1
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
4
|
Qiu ZK, Zhou BX, Pang J, Zeng WQ, Wu HB, Yang F. The network pharmacology study and molecular docking to investigate the potential mechanism of Acoritataninowii Rhizoma against Alzheimer's Disease. Metab Brain Dis 2023; 38:1937-1962. [PMID: 37032419 DOI: 10.1007/s11011-023-01179-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/04/2023] [Indexed: 04/11/2023]
Abstract
Alzheimer's Disease is considered as an insidious neurodegenerative progressive disease but its pathogenesis has not been elucidated. Acoritataninowii Rhizoma exhibits anti-dementia effects as a traditional Chinese medicine (TCM), which is linked to its anti- Alzheimer's Disease mechanism. In this study, network pharmacology and molecular docking were used to examine the potential of Acoritataninowii Rhizoma for Alzheimer's Disease. In order to construct PPI networks and drug-component-target-disease networks, disease-related genes and proteins were gathered from the database. Gene ontology (GO), pathway enrichment (KEGG), and molecular docking were used to forecast the potential mechanism of Acoritataninowii Rhizoma on Alzheimer's disease. Therefore, 4 active ingredients and 81 target genes were screened from Acoritataninowii Rhizoma, 6765 specific target genes were screened from Alzheimer's Disease, and 61 drug-disease cross genes were validated. GO analysis showed that Acoritataninowii Rhizoma can regulate processes such as the protein serine/threonine kinase associated with MAPK. KeGG pathway analysis showed that the signaling pathways affected by Acoritataninowii Rhizoma were fluid shear stress and atherosclerosis, AGE-RAGE and other pathways. Molecular docking implied that the pharmacological influences of the bioactive constituents of Acoritataninowii Rhizoma (Cycloaartenol and kaempferol) on Alzheimer's Disease may related to ESR1 and AKT1, respectively. AKT1 and ESR1 may be the core target genes of the treatment for Alzheimer's disease. Kaempferol and Cycloartenol might be core bioactive constituents for treatment.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Bai-Xian Zhou
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China
| | - Jiali Pang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China
| | - Wei-Qiang Zeng
- Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan, China
| | - Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fan Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China.
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China.
| |
Collapse
|
5
|
Xie Y, Liu L, Zheng J, Shi K, Ai W, Zhang X, Wang P, Lan Z, Chen L. Polygoni Multiflori Radix Praeparata and Acori Tatarinowii Rhizoma ameliorate scopolamine-induced cognitive impairment by regulating the cholinergic and synaptic associated proteins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116400. [PMID: 37003402 DOI: 10.1016/j.jep.2023.116400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Polygoni Multiflori Radix Praeparata (PMRP) and Acori Tatarinowii Rhizoma (ATR) is often used in traditional Chinese medicine to prevent and treat Alzheimer's disease (AD). However, it is not clear whether the effects and mechanisms of the decoction prepared by traditional decocting method (PA) is different from that prepared by modern decocting method (P + A). AIM OF THE STUDY The present study aimed to investigate the differences in the protective effects of PA and P + A on scopolamine induced cognitive impairment, and to explore its potential mechanism. MATERIALS AND METHODS To assess the protective effect of PA and P + A on cognitive dysfunction, the mice were orally administrated with PA (1.56, 6.24 g kg-1•day-1) and P + A (1.56, 6.24 g kg-1•day-1) for 26 days before co-treatment with scopolamine (4 mg kg-1•day-1, i.p.). The learning and memory abilities of mice were examined by Morris water maze test, and the expressions of proteins related to cholinergic system and synaptic function were detected by the methods of ELISA, real-time PCR and Western blotting. Then, molecular docking technique was used to verify the effect of active compounds in plasma after PA administration on Acetylcholinesterase (AChE) protein. Finally, the Ellman method was used to evaluate the effects of different concentrations of PA, P + A (1 μg/mL-100 mg/mL) and the compounds (1-100 μM) on AChE activity in vitro. RESULTS On one hand, in the scopolamine-induced cognitive impairment mouse model, both of PA and P + A could improve the cognitive impairment, while the effect of PA on cognitive amelioration was better than that of P + A. Moreover, PA regulated the cholinergic and synaptic functions by enhancing the concentration of acetylcholine (ACh), the mRNA levels of CHT1, Syn, GAP-43 and PSD-95, and the related proteins (CHT1, VACHT, Syn, GAP-43 and PSD-95), and significantly inhibiting the expression of AChE protein. Meanwhile, P + A only up-regulated the mRNA levels of GAP-43 and PSD-95, increased the expressions of CHT1, VACHT, Syn, GAP-43 and PSD-95 proteins, and inhibited the expression of AChE protein. On the other hand, the in vitro study showed that some compounds including emodin-8-o-β-d-Glucopyranoside, THSG and α-Asarone inhibited AChE protein activity with the IC50 values 3.65 μM, 5.42 μM and 9.43 μM, respectively. CONCLUSIONS These findings demonstrate that both of PA and P + A can ameliorate the cognitive deficits by enhancing cholinergic and synaptic related proteins, while PA has the stronger improvement effect on the cholinergic function, which may be attributed to the compounds including THSG, emodin, emodin-8-O-β-D-glucopyranoside and α-asarone. The present study indicated that PA has more therapeutic potential in the treatment of neurodegenerative diseases such as AD. The results provide the experimental basis for the clinical use of PA.
Collapse
Affiliation(s)
- Yuman Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Li Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Junzuo Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Kun Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Wenqi Ai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Xuesong Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Wen J, Yang Y, Hao J. Acori Tatarinowii Rhizoma: A comprehensive review of its chemical composition, pharmacology, pharmacokinetics and toxicity. Front Pharmacol 2023; 14:1090526. [PMID: 37007031 PMCID: PMC10060561 DOI: 10.3389/fphar.2023.1090526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Acori Tatarinowii Rhizoma (ATR, Shi Chang Pu in Chinese), a natural product with multiple targets in various diseases. This review provides the comprehensive summary of the chemical composition, pharmacological effects, pharmacokinetics parameters and toxicity of ATR. The results indicated that ATR possesses a wide spectrum of chemical composition, including volatile oil, terpenoids, organic acids, flavonoids, amino acids, lignin, carbohydrates and so on. Accumulating evidence from various studies has shown that ATR exerts a wide range of pharmacological properties, including protecting nerve cells, alleviating learning and memory impairment, anti-ischemic, anti-myocardial ischemia, anti-arrhythmic, anti-tumor, anti-bacterial, and anti-oxidant activities. Currently, ATR is widely used in the central nervous system, cardiovascular system, gastrointestinal digestive system, respiratory system in China, and for the treatment of epilepsy, depression, amnesia, consciousness, anxiety, insomnia, aphasia, tinnitus, cancers, dementia, stroke, skin diseases, and other complex diseases. Pharmacokinetic studies indicated that β-asarone, α-asarone, cis-methylisoeugenol, and asarylaldehyde, the active components of ATR, were absorbed slowly after oral administration of ATR. Moreover, toxicity studies have suggested that ATR has no carcinogenic, teratogenic and mutagenic toxicity. Nevertheless, long term or high-dose toxicity testing in animals to explore the acute and chronic toxicity of acori Tatarinowii Rhizoma is still lacking. In view of good pharmacological activities, ATR is expected to be a potential drug candidate for the treatment of Alzheimer’s disease, depression, or ulcerative colitis. However, further studies are needed to elucidate its chemical composition, pharmacological effects, molecular mechanisms and targets, improve its oral bioavailability, and clarify its potential toxicity.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
- *Correspondence: Jianxia Wen, ; Junjie Hao,
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
| | - Junjie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Jianxia Wen, ; Junjie Hao,
| |
Collapse
|
7
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
8
|
Zhou Y, Wang X, Liu Y, Gu Y, Gu R, Zhang G, Lin Q. Mechanisms of abnormal adult hippocampal neurogenesis in Alzheimer's disease. Front Neurosci 2023; 17:1125376. [PMID: 36875663 PMCID: PMC9975352 DOI: 10.3389/fnins.2023.1125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system, the most common type of dementia in old age, which causes progressive loss of cognitive functions such as thoughts, memory, reasoning, behavioral abilities and social skills, affecting the daily life of patients. The dentate gyrus of the hippocampus is a key area for learning and memory functions, and an important site of adult hippocampal neurogenesis (AHN) in normal mammals. AHN mainly consists of the proliferation, differentiation, survival and maturation of newborn neurons and occurs throughout adulthood, but the level of AHN decreases with age. In AD, the AHN will be affected to different degrees at different times, and its exact molecular mechanisms are increasingly elucidated. In this review, we summarize the changes of AHN in AD and its alteration mechanism, which will help lay the foundation for further research on the pathogenesis and diagnostic and therapeutic approaches of AD.
