-associated beta particle radioactivity (PRβ) would be associated with a lower hemoglobin concentration. We studied 1.704 participants from the Normative Aging Study (NAS) over 36 years (1981-2017) who lived in Eastern, MA and the surrounding area. Exposures to PRβ was assessed using USEPA's RadNet monitoring network that measures gross beta radiation associated with ambient PM. Mixed effect models with a random intercept adjusting for potential confounders was used, including ambient black carbon (BC) and particulate matter ≤2.5 μm (PM2.5) concentrations. Greater cumulative PRβ activities at 7-, 14-, 21- and 28-days before the hemoglobin determination were associated with lower hemoglobin concentrations. The greatest effect was for a 28-day moving average. An IQR of 0.83 × 10-4 Bq/m3 of ambient PRβ was associated with a 0.12 g/dL decrease in hemoglobin concentration (95%CI: -0.18 to -0.05). The effects of PRβ were similar when the models were adjusted for ambient BC or PM2.5. This is the first study to demonstrate an association between environmental ionizing radiation released from particulate matter with a lower hemoglobin concentration, suggesting that ambient radiation may contribute to the development of anemia.
Collapse
Affiliation(s)
- Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Danilo Alvares
- Department of Statistics, Pontificia Universidad Catolica de Chile, Macul, Santiago, Chile
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shaodan Huang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - P Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA, USA; School of Medicine and Public Health, Boston University, Boston, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
37
|
Schlaak RA, SenthilKumar G, Boerma M, Bergom C. Advances in Preclinical Research Models of Radiation-Induced Cardiac Toxicity. Cancers (Basel) 2020; 12:E415. [PMID: 32053873 PMCID: PMC7072196 DOI: 10.3390/cancers12020415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin; Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
38
|
Shao YH, Tsai K, Kim S, Wu YJ, Demissie K. Exposure to Tomographic Scans and Cancer Risks. JNCI Cancer Spectr 2020; 4:pkz072. [PMID: 32337490 PMCID: PMC7050152 DOI: 10.1093/jncics/pkz072] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Worldwide use of computed tomography (CT) scans has increased. However, the ionizing radiation from CT scans may increase the risk of cancer. This study examined the association between medical radiation from CT scans and the risk of thyroid cancer, lymphoma, and non-Hodgkin lymphoma (NHL) in adults. METHODS We conducted a nested case-control study in a cohort constructed from a population-based universal health insurance dataset in Taiwan in 2000-2013. In total, 22 853 thyroid cancer, 13 040 leukemia, and 20 157 NHL cases with their matched controls were included. Median follow-up times were 9.29-9.90 years for the three case-control groups. Medical radiation from CT scans was identified through physician order codes in medical insurance data from the index date to 3 years before a cancer diagnosis. Conditional logistic regression modeling was used for the overall and subsets of the population defined by sex and age groups to estimate the odds ratio (OR) and 95% confidence interval (CI) of the cancer risk associated with medical radiation. RESULTS Exposure to medical radiation from CT scans was associated with elevated risk of thyroid cancer (OR = 2.55, 95% CI = 2.36 to 2.75) and leukemia (OR = 1.55, 95% CI = 1.42 to 1.68). The elevated risk of thyroid cancer and leukemia in association with medical CT was stronger in women than in men. No statistically significant association between the risk of cancer and CT scans was observed in overall patients with NHL (OR = 1.05, 95% CI = 0.98 to 1.12); however, increased risks were found in patients aged 45 years or younger. A clear dose-response relationship was observed in patients 45 years or younger for all three cancers. CONCLUSIONS CT scans may be associated with an increased risk of thyroid cancer and leukemia in adults and in those diagnosed with NHL at a younger age.