Collapse
Affiliation(s)
- Yujuan Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xu Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | - Yulu Gu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Geng Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Shen W, Jiang N, Zhou W. What can traditional Chinese medicine do for adult neurogenesis? Front Neurosci 2023; 17:1158228. [PMID: 37123359 PMCID: PMC10130459 DOI: 10.3389/fnins.2023.1158228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Adult neurogenesis plays a crucial role in cognitive function and mood regulation, while aberrant adult neurogenesis contributes to various neurological and psychiatric diseases. With a better understanding of the significance of adult neurogenesis, the demand for improving adult neurogenesis is increasing. More and more research has shown that traditional Chinese medicine (TCM), including TCM prescriptions (TCMPs), Chinese herbal medicine, and bioactive components, has unique advantages in treating neurological and psychiatric diseases by regulating adult neurogenesis at various stages, including proliferation, differentiation, and maturation. In this review, we summarize the progress of TCM in improving adult neurogenesis and the key possible mechanisms by which TCM may benefit it. Finally, we suggest the possible strategies of TCM to improve adult neurogenesis in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| | - Wenxia Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| |
Collapse
|
10
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
11
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
12
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
13
|
Zhao H, Wei J, Du Y, Chen P, Liu X, Liu H. Improved cognitive impairments by silencing DMP1 via enhancing the proliferation of neural progenitor cell in Alzheimer-like mice. Aging Cell 2022; 21:e13601. [PMID: 35366382 PMCID: PMC9124312 DOI: 10.1111/acel.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is age-related progressive neurological dysfunction. Limited clinical benefits for current treatments indicate an urgent need for novel therapeutic strategies. Previous transcriptomic analysis showed that DMP1 expression level was increased in AD model animals whereas it can induce cell-cycle arrest in several cell lines. However, whether the cell-cycle arrest of neural progenitor cell induced by DMP1 affects cognitive function in Alzheimer-like mice still remains unknown. The objective of our study is to explore the issue. We found that DMP1 is correlated with cognitive function based on the clinical genomic analysis of ADNI database. The negative role of DMP1 on neural progenitor cell (NPC) proliferation was revealed by silencing and overexpressing DMP1 in vitro. Furthermore, silencing DMP1 could increase the number of NPCs and improve cognitive function in Alzheimer-like mice, through decreasing P53 and P21 levels, which suggested that DMP1-induced cell-cycle arrest could influence cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yanan Du
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | | |
Collapse
|
14
|
Shen W, Fan X, Wang L, Zhang Y. Traditional Chinese Medicine for Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:816333. [PMID: 35237166 PMCID: PMC8883343 DOI: 10.3389/fphar.2022.816333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Post-stroke cognitive impairment (PSCI) affects more than one-third of stroke patients, and causes much greater harm to long-term function than the initial brain damage. No conventional Western medications have shown convincing clinical effectiveness for treating PSCI. Research shows that Traditional Chinese medicine (TCM) can improve cognitive function in patients. However, the clinical efficacy and safety remain controversial. The aim of this study was to examine the effectiveness and harmful effects of TCMs in the treatment of PSCI. Method: We searched seven databases and two clinical registration websites for randomized controlled trials (RCTs). The revised Cochrane risk of bias tool (RoB 2.0) was used to evaluate the methodological quality and RevMan 5.4 was used for data analysis. This study has been submitted to PROSPERO with registration number is CRD42020149299. Results: We included 34 studies in this review. The results of this study showed that TCM adjuvant therapy improved scores on the MoCA [MD = 2.55, 95% CI (1.56, 3.53), p < 0.00001; MD = 3.07, 95% CI (1.98, 4.17), p < 0.00001 at treatment duration of <3 and 3 months, respectively], MMSE [MD = 2.55, 95% CI (1.99, 3.10), p < 0.00001; MD = 2.53, 95% CI (1.59, 3.47), p < 0.00001; MD = 2.91, 95% CI (1.26, 4.56), p = 0.0006; MD = 3.11, 95% CI (-0.04, 6.27), p = 0.05 at treatment duration of <3, 3, 4, and 6 months, respectively], and BI [MD = 7.34, 95% CI (3.83, 10.85), p < 0.0001; MD = 8.98, 95% CI (4.76, 13.21), p < 0.0001 at treatment duration of <3 and 3 months, respectively] and reduced scores on the ADL (MD = -8.64, 95% CI (-9.83, -7.45), p < 0.00001; MD = -2.00, 95% CI (-2.94, -1.06), p < 0.0001 at treatment duration of 3 and 4 months, respectively], NIHSS [MD = -2.48, 95% CI (-4.97, 0.00), p = 0.05; MD = -3.81, 95% CI (-6.21, -1.40), p = 0.002 at treatment duration of <3 and 3 months, respectively], and CSS [MD = -2.47, 95% CI (-3.49, -1.45), p < 0.00001 at a treatment duration of 3 months]. No serious adverse reactions were observed. Conclusion: Despite the significant positive results, the present evidence supports, to a limited extent because of the methodological flaws and herbal heterogeneity, that TCM adjuvant therapy can be used for patients with PSCI. While, further rigorous RCTs are warranted to confirm the efficacy and safety of TCM. Systematic Review Registration: https://www.crd.york.ac.uk/prospero, identifier CRD42020149299.
Collapse
Affiliation(s)
- Wei Shen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueming Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway. Acta Pharmacol Sin 2022; 43:588-601. [PMID: 33967278 PMCID: PMC8888632 DOI: 10.1038/s41401-021-00678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is a common adaptive response to a variety of stimuli, but prolonged hypertrophy leads to heart failure. Hence, discovery of agents treating cardiac hypertrophy is urgently needed. In the present study, we investigated the effects of QF84139, a newly synthesized pyrazine derivative, on cardiac hypertrophy and the underlying mechanisms. In neonatal rat cardiomyocytes (NRCMs), pretreatment with QF84139 (1-10 μM) concentration-dependently inhibited phenylephrine-induced hypertrophic responses characterized by fetal genes reactivation, increased ANP protein level and enlarged cardiomyocytes. In adult male mice, administration of QF84139 (5-90 mg·kg-1·d-1, i.p., for 2 weeks) dose-dependently reversed transverse aortic constriction (TAC)-induced cardiac hypertrophy displayed by cardiomyocyte size, left ventricular mass, heart weights, and reactivation of fetal genes. We further revealed that QF84139 selectively activated the AMPK signaling pathway without affecting the phosphorylation of CaMKIIδ, ERK1/2, AKT, PKCε, and P38 kinases in phenylephrine-treated NRCMs and in the hearts of TAC-treated mice. In NRCMs, QF84139 did not show additive effects with metformin on the AMPK activation, whereas the anti-hypertrophic effect of QF84139 was abolished by an AMPK inhibitor Compound C or knockdown of AMPKα2. In AMPKα2-deficient mice, the anti-hypertrophic effect of QF84139 was also vanished. These results demonstrate that QF84139 attenuates the PE- and TAC-induced cardiac hypertrophy via activating the AMPK signaling. This structurally novel compound would be a promising lead compound for developing effective agents for the treatment of cardiac hypertrophy.
Collapse
|
16
|
Icarisid
II
rescues cognitive dysfunction via activation of Wnt/β‐catenin signaling pathway promoting hippocampal neurogenesis in
APP
/
PS1
transgenic mice. Phytother Res 2022; 36:2095-2108. [DOI: 10.1002/ptr.7430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
|
17
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
18
|
Xiong W, Zhao X, Xu Q, Wei G, Zhang L, Fan Y, Wen L, Liu Y, Zhang T, Zhang L, Tong Y, Yin Q, Zhang TE, Yan Z. Qisheng Wan formula ameliorates cognitive impairment of Alzheimer's disease rat via inflammation inhibition and intestinal microbiota regulation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114598. [PMID: 34492320 DOI: 10.1016/j.jep.2021.114598] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Qisheng Wan formula (QWF) was first described in the book Sheng Ji Zong Lu in 1117. The book states that QWF can cure forgetfulness, improve the mind, and make people smart. Hence, QWF has been widely used to treat patients with forgetfulness or dementia. QWF, a classic Chinese formulation, comprises seven herbal drugs: the sclerotium of Poria cocos (Schw.) Wolf, bark of Cinnamomum cassia Presl, root of Polygala tenuifolia Willd., root and rhizome of Panax ginseng C. A. Mey., root of Asparagus cochinchinensis (Lour.) Merr., root and rhizome of Acorus tatarinowii Schott, and root bark of Lycium chinense Mill. AIM OF THE STUDY This study aimed to utilize modern pharmacological methods to evaluate the therapeutic effects and explore the underlying mechanism of QWF action on rats with Alzheimer's disease (AD). MATERIALS AND METHODS The chemical profile of QWF was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The AD rat model was established via a bilateral intraventricular injection of amyloid-β (1-42) (Aβ1-42). The rats were subsequently treated daily with QWF for 4 weeks. The Morris water maze test was performed to evaluate the cognition processes in the rats, whereas histological changes in the hippocampus were observed using hematoxylin and eosin staining. The expression levels of Aβ1-42, nuclear factor-kappa B (NF-κB), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the hippocampus and colon were assessed. Moreover, the diversity and composition of the intestinal microbiota were analyzed using 16S rDNA gene sequencing. RESULTS One hundred and fourteen compounds were characterized in QWF. QWF significantly ameliorated the cognition processes and histopathological damages due to AD in rats by decreasing the deposition of Aβ1-42 and downregulating the expression of NF-κB, TNF-α, and IL-6. QWF also modulated changes in the diversity and composition of intestinal microbiota to suppress the relative abundance of inflammation-associated microbiota. CONCLUSION This study showed that QWF can suppress proinflammatory factors and modulate the intestinal microbiota in AD rats.
Collapse
Affiliation(s)
- Wei Xiong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Qing Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Liudai Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Yuqing Fan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Lingmiao Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Yanjun Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Tinglan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Li Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Yan Tong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| | - Qiaozhi Yin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Tian-E Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| |
Collapse
|
19
|
Wang XF, Xiao HH, Wu YT, Kong L, Chen JC, Yang JX, Hu XL. Active constituent of Polygala tenuifolia attenuates cognitive deficits by rescuing hippocampal neurogenesis in APP/PS1 transgenic mice. BMC Complement Med Ther 2021; 21:267. [PMID: 34696749 PMCID: PMC8543956 DOI: 10.1186/s12906-021-03437-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common dementia worldwide, and there is still no satisfactory drug or therapeutic strategy. Polygala tenuifolia is a traditional Chinese medicine with multiple neuroprotective effects. In present study, we investigated the effects of three active constituents [3,6'-disinapoyl sucrose (DISS), onjisaponin B (OB) and tenuifolin (TEN)] of Polygala tenuifolia (PT) on the proliferation and differentiation of neural stem cells (NSCs) to identify the potential active constituent of PT promoting hippocampal neurogenesis. METHODS NSCs were isolated from hippocampi of newborn C57BL/6 mice, and transfected with mutant amyloid precursor protein (APP) gene to establish an AD cell model (APP-NSCs). 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were performed, and the proliferation and differentiation of NSCs were assessed by neurosphere formation assay, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and immunofluorescence (IF) staining analysis. APP/PS1 transgenic mice were administrated with the potential active constituent DISS for 4 weeks. Morris water maze (MWM), Nissl staining assay and IF staining assays were carried out to evaluate the cognitive function, neural damages and hippocampal neurogenesis, respectively. RESULTS DISS exerted the optimal ability to strengthen APP-NSCs proliferation and neuronal differentiation, followed by OB and TEN. Furthermore, DISS treatment for 4 weeks strikingly rescued the cognitive deficits, neuronal injures, and neurogenesis disorder in adult APP/PS1 transgenic mice. CONCLUSIONS Our findings demonstrated that DISS is the constituent of PT that triggers the most potent increase of hippocampal neurogenesis in our mouse model of AD.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Center for Neuromedicine of Dalian Municipal Central Hospital, 42 Xuegong Street, Shahekou District, Dalian, Liaoning Province, 116033, People's Republic of China
| | - Hong-He Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Yu-Tong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Ji-Cong Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China.
| | - Xiao-le Hu
- Center for Neuromedicine of Dalian Municipal Central Hospital, 42 Xuegong Street, Shahekou District, Dalian, Liaoning Province, 116033, People's Republic of China.
| |
Collapse
|
20
|
Ning F, Chen L, Chen L, Liu X, Zhu Y, Hu J, Xie G, Xia J, Shi K, Lan Z, Wang P. Combination of Polygoni Multiflori Radix Praeparata and Acori Tatarinowii Rhizoma Alleviates Learning and Memory Impairment in Scopolamine-Treated Mice by Regulating Synaptic-Related Proteins. Front Pharmacol 2021; 12:679573. [PMID: 34393775 PMCID: PMC8360279 DOI: 10.3389/fphar.2021.679573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Polygoni Multiflori Radix Praeparata (ZhiHeShouWu, PMRP) and Acori Tatarinowii Rhizoma (ShiChangPu, ATR) and their traditional combination (PA) are frequently used in traditional Chinese medicine to prevent and treat Alzheimer disease (AD) based on the theory that PMRP tonifies the kidney and ATR dissipates phlegm. However, the components of PA and their mechanisms of action are not known. The present study analyzed the active components of PA, and investigated the protective effect of PA against cognitive impairment induced by scopolamine in mice along with the underlying mechanism.The aqueous extract of PA was analyzed by high-performance liquid chromatography–mass spectrometry (HPLC-MS) and gas chromatography (GC)-MS in order to identify the major components. To evaluate the protective effect of PA against cognitive dysfunction, mice were orally administered PA, PMRP, or ATR for 30 days before treatment with scopolamine. Learning and memory were assessed in mice with the Morris water maze test; neurotransmitter levels in the hippocampus were analyzed by HPLC-MS; and the expression of synapse-related proteins in the hippocampus was detected by western blotting and immunohistochemistry. Eight active compounds in PA and rat plasma were identified by HPLC-MS and GC-MS. Plasma concentrations of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside, emodin, α-asarone, and asarylaldehyde were increased following PA administration; meanwhile, gallic acid, emodin-8-O-β-d-glucopyranoside, β-asarone, and cis-methyl isoeugenol concentrations were similar in rats treated with PA, PMRP, and ATR. In scopolamine-treated mice, PA increased the concentrations of neurotransmitters in the hippocampus, activated the brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) signaling pathway, and increased the expression of p90 ribosomal S6 kinase (p90RSK) and postsynaptic density (PSD)95 proteins. Thus, PA alleviates cognitive deficits by enhancing synaptic-related proteins, suggesting that it has therapeutic potential for the treatment of aging-related diseases such as AD.