Collapse
Affiliation(s)
- Yu-Hsuan Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kevin Tsai
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sinae Kim
- Department of Biostatistics, Rutgers School of Public Health, Piscataway, NJ
| | - Yu-Jen Wu
- Division of Radiology, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downtown Medical Center, Brooklyn, NY
| |
Collapse
|
39
|
Yu C. Don't be Caught Half-dressed When Working with Radiation. Cardiovasc Intervent Radiol 2019; 43:369-375. [PMID: 31844952 DOI: 10.1007/s00270-019-02391-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
Abstract
A typical 2-piece personal protective equipment apron covers only half the body. However, with radiation exposure there is evidence of the following: (1) Left-sided head exposure estimates equal to 100,000 chest X-rays over a 20-year career, (2) direct linear relationship between stroke and concentration of dose, (3) increases in ischemic heart disease and myocardial infarction, (4) accelerated aging processes, and (5) increased double-stranded DNA breaks in circulating lymphocytes when lower legs are exposed. Every exposure to ionizing radiation involves a health risk that accumulates. Interventionalists are treating more patients, more complex patients, using new complicated devices. Juxtaposed with the global obesity epidemic, the result is an unprecedented level of radiation exposure for those who use radiation in their daily work. By implementing a simple system of shields, we can dramatically reduce our radiation dose. This would give us a better chance to live a longer, healthier life, and pass quality DNA to our children. This narrative review examines the efficacy of protective barriers to reduce medical occupational radiation exposure and risk.
Collapse
Affiliation(s)
- Charlie Yu
- RadPro, 101 Cashew Rd. #06-03, Singapore, 679672, Singapore.
| |
Collapse
|
40
|
Henry E, Souissi-Sahraoui I, Deynoux M, Lefèvre A, Barroca V, Campalans A, Ménard V, Calvo J, Pflumio F, Arcangeli ML. Human hematopoietic stem/progenitor cells display reactive oxygen species-dependent long-term hematopoietic defects after exposure to low doses of ionizing radiations. Haematologica 2019; 105:2044-2055. [PMID: 31780635 PMCID: PMC7395291 DOI: 10.3324/haematol.2019.226936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem cells are responsible for life-long blood cell production and are highly sensitive to exogenous stresses. The effects of low doses of ionizing radiations on radiosensitive tissues such as the hematopoietic tissue are still unknown despite their increasing use in medical imaging. Here, we study the consequences of low doses of ionizing radiations on differentiation and self-renewal capacities of human primary hematopoietic stem/progenitor cells (HSPC). We found that a single 20 mGy dose impairs the hematopoietic reconstitution potential of human HSPC but not their differentiation properties. In contrast to high irradiation doses, low doses of irradiation do not induce DNA double strand breaks in HSPC but, similar to high doses, induce a rapid and transient increase of reactive oxygen species (ROS) that promotes activation of the p38MAPK pathway. HSPC treatment with ROS scavengers or p38MAPK inhibitor prior exposure to 20 mGy irradiation abolishes the 20 mGy-induced defects indicating that ROS and p38MAPK pathways are transducers of low doses of radiation effects. Taken together, these results show that a 20 mGy dose of ionizing radiation reduces the reconstitution potential of HSPC suggesting an effect on the self-renewal potential of human hematopoietic stem cells and pinpointing ROS or the p38MAPK as therapeutic targets. Inhibition of ROS or the p38MAPK pathway protects human primary HSPC from low-dose irradiation toxicity.
Collapse
Affiliation(s)
- Elia Henry
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Inès Souissi-Sahraoui
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Margaux Deynoux
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Andréas Lefèvre
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Vilma Barroca
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Anna Campalans
- UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay.,CEA, DRF-JACOB-IRCM-SIGRR-LRIG, UMR "Genetic stability, Stem Cells and Radiation"
| | - Véronique Ménard
- UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay.,UMR "Genetic stability, Stem Cells and Radiation", F-92265 Fontenay-aux-Roses, France
| | - Julien Calvo
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Françoise Pflumio
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis".,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| | - Marie-Laure Arcangeli
- INSERM, U1274, Laboratory "Niche, Cancer and Hematopoiesis" .,CEA, DRF-JACOB-IRCM-SCSR-LSHL, UMR "Genetic stability, Stem Cells and Radiation".,UMR "Genetic stability, Stem Cells and Radiation" Université de Paris.,UMR "Genetic stability, Stem Cells and Radiation", Université Paris-Saclay
| |
Collapse
|
41
|
Sokolenko VL, Sokolenko SV. Manifestations of allostatic load in residents of radiation contaminated areas aged 18–24 years. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We studied the features of allostatic load (AL) in 100 students aged 18–24 years old who, from birth to adulthood, lived in the territories assigned to the IV radiation zone after the Chornobyl accident (density of soil contamination by isotopes 137Cs 3.7–18.5∙104 Bq/m2) and underwent prolonged exposure to small doses of ionizing radiation. The examined students did not have any clinical signs of the immune-neuroendocrine system dysfunction. 50 people had signs of vegetative-vascular dystonia syndrome (VVD), 48 had signs of moderate hyperthyroidism and 21 had signs of moderate hypothyroidism. During the examination session, as a factor of additional psycho-emotional load, in 66 of the examined the immunoregulatory index CD4+/CD8+ went below the lower limit of the homeostatic norm, in 62 of the examined low density lipoprotein cholesterol (LDL-C) exceeded the upper level. The relative risk (RR) and attributable risk (AR) of the participation of potential secondary factors of allostatic load formation in CD4+/CD8+ immunoregulatory index going below the lower limit were calculated. The presence of statistically significant relative risk of participation in the formation of suppression of the index CD4+/CD8+: the state of hyperthyroidism, state of hypothyroidism, vegetative-vascular dystonia syndrome, higher than normal LDL-C. When the examined students combined the signs of hyperthyroidism, vegetative-vascular dystonia syndrome and higher level of LDL-C; with combination of signs of hypothyroidism, vegetative-vascular dystonia syndrome and higher level of LDL-C. The attributable risk in all cases exceeded 0.10, which confirmed the importance of some of these factors and their complexes in the formation of the effect of reduced immunoregulatory index. The CD4+/CD8+ index can be considered an important biomarker of AL and premature age-related changes in the immune system in residents of radiation-contaminated areas. The risk of AL formation in the case of occurrence of a complex of mediated secondary biomarkers (vegetative-vascular dystonia syndrome, thyroid dysfunction, hypercholesterolemia) is higher compared to their individual significance.
Collapse
|
42
|
Radiation dose monitoring: time for a paradigm change? Nucl Med Commun 2019; 40:1193-1194. [PMID: 31568195 DOI: 10.1097/mnm.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Vieira CLZ, Koutrakis P, Huang S, Grady S, Hart JE, Coull BA, Laden F, Requia W, Schwartz J, Garshick E. Short-term effects of particle gamma radiation activities on pulmonary function in COPD patients. ENVIRONMENTAL RESEARCH 2019; 175:221-227. [PMID: 31146094 PMCID: PMC6609300 DOI: 10.1016/j.envres.