Collapse
Affiliation(s)
- Funan Ning
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Department of Pharmacy, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Lvyi Chen
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Linlin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xin Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yao Zhu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiayi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guangjing Xie
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaxuan Xia
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kun Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
21
|
The next step of neurogenesis in the context of Alzheimer's disease. Mol Biol Rep 2021; 48:5647-5660. [PMID: 34232464 DOI: 10.1007/s11033-021-06520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer's disease (AD). AD is a progressive and complex neurodegenerative diseases, which is very debilitating. The purpose of this paper is to review recent research into neurogenesis and AD and discuss how pharmacological drugs and herbal active components have impacts on neurogenesis and consequently improve cognitive functions. To date, despite huge research, no effective treatment has been approved for AD. Therefore, an avenue for future research and drug discovery is stimulating adult hippocampal neurogenesis (AHN). Evidence suggests that neurogenesis is regulated by the pharmacological treatment that may be recommended as a part of prophylaxis and therapeutic options for AD. However, the underlying mechanisms of regulating neurogenesis in AD are not well understood. To this point, we highlight to achieve an efficient treatment in AD by manipulating neurogenesis, it's necessary to target all steps of neurogenesis.
Collapse
|
22
|
Xiao HH, Zhang MB, Xu JT, Deng Y, Li N, Gao P, Li Y, Kong L, Li WY, Chen JC, Li HY, Shan GS, Tai H, Yang JX. Icarisid II promotes proliferation and neuronal differentiation of neural stem cells via activating Wnt/β-catenin signaling pathway. Phytother Res 2021; 35:2773-2784. [PMID: 33455039 DOI: 10.1002/ptr.7022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 01/03/2023]
Abstract
Adult neurogenesis plays a vital role in maintaining cognitive functions in mammals and human beings. Mobilization of hippocampal neurogenesis has been regarded as a promising therapeutic approach to restore injured neurons in neurodegenerative diseases including Alzheimer's disease (AD). Icarisid II (ICS II), an active ingredient derived from Epimedii Folium, has been reported to exhibit multiple neuroprotective effects. In the present study, we investigated the effects of ICS II on the proliferation and differentiation of neural stem cells (NSCs) and amyloid precusor protein (APP)-overexpressing NSCs (APP-NSCs) in vitro. Our results demonstrated that ICS II dose-dependently suppressed apoptosis and elevated viability of APP-NSCs. ICS II (1 μM) potently promoted proliferation and neuronal differentiation of NSCs and APP-NSCs. ICS II (1 μM) significantly upregulated Wnt-3a expression, increased the phosphorylation of glycogen synthase kinase-3β and enhanced the nuclear transfer of β-catenin. Moreover, ICS II also promoted astrocytes to secrete Wnt-3a, which positively modulates Wnt/β-catenin signaling pathway. These findings demonstrate that ICS II promotes NSCs proliferation and neuronal differentiation partly by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hong-He Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming-Bo Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jun-Ting Xu
- Psychiatry department, Dalian Seventh People' s Hospital, Dalian, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ning Li
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Peng Gao
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wan-Yi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ji-Cong Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hong-Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guo-Shun Shan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - He Tai
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
23
|
Zheng Y, Huang Z, Xu J, Hou K, Yu Y, Lv S, Chen L, Li Y, Quan C, Chi G. MiR-124 and Small Molecules Synergistically Regulate the Generation of Neuronal Cells from Rat Cortical Reactive Astrocytes. Mol Neurobiol 2021; 58:2447-2464. [PMID: 33725319 DOI: 10.1007/s12035-021-02345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023]
Abstract
Irreversible neuron loss caused by central nervous system injuries usually leads to persistent neurological dysfunction. Reactive astrocytes, because of their high proliferative capacity, proximity to neuronal lineage, and significant involvement in glial scarring, are ideal starting cells for neuronal regeneration. Having previously identified several small molecules as important regulators of astrocyte-to-neuron reprogramming, we established herein that miR-124, ruxolitinib, SB203580, and forskolin could co-regulate rat cortical reactive astrocyte-to-neuron conversion. The induced cells had reduced astroglial properties, displayed typical neuronal morphologies, and expressed neuronal markers, reflecting 25.9% of cholinergic neurons and 22.3% of glutamatergic neurons. Gene analysis revealed that induced neuron gene expression patterns were more similar to that of primary neurons than of initial reactive astrocytes. On the molecular level, miR-124-driven neuronal differentiation of reactive astrocytes was via targeting of the SOX9-NFIA-HES1 axis to inhibit HES1 expression. In conclusion, we present a novel approach to inducing endogenous rat cortical reactive astrocytes into neurons through co-regulation involving miR-124 and three small molecules. Thus, our research has potential implications for inhibiting glial scar formation and promoting neuronal regeneration after central nervous system injury or disease.
Collapse
Affiliation(s)
- Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Kun Hou
- The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Lin Chen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
24
|
Wang D, Hu G, Wang J, Yan D, Wang M, Yang L, Serikuly N, Alpyshov E, Demin KA, Galstyan DS, Amstislavskaya TG, de Abreu MS, Kalueff AV. Studying CNS effects of Traditional Chinese Medicine using zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113383. [PMID: 32918992 DOI: 10.1016/j.jep.2020.113383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
25
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
26
|
Effects of Phenylethanoid Glycosides Extracted from Herba Cistanches on the Learning and Memory of the APP/PSI Transgenic Mice with Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1291549. [PMID: 33532488 PMCID: PMC7834784 DOI: 10.1155/2021/1291549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022]
Abstract
Background To investigate the effects of phenylethanoid glycosides (PhGs) extracted from Herba Cistanches on the behavioral and cognition capacity of the APP/PSI transgenic mice with Alzheimer's disease (AD). Methods AD mice were randomly divided into the control group, model group, donepezil group, PhG groups, and verbascose group, respectively. Three weeks later, the animals were subject to behavioral and cognition evaluation by the nesting test, Morris water maze test, and step-down test. Results The cognition capacity in these groups showed a significant increase compared with that in the model group. The step-down test indicated that the errors induced by the memory decrease in the PhG groups and verbascose group showed a significant decrease compared with those in the model group (P < 0.05). Conclusions PhGs attenuated the cognitive dysfunction features of the APP/PSI transgenic gene. Besides, PhGs were the active components for the anti-AD activity of H. Cistanches.
Collapse
|
27
|
Zeng L, Zhang D, Liu Q, Zhang J, Mu K, Gao X, Zhang K, Li H, Wang Q, Zheng Y, Mao S. Alpha-asarone Improves Cognitive Function of APP/PS1 Mice and Reducing Aβ 42, P-tau and Neuroinflammation, and Promoting Neuron Survival in the Hippocampus. Neuroscience 2021; 458:141-152. [PMID: 33412244 DOI: 10.1016/j.neuroscience.2020.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease most often characterized by memory impairment and cognitive decline. Alpha-asarone has been reported to have the potential to treat AD. Our previous studies have found that alpha-asarone improves aged rats' cognitive function by alleviating neuronal excitotoxicity via type A gamma-aminobutyric acid (GABA) receptors. GABA level's change, neuroinflammation, and dysfunctional autophagy are found to be associated with AD. However, the effect of alpha-asarone on cognitive function of APP/PS1 transgenic mice and its underlying mechanism in terms of aggregation of amyloid-β42 (Aβ42) and phosphorylated tau (p-tau), glutamic acid decarboxylase (GAD) level, neuroinflammation, and autophagy are unclear. Accordingly, we attempted to explore whether alpha-asarone improves AD mice's cognitive function and alleviates pathological symptoms by regulating GAD level, inhibiting neuroinflammation, or restore autophagy. We found that alpha-asarone enhanced spatial learning memory and decreased Aβ42 and p-tau levels without influencing the GAD level in APP/PS1 transgenic mice. Also, it decreased the GFAP expression and reduced pro-inflammatory cytokines levels, thus alleviating neuroinflammation. Furthermore, alpha-asarone decreased the excess number of autophagosomes and promoted hippocampal neurons' survival. In conclusion, the results confirmed the therapeutic effect of alpha-asarone on AD-related astrogliosis, dysfunctional autophagy, and neuronal damage, which indicates its great potential to treat AD.
Collapse
Affiliation(s)
- Lili Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keman Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Yang Y, Wang D, Zhao Y, Wang Y, Bi Y, Bi T. Metabolomics study of cerebrospinal fluid from diabetic rats with cognitive impairment simultaneously treated with Panax quinquefolius and Acorus gramineus. Biomed Chromatogr 2020; 35:e5041. [PMID: 33274456 DOI: 10.1002/bmc.5041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
A metabolomics approach was used to explore the effects of Panax quinquefolius (PQ) and Acorus gramineus (AG) on learning and memory in rats with diabetic-induced cognitive impairment. Thirty Wistar rats were divided into three groups, namely, the normal group, model group, and PQ-AG group (PQ-AG group, 1.80 g/kg/d). Diabetes was induced by intraperitoneal injection of streptozotocin (65 mg/kg). Cerebrospinal fluid (CSF) was collected via cisterna magna puncture, and the Morris water maze method was used to evaluate learning and memory in rats after 11 weeks of PQ-AG treatment. Metabolic profiling of CSF samples was performed by using UPLC-Q-TOF-MS. Compared with the normal group, the escape latency of the Morris water maze was significantly prolonged in model group rats after 12 weeks (p < 0.01). Compared with the model group, however, the escape latency was significantly shortened in PQ-AG group rats (p < 0.05). In multivariate statistical analysis, we identified 33 potential biomarkers, and six biomarkers were altered by PQ-AG. These biomarkers were involved in the metabolism of pyrimidine; nicotinate, and nicotinamide; glycine, serine, and threonine; and ascorbate and aldarate. Taken collectively, our results indicate that PQ-AG can attenuate diabetic-induced cognitive impairment by affecting a variety of metabolic pathways. Our results provide an experimental basis for studying the mechanism of action of PQ-AG.
Collapse
Affiliation(s)
- Yang Yang
- Harbin University of Commerce, College of Pharmacy, Harbin, China
| | - Dongxue Wang
- Harbin University of Commerce, College of Pharmacy, Harbin, China
| | - Ying Zhao
- Harbin University of Commerce, College of Pharmacy, Harbin, China
| | - Yue Wang
- Harbin University of Commerce, College of Pharmacy, Harbin, China
| | - Yuying Bi
- Harbin University of Commerce, College of Pharmacy, Harbin, China
| | - Tiantian Bi
- Harbin University of Commerce, College of Pharmacy, Harbin, China
| |
Collapse
|
29
|
Zhong J, Qiu X, Yu Q, Chen H, Yan C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol 2020; 163:464-475. [PMID: 32621930 DOI: 10.1016/j.ijbiomac.2020.06.266] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022]
Abstract
Our previous study has indicated that a crude polysaccharide derived from Acorus tatarinowii, AT50, remarkably improves learning and memory in scopolamine-induced amnesic mice and prevents the release of inflammatory mediators. To further explore the bioactive constituents of AT50, a novel polysaccharide (ATP50-3) was purified, and its anti-neuroinflammatory effects and underlying mechanisms were investigated. ATP50-3 significantly reduced abnormal elevation of inflammatory mediators in lipopolysaccharide (LPS)-induced proinflammatory BV2 cells in vitro and inhibited the activation of nuclear factor kappa B (NF-κB). Moreover, ATP50-3 down-regulated LPS-induced protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein (MyD88), p-PI3K (phosphoinositide 3-kinase), and p-Akt (protein kinase B). Further experiments demonstrated that TAK242 (a TLR4 inhibitor) and LY294002 (a PI3K inhibitor) remarkably augmented ATP50-3's down-regulation on LPS-induced proinflammatory mediators. Importantly, ATP50-3 provided neuroprotection against neuroinflammation-induced neurotoxicity in primary cortical and hippocampal neurons by mitigating overproduction of reactive oxygen species and damage to the mitochondrial membrane potential (MMP). Taken together, our findings suggest that ATP50-3 exerts anti-neuroinflammatory and neuroprotective effects through modulation of TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xian Qiu
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Ramalingam P, Ganesan P, Prabakaran DS, Gupta PK, Jonnalagadda S, Govindarajan K, Vishnu R, Sivalingam K, Sodha S, Choi DK, Ko YT. Lipid Nanoparticles Improve the Uptake of α-Asarone Into the Brain Parenchyma: Formulation, Characterization, In Vivo Pharmacokinetics, and Brain Delivery. AAPS PharmSciTech 2020; 21:299. [PMID: 33140227 DOI: 10.1208/s12249-020-01832-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Treatment of brain-related diseases is one of the most strenuous challenges in drug delivery research due to numerous hurdles, including poor blood-brain barrier penetration, lack of specificity, and severe systemic toxicities. Our research primarily focuses on the delivery of natural therapeutic compound, α-asarone, for the treatment of brain-related diseases. However, α-asarone has poor aqueous solubility, bioavailability, and stability, all of which are critical issues that need to be addressed. This study aims at formulating a lipid nanoparticulate system of α-asarone (A-LNPs) that could be used as a brain drug delivery system. The physicochemical, solid-state properties, stability, and in vitro and in vivo studies of the A-LNPs were characterized. The release of α-asarone from the A-LNPs was prolonged and sustained. After intravenous administration of A-LNPs or free α-asarone, significantly higher levels of α-asarone from the A-LNPs were detected in murine plasma and brain parenchyma fractions, confirming the ability of A-LNPs to not only maintain a therapeutic concentration of α-asarone in the plasma, but also transport α-asarone across the blood-brain barrier. These findings confirm that lipid nanoparticulate systems enable penetration of natural therapeutic compound α-asarone through the blood-brain barrier and may be a candidate for the treatment of brain-related diseases.
Collapse
|
31
|
Herb-Derived Products: Natural Tools to Delay and Counteract Stem Cell Senescence. Stem Cells Int 2020; 2020:8827038. [PMID: 33101419 PMCID: PMC7568162 DOI: 10.1155/2020/8827038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) in situ exhibit a diminished capacity of self-renewal and show a decline in their functionality. The identification of interventions able to prevent the accumulation of senescent SCs in the organism or to pretreat cultured multipotent mesenchymal stromal cells (MSCs) prior to employing them for cell therapy is a main purpose of medical research. Many approaches have been investigated and resulted effective to prevent or counteract SC senescence in humans, as well as other animal models. In this work, we have reviewed the chance of using a number of herb-derived products as novel tools in the treatment of cell senescence, highlighting the efficacy of these agents, often still far from being clearly understood.