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND It is not known whether environmental gamma radiation measured in US cities has detectable adverse health effects. We assessed whether short-term exposure to gamma radiation emitted from ambient air particles [gamma particle activity (PRγ)] is associated with reduced pulmonary function in chronic obstructive pulmonary disease (COPD) patients. OBJECTIVE We hypothesize that the inhalation of gamma radiation emitted from ambient air particles may be associated with reduced pulmonary function in individuals with COPD. METHODS In 125 patients with COPD from Eastern Massachusetts who had up to 4 seasonal one-week assessments of particulate matter ≤2.5 μm (PM2.5), black carbon (BC), and sulfur followed by spirometry. The US EPA continuously monitors ambient gamma (γ) radiation including γ released from radionuclides attached to particulate matter that is recorded as 9 γ-energy spectra classes (i = 3-9) in counts per minute (CPMγ) in the Boston area (USA). We analyzed the associations between ambient and indoor PRγi (up to one week) and pre and post-bronchodilator (BD) forced expiratory volume in 1 s (FEV1) and with forced vital capacity (FVC) using mixed-effects regression models. We estimated indoor PRγi using the ratio of the indoor-to-outdoor sulfur in PM2.5 as a proxy for infiltration of ambient radionuclide-associated particles. RESULTS Overall, exposures to ambient and indoor PRγi were associated with a similar decrease in pre- and post-BD FEV1 and FVC. For example, ambient PRγ3 exposure averaged from the day of pulmonary function testing through the previous 3 days [IQR of 55.1 counts per minute (CPMγ)] was associated with a decrease in pre-BD FEV1 of 21.0 ml (95%CI: -38.5 to -3.0 ml; p < 0.01) and pre-BD FVC of 27.5 ml [95% confidence interval (CI): -50.7 to -5.0 ml; p < 0.01] with similar effects adjusting for indoor and outdoor BC and PM2.5. CONCLUSION Our results show that short-term ambient and indoor exposures to environmental gamma radiation associated with particulate matter are associated with reduced pre- and post-BD pulmonary function in patients with COPD.
Collapse
Affiliation(s)
- Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shaodan Huang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie Grady
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Research and Development Service, VA Boston Health Care System, Boston, MA, USA
| | - Jaime E Hart
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Weeberb Requia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
Mild environmental stress might have beneficial effects in aging by activating maintenance and repair processes in cells and organs. These beneficial stress effects fit to the concept of hormesis. Prominent stressors acting in a hormetic way are physical exercises, fasting, cold and heat. This review will introduce some toxins, which have been found to induce hormetic responses in animal models of aging research. To highlight the molecular signature of these hormetic effects we will depict signaling pathways affected by low doses of toxins on cellular and organismic level. As prominent examples for signaling pathways involved in both aging processes as well as toxin responses, PI3K/Akt/mTOR- and AMPK-signal transduction will be described in more detail. Due to the striking overlap of signaling pathways mediating toxin induced responses and aging processes we propose considering the ability of low doses of toxins to slow down the rate of aging.
Collapse
|
45
|
Loss of C/EBPδ Exacerbates Radiation-Induced Cognitive Decline in Aged Mice due to Impaired Oxidative Stress Response. Int J Mol Sci 2019; 20:ijms20040885. [PMID: 30781689 PMCID: PMC6412914 DOI: 10.3390/ijms20040885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Aging is characterized by increased inflammation and deterioration of the cellular stress responses such as the oxidant/antioxidant equilibrium, DNA damage repair fidelity, and telomeric attrition. All these factors contribute to the increased radiation sensitivity in the elderly as shown by epidemiological studies of the Japanese atomic bomb survivors. There is a global increase in the aging population, who may be at increased risk of exposure to ionizing radiation (IR) as part of cancer therapy or accidental exposure. Therefore, it is critical to delineate the factors that exacerbate age-related radiation sensitivity and neurocognitive decline. The transcription factor CCAAT enhancer binding protein delta (C/EBPδ) is implicated with regulatory roles in neuroinflammation, learning, and memory, however its role in IR-induced neurocognitive decline and aging is not known. The purpose of this study was to delineate the role of C/EBPδ in IR-induced neurocognitive decline in aged mice. We report that aged Cebpd−/− mice exposed to acute IR exposure display impairment in short-term memory and spatial memory that correlated with significant alterations in the morphology of neurons in the dentate gyrus (DG) and CA1 apical and basal regions. There were no significant changes in the expression of inflammatory markers. However, the expression of superoxide dismutase 2 (SOD2) and catalase (CAT) were altered post-IR in the hippocampus of aged Cebpd−/− mice. These results suggest that Cebpd may protect from IR-induced neurocognitive dysfunction by suppressing oxidative stress in aged mice.
Collapse
|
46
|
Vekshin NL, Frolova MS. A Multiparametric Equation for Calculation of the Animal Lifespan. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
47
|
Ahmad I. Occupational radiation dose limits: Towards breaking the one-size-fits-all paradigm. Phys Med 2018; 55:155-156. [PMID: 30340846 DOI: 10.1016/j.ejmp.2018.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
48
|
Khan K, Tewari S, Awasthi NP, Mishra SP, Agarwal GR, Rastogi M, Husain N. Flow cytometric detection of gamma-H2AX to evaluate DNA damage by low dose diagnostic irradiation. Med Hypotheses 2018; 115:22-28. [DOI: 10.1016/j.mehy.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 01/25/2023]
|
49
|
Li M, You L, Xue J, Lu Y. Ionizing Radiation-Induced Cellular Senescence in Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini Review. Front Pharmacol 2018; 9:522. [PMID: 29872395 PMCID: PMC5972185 DOI: 10.3389/fphar.2018.00522] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/30/2018] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence is identified by a living cell in irreversible and persistent cell cycle arrest in response to various cellular stresses. Senescent cells secrete senescence-associated secretory phenotype factors that can amplify cellular senescence and alter the microenvironments. Radiotherapy, via ionizing radiation, serves as an effective treatment for local tumor control with side effects on normal cells, which can induce inflammation and fibrosis in irradiated and nearby regions. Research has revealed that senescent phenotype is observable in irradiated organs. This process starts with DNA damage mediated by radiation, after which a G2 arrest occurs in virtually all eukaryotic cells and a mitotic bypass is possibly necessary to ultimately establish cellular senescence. Within this complex DNA damage response signaling network, ataxia telangiectasia-mutated protein, p53, and p21 stand out as the crucial mediators. Senolytic agents, a class of small molecules that can selectively kill senescent cells, hold great potential to substantially reduce the side effects caused by radiotherapy while reasonably steer clear of carcinogenesis.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liting You
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Schuster B, Ellmann A, Mayo T, Auer J, Haas M, Hecht M, Fietkau R, Distel LV. Rate of individuals with clearly increased radiosensitivity rise with age both in healthy individuals and in cancer patients. BMC Geriatr 2018; 18:105. [PMID: 29728069 PMCID: PMC5935967 DOI: 10.1186/s12877-018-0799-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The question of an age dependence of individual radiosensitivity has only marginally been studied so far. Therefore, we analyzed blood samples of healthy individuals and cancer patients of different ages to determine individual radiosensitivity. METHODS Ex vivo irradiated blood samples of 595 individuals were tested. Chromosomes 1, 2 and 4 were stained by 3-color fluorescence in situ hybridization and aberrations were analyzed. Radiosensitivity was determined by the mean breaks per metaphase (B/M). RESULTS Healthy individuals (mean age 50.7 years) had an average B/M value of 0.42 ± 0.104 and an increase of 0.0014B/M per year. The patients (mean age 60.4 years) had an average B/M value of 0.44 ± 0.150 and radiosensitivity did not change with age. In previous studies we found that from a value of 0.6B/M on an individual is considered to be distinctly radiosensitive. The portion of radiosensitive individuals (B/M > 0.6) increased in both cohorts with age. CONCLUSION Individual radiosensitivity rises continuously with age, yet with strong interindividual variation. No age related increase of radiosensitivity can be demonstrated in patients due to the strong interindividual variation. However among old cancer patients there is a higher probability to have patients with clearly increased radiosensitivity than at younger age.
Collapse
Affiliation(s)
- Barbara Schuster
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Anna Ellmann
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Theresa Mayo
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Judith Auer
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Matthias Haas
- Department of Radiology, Charité Universitätsmedizin, Berlin, Germany
| | - Markus Hecht
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany.
| |
Collapse
|