Collapse
|
32
|
Moreira NCDS, Lima JEBDF, Chierrito TPC, Carvalho I, Sakamoto-Hojo ET. Novel Hybrid Acetylcholinesterase Inhibitors Induce Differentiation and Neuritogenesis in Neuronal Cells in vitro Through Activation of the AKT Pathway. J Alzheimers Dis 2020; 78:353-370. [PMID: 32986667 DOI: 10.3233/jad-200425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive loss of episodic memory associated with amyloid-β peptide aggregation and the abnormal phosphorylation of the tau protein, leading to the loss of cholinergic function. Acetylcholinesterase (AChE) inhibitors are the main class of drugs used in AD therapy. OBJECTIVE The aim of the current study was to evaluate the potential of two tacrine-donepezil hybrid molecules (TA8Amino and TAHB3), which are AChE inhibitors, to induce neurodifferentiation and neuritogenesis in SH-SY5Y cells. METHODS The experiments were carried out to characterize neurodifferentiation, cellular changes related to responses to oxidative stress and pathways of cell survival in response to drug treatments. RESULTS The results indicated that the compounds did not present cytotoxic effects in SH-SY5Y or HepG2 cells. TA8Amino and TAHB3 induced neurodifferentiation and neuritogenesis in SH-SY5Y cells. These cells showed increased levels of intracellular and mitochondrial reactive oxygen species; the induction of oxidative stress was also demonstrated by an increase in SOD1 expression in TA8Amino and TAHB3-treated cells. Cells treated with the compounds showed an increase in PTEN(Ser380/Thr382/383) and AKT(Ser473) expression, suggesting the involvement of the AKT pathway. CONCLUSION Our results demonstrated that TA8Amino and TAHB3 present advantages as potential drugs for AD therapy and that they are capable of inducing neurodifferentiation and neuritogenesis.
Collapse
Affiliation(s)
| | | | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Xiao H, Li H, Song H, Kong L, Yan X, Li Y, Deng Y, Tai H, Wu Y, Ni Y, Li W, Chen J, Yang J. Shenzao jiannao oral liquid, an herbal formula, ameliorates cognitive impairments by rescuing neuronal death and triggering endogenous neurogenesis in AD-like mice induced by a combination of Aβ42 and scopolamine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112957. [PMID: 32416248 DOI: 10.1016/j.jep.2020.112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the theory of traditional Chinese medicine (TCM), Alzheimer's disease (AD) is identified as "forgetfulness" or "dementia", and is mainly caused by "kidney essence deficiency" which ultimately induces "encephala reduction". Therefore, herbal formulas possessing the efficacy of nourishing kidney essence or replenishing brain marrow are commonly served as effective strategies for AD treatment. Shenzao jiannao oral liquid (SZJN), a traditional Chinese preparation approved by the China Food and Drug Administration (CFDA), is used for the treatment of insomnia and mind fatigue at present for its efficacy of nourishing kidneys. In present study, we found that SZJN could improve cognitive function of AD-like mice. AIMS OF STUDY This study aims to investigate the effects of SJZN on ameliorating cognitive deficits of AD-like mouse model, and to illuminate the underlying mechanisms from the perspective of neuroprotection and neurogenesis. MATERIALS AND METHODS Kunming mice (28 ± 2 g) were randomly allocated into seven groups: control, sham, model, donepezil and SZJN groups (low, middle and high). The AD mouse model was established by Aβ42 combined with scopolamine. SZJN were intragastrically administrated at doses of 0.3, 1.5 and 7.5 g/kg for 28 days. Morris water maze (MWM) test was applied to determine the cognitive function. Hematoxylin eosin (HE) and Nissl staining were carried out to evaluate pathological damages in the cortex and hippocampal tissues. To explore the protective effects of SZJN on multiple pathogenic factors of AD, protein levels of Aβ42, glial fibrillary acidic protein (GFAP), Bax, Bcl-2, Caspase-3, synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and neurogenesis related proteins were assessed using Immunofluorescence (IF) and western blot analysis. In vitro, the AD cell model was established by transduction of APP695swe genes into Neural stem cells (NSCs) isolated from the hippocampal tissues of neonatal C57BL/6 mice. Cell viability assay and neurosphere formation assay were carried out to verify the efficacy of SZJN on proliferation of NSCs. RESULTS Our results demonstrated that SZJN (1.5 g/kg and 7.5 g/kg) treatment significantly ameliorated cognitive deficits of AD-like mice. SZJN (7.5 g/kg) treatment significantly retarded the pathological damages including neuronal degeneration, neuronal apoptosis, Aβ peptides aggregation and reaction of astrocytes in AD-like mice. In addition, SZJN (7.5 g/kg) increased the expression of BDNF and SYP, and restored the abnormal level of MDA and SOD in the brain of AD-like mice. Furthermore, SZJN treatment for 28 days remarkably increased the proliferation of NSCs evidenced by more Nestin+ and BrdU+ cells in the hippocampal DG regions, and increased the amount of mature neurons marked by NeuN both in the cortex and hippocampal DG regions. In vitro, SZJN treatement (16, 32, 64 mg/ml) promoted the proliferation of NSCs evidenced by the increased amount and enlarged size of the neurospheres (p < 0.05). CONCLUSIONS Our findings indicated that SZJN could ameliorate cognitive deficits by protecting neurons from death and triggering endogenous neurogenesis. Therefore, SZJN may be considered as a promising agent to restore neuronal loss and deter the deterioration in AD patients.
Collapse
Affiliation(s)
- Honghe Xiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China.
| | - Hongyan Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Huipeng Song
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Liang Kong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Xin Yan
- Diaoyutai Pharmaceutical Group Jilin Tianqiang Pharmaceutical co. LTD, 309 Renmin Street, Tonghua, 135300, PR China
| | - Yan Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Yan Deng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - He Tai
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Visera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Huanggu District Chongshan Road No. 79, Shenyang, Liaoning, 110847, PR China
| | - Yutong Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Yingnan Ni
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Wanyi Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Jicong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China
| | - Jingxian Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, 116600, PR China.
| |
Collapse
|
34
|
Enhancing and Complementary Mechanisms of Synergistic Action of Acori Tatarinowii Rhizoma and Codonopsis Radix for Alzheimer's Disease Based on Systems Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6317230. [PMID: 32802132 PMCID: PMC7334796 DOI: 10.1155/2020/6317230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Materials and Methods In this study, a systems pharmacology-based strategy was used to elucidate the synergistic mechanism of Acori Tatarinowii Rhizoma and Codonopsis Radix for the treatment of AD. This novel systems pharmacology model consisted of component information, pharmacokinetic analysis, and pharmacological data. Additionally, the related pathways were compressed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the organ distributions were determined in the BioGPS bank. Results Sixty-eight active ingredients with suitable pharmacokinetic profiles and biological activities were selected through ADME screening in silico. Based on 62 AD-related targets, such as APP, CHRM1, and PTGS1, systematic analysis showed that these two herbs were mainly involved in the PI3K-Akt signaling pathway, MAPK signaling pathway, neuroactive ligand-receptor interaction, and fluid shear stress and atherosclerosis, indicating that they had a synergistic effect on AD. However, ATR acted on the KDR gene, while CR acted on IGF1R, MET, IL1B, and CHUK, showing that they also had complementary effects on AD. The ingredient contribution score involved 29 ingredients contributing 90.14% of the total contribution score of this formula for AD treatment, which emphasized that the effective therapeutic effects of these herbs for AD were derived from both ATR and CR, not a single herb. Organ distribution showed that the targets of the active ingredients were mainly located in the whole blood, the brain, and the muscle, which are associated with AD. Conclusions In sum, our findings suggest that the systems pharmacology methods successfully revealed the synergistic and complementary mechanisms of ATR and CR for the treatment of AD.
Collapse
|
35
|
Yan L, Liu Z, Xu L, Qian Y, Song P, Wei M. Identification of volatile active components in Acori Tatarinowii Rhizome essential oil from different regions in China by C6 glioma cells. BMC Complement Med Ther 2020; 20:255. [PMID: 32807141 PMCID: PMC7430108 DOI: 10.1186/s12906-020-03020-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Acori Tatarinowii Rhizome (ATR) is a well-recognized Chinese herbal medicine prescribed to treat neurological disorders. The essential oil (ATEO) is considered as the active fraction of ATR and the content of ATEO is used as the only indicator for ATR content determination. The quality of ATEO varies widely due to region difference; however, little is known about how to study ATEO quality chemically and biologically in response to region difference. Thus, it is of great importance to identify volatile active components in ATEO to conduct quality study. In this study, we analyzed ATEO from different regions in China using chemical component analysis combined with biological activity evaluation. Methods GC-MS was used to obtain different volatile component profiles of ATEO and significantly changed volatile components were screened out. The neuroprotective activities of ATEO, including anti-oxidation, anti-inflammation and neurotrophic functions, were revealed in C6 glioma cells. The correlation study between the bioactivities and the components was performed. Results 57 volatile components, including terpenoids, phenylpropanoids, aromatic compounds, and other aliphatic compounds, were identified. 8 volatile components (β-asarone, cis-methyl isoeugenol, γ-asarone, methyleugenol, calarene, longifolene, β-caryophyllene and caryophyllene oxide) from ATEO were significantly changed due to region difference and 2 of them (β-asarone and γ-asarone) showed strong correlation with neuroprotective activities. Conclusions Our results reveal that ATEO from different regions in China show great changes in chemical composition and biological activity. Moreover, phenylpropanoids (β-asarone and γ-asarone) present strong correlation with the bioactivities, which are considered as volatile active components in ATEO. The findings will be useful for the development of quality study of ATEO.
Collapse
Affiliation(s)
- Lu Yan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing, 210014, China
| | - Zhanzhan Liu
- North Information Control Research Academy Group Co., Ltd., Nanjing, 211153, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy Sciences, Beijing, 100085, China
| | - Yiyun Qian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing, 210014, China
| | - Pingping Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing, 210014, China
| | - Min Wei
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China. .,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China. .,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Gerplasm, Nanjing, 210014, China.
| |
Collapse
|
36
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
37
|
Zhang Y, Wu Y, Fu Y, Lin L, Lin Y, Zhang Y, Ji L, Li C. Anti-Alzheimer's Disease Molecular Mechanism of Acori Tatarinowii Rhizoma Based on Network Pharmacology. Med Sci Monit Basic Res 2020; 26:e924203. [PMID: 32475979 PMCID: PMC7304315 DOI: 10.12659/msmbr.924203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Acori Tatarinowii Rhizoma (ATR), a traditional Chinese herbal medicine, is used to treat Alzheimer's disease (AD), which is a worldwide degenerative brain disease. The aim of this study was to identify the potential mechanism and molecular targets of ATR in AD by using network pharmacology. MATERIAL AND METHODS The potential targets of the active ingredients of ATR were predicted by PharmMapper, and the targets of Alzheimer's disease were searched by DisGeNET. All screened genes were intersected to obtain potential targets for the active ingredients of ATR. The protein-protein interaction network of possible targets was established by STRING, GO Enrichment, and KEGG pathway enrichment analyses using the Annotation of DAVID database. Next, Cytoscape was used to build the "components-targets-pathways" networks. Additionally, a "disease-component-gene-pathways" network was constructed and verified by molecular docking methods. In addition, the active constituents ß-asarone and ß-caryophyllene were used to detect Aß₁₋₄₂-mediated SH-SY5Y cells, and mRNA expression levels of APP, Tau, and core target genes were estimated by qRT-PCR. RESULTS The results showed that the active components of ATR participate in related biological processes such as cancer, inflammation, cellular metabolism, and metabolic pathways and are closely related to the 13 predictive targets: ESR1, PPARG, AR, CASP3, JAK2, MAPK14, MAP2K1, ABL1, PTPN1, NR3C1, MET, INSR, and PRKACA. The ATR active components of ß-caryophyllene significantly reduced the mRNA expression levels of APP, TAU, ESR1, PTPN1, and JAK2. CONCLUSIONS The targets and mechanism corresponding to the active ingredients of ATR were investigated systematically, and novel ideas and directions were provided to further study the mechanism of ATR in AD.
Collapse
Affiliation(s)
- Yujia Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yangsheng Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yunbo Fu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Luning Lin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yiyou Lin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yehui Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Liting Ji
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Changyu Li
- Department of Chinese Pharmacy, School of Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
38
|
Xiao H, Wang Y, Wu Y, Li H, Liang X, Lin Y, Kong L, Ni Y, Deng Y, Li Y, Li W, Yang J. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neurosci Res 2020; 164:33-45. [PMID: 32302734 DOI: 10.1016/j.neures.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with notable factors of dysfunction in multiple neurological changes, encompassing neuronal loss in the frontal cortex and hippocampal regions. Dysfunction of proliferation and self-renewal of neural stem cells (NSCs) was observed in AD patients and animals. Thereby, mobilizing endogenous neurogenesis by pharmacological agents would provide a promising route for neurodegeneration. Osthole (Ost), a natural coumarin derivative, has been reported to exert extensive neuroprotective effects in AD. However, whether ost can facilitate endogenous neurogenesis against AD in vivo is still unknown. In this study, by using Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, Nissl staining, immunofluorescence analysis and western blot, we demonstrated that oral administration of ost could improve the learning and memory function, inhibit neuronal apoptosis, elevate the expression of glial cell line derived neurotrophic factor (GDNF), synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Moreover, ost could remarkably enhance proliferation of NSCs and increase the amount of mature neurons in APP/PS1 transgenic mice. Together, our findings demonstrated that ost possessed the ability of promoting endogenous neurogenesis and ost could be served as a plausible agent to reverse or slow down the progress of AD.
Collapse
Affiliation(s)
- Honghe Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Yuying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yutong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xicai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yin Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yingnan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wanyi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
39
|
The Essential Oil from Acori Tatarinowii Rhizome (the Dried Rhizome of Acorus tatarinowii Schott) Prevents Hydrogen Peroxide-Induced Cell Injury in PC12 Cells: A Signaling Triggered by CREB/PGC-1 α Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4845028. [PMID: 32215040 PMCID: PMC7085381 DOI: 10.1155/2020/4845028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/26/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
Acori Tatarinowii Rhizome (ATR, the dried rhizome of Acorus tatarinowii Schott), a well-recognized traditional Chinese herbal medicine, is prescribed to treat neurological disorders. The essential oil is considered as the active fraction of ATR, and the neuroprotection of ATR essential oil (ATEO) is proven, including the protection against oxidative stress. However, the cellular mechanism of ATEO against oxidative stress has not been fully illustrated. In this study, to investigate the cellular mechanism of ATEO, the cytoprotective effect of ATEO against H2O2-induced injury was revealed in PC12 cells. ATEO treatment increased the viability of cells affected by H2O2-mediated injury, inhibited reactive oxygen species (ROS) accumulation, and induced the expression of several antioxidant proteins (SODs, GPx, and UCPs). The cytoprotective effect of ATEO was related to upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression, which was counteracted by PGC-1α specific knockdown. Using inhibitor of protein kinase A (PKA), we found that cAMP-response element binding protein (CREB) activation was involved in ATEO-induced PGC-1α expression. Taken together, we suggest that ATEO effectively prevents H2O2-induced cell injury possibly through the activation of CREB/PGC-1α signaling in PC12 cells. The results provide a molecular insight into the effect of ATEO on cytoprotection against oxidative stress.
Collapse
|
40
|
An Y, Zhang H, Huang S, Pei G. PL201, a Reported Rhamnoside Against Alzheimer's Disease Pathology, Alleviates Neuroinflammation and Stimulates Nrf2 Signaling. Front Immunol 2020; 11:162. [PMID: 32174909 PMCID: PMC7056876 DOI: 10.3389/fimmu.2020.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Neuroinflammation induced by overactivated glia cells is believed to be a major hallmark of Alzheimer's disease (AD) and a hopeful target against AD. A rhamnoside PL201 was previously reported to promote neurogenesis and ameliorate AD, and in this study, we revealed that PL201 also significantly reduced accumulation of the activated microglia and proinflammatory cytokines in APP/PS1 mice. In vitro, PL201 consistently suppressed the microglia induction of proinflammatory cytokines after stimulation with lipopolysaccharides and Aβ42. Further mechanistic studies demonstrated that PL201 considerably enhanced the expression level and the nuclear translocation of Nrf2, a key regulator of neuroinflammation. Moreover, PL201 effectively stimulated Nrf2 signaling cascade, including upregulation of HO-1 and downregulation of NF-κB pathway. Thus, our findings indicated the anti-neuroinflammatory effect by PL201 in vivo and suggested that PL201 or the like, with multiple functions such as neurogenesis, mitochondria maintenance, and anti-neuroinflammation, could be a promising candidate in AD treatment.
Collapse
Affiliation(s)
- Yuqian An
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041327. [PMID: 32079110 PMCID: PMC7072986 DOI: 10.3390/ijms21041327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by extracellular amyloid plaques composed of the β-amyloid peptides and intracellular neurofibrillary tangles and associates with progressive declines in memory and cognition. Several genes play important roles and regulate enzymes that produce a pathological accumulation of β-amyloid in the brain, such as gamma secretase (γ-secretase). Induced pluripotent stem cells from patients with Alzheimer’s disease with different underlying genetic mechanisms may help model different phenotypes of Alzheimer’s disease and facilitate personalized drug screening platforms for the identification of small molecules. We also discuss recent developments by γ-secretase inhibitors and modulators in the treatment of AD. In addition, small-molecule drugs isolated from Chinese herbal medicines have been shown effective in treating Alzheimer’s disease. We propose a mechanism of small-molecule drugs in treating Alzheimer’s disease. Combining therapy with different small-molecule drugs may increase the chance of symptomatic treatment. A customized strategy tailored to individuals and in combination with therapy may be a more suitable treatment option for Alzheimer’s disease in the future.
Collapse
|
42
|
Wang C, Cai Z, Wang W, Wei M, Si X, Shang Y, Yang Z, Li T, Guo H, Li S. Piperine regulates glycogen synthase kinase-3β-related signaling and attenuates cognitive decline in D-galactose-induced aging mouse model. J Nutr Biochem 2020; 75:108261. [DOI: 10.1016/j.jnutbio.2019.108261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023]
|
43
|
Chen Y, Gao X, Liu Q, Zeng L, Zhang K, Mu K, Zhang D, Zou H, Wu N, Ou J, Wang Q, Mao S. Alpha-asarone improves cognitive function of aged rats by alleviating neuronal excitotoxicity via GABAA receptors. Neuropharmacology 2020; 162:107843. [DOI: 10.1016/j.neuropharm.2019.107843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
|
44
|
Modified Huang-Lian-Jie-Du Decoction Ameliorates A β Synaptotoxicity in a Murine Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8340192. [PMID: 31781354 PMCID: PMC6875425 DOI: 10.1155/2019/8340192] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease, characterized by cognitive dysfunction; however, the therapeutic strategies are not fully understood. Huang-Lian-Jie-Du-Decoction (HLJDD) is a famous traditional Chinese herbal formula that has been widely used clinically to treat dementia. Recently, according to previous study and our clinical practice, we generate a new modification of HLJDD (named modified-HLJDD). In this study, we indicated that modified-HLJDD attenuated learning and memory deficiencies in Aβ1-42 oligomer-induced AD model, and we confirmed the exact metabolites in modified-HLJDD solution, as compared with HLJDD by UHPLC-Q-TOF-MS. Using GC-Q-TOF/MS-based metabolomics, we identified adenosine as the potential significant metabolite, responsible for modified-HLJDD regulating energy metabolism and synaptic plasticity in AD model. We also revealed that the potential underlying mechanism of modified-HLJDD in AD model may involve NMDA receptor-mediated glutamatergic transmission and adenosine/ATPase/AMPK cascade. Moreover, we also indicated the differential gut microbiota which mainly involved Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria at the phylum level upon modified-HLJDD treatment in AD model. Based on the correlation of metabolomic analysis with microbiome analysis, we clarified that Dorea is the most affected microbiota with adenosine upon modified-HLJDD treatment in AD model. Thus, our study suggests that modified-HLJDD may serve as a potential therapeutic drug in treating AD.
Collapse
|
45
|
Shou JW, Cheung CK, Gao J, Shi WW, Shaw PC. Berberine Protects C17.2 Neural Stem Cells From Oxidative Damage Followed by Inducing Neuronal Differentiation. Front Cell Neurosci 2019; 13:395. [PMID: 31551713 PMCID: PMC6733922 DOI: 10.3389/fncel.2019.00395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Neurodegeneration is the loss of structure and/or function of neurons. Oxidative stress has been suggested as one of the common etiology in most of the neurodegenerative diseases. Previous studies have demonstrated the beneficial effects of berberine in various neurodegenerative and neuropsychiatric disorders. In this study, we hypothesized that berberine could protect C17.2 neural stem cells (NSCs) from 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage then promote neuronal differentiation. AAPH was used to induce oxidative damage. After the damage, berberine protected C17.2 cells were kept cultured for another week in differentiation medium with/without berberine. Changes in cell morphology were detected by microscopy and cell viability was determined by MTT assay. Real-time PCR and western blot analysis were performed to confirm the associated pathways. Berberine was able to protect C17.2 NSCs from the oxidative damage. It lowered the cellular reactive oxygen species (ROS) level in C17.2 cells via Nuclear Factor Erythroid 2-Related Factor 1/2 (NRF1/2) – NAD(P)H Quinone Dehydrogenase 1 (NQO-1) – Heme Oxygenase 1 (HO-1) pathway. It also down-regulated the apoptotic factors-Caspase 3 and Bcl2 Associated X (Bax) and upregulated the anti-apoptotic factor-Bcl2 to reduce cell apoptosis. Besides, berberine increased C17.2 cell viability via up-regulating Extracellular-signal-Related Kinase (ERK) and phosphor-Extracellular-signal-Related Kinase (pERK) expression. Then, berberine promoted C17.2 cell to differentiate into neurons and the differentiation mechanism involved the activation of WNT/β-catenin pathway as well as the upregulation of expression levels of pro-neural factors Achaete-Scute Complex-Like 1 (ASCL1), Neurogenin 1 (NeuroG1), Neuronal Differentiation 2 (NeuroD2) and Doublecortin (DCX). In conclusion, berberine protected C17.2 NSCs from oxidative damage then induced them to differentiate into neurons.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun-Kai Cheung
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jian Gao
- Shenzhen Health Development Research Center, Shenzhen, China
| | - Wei-Wei Shi
- Shenzhen Health Development Research Center, Shenzhen, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
46
|
Khan MI, Dowarha D, Katte R, Chou RH, Filipek A, Yu C. Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PLoS One 2019; 14:e0216427. [PMID: 31071146 PMCID: PMC6508705 DOI: 10.1371/journal.pone.0216427] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
In this report, using NMR and molecular modeling, we have studied the structure of lysozyme-S100A6 complex and the influence of tranilast [N-(3, 4-dimethoxycinnamoyl) anthranilic acid], an antiallergic drug which binds to lysozyme, on lysozyme-S100A6 and S100A6-RAGE complex formation and, finally, on cell proliferation. We have found that tranilast may block the S100A6-lysozyme interaction and enhance binding of S100A6 to RAGE. Using WST1 assay, we have found that lysozyme, most probably by blocking the interaction between S100A6 and RAGE, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme. In conclusion, studies presented in this work, describing the protein-protein/-drug interactions, are of great importance for designing new therapies to treat diseases associated with cell proliferation such as cancers.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Deepu Dowarha
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Revansiddha Katte
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
47
|
Yang L, Ran Y, Quan Z, Wang R, Yang Q, Jia Q, Zhang H, Li Y, Peng Y, Liang J, Wang H, Nakanishi H, Deng Y, Qing H. Pterostilbene, an active component of the dragon's blood extract, acts as an antidepressant in adult rats. Psychopharmacology (Berl) 2019; 236:1323-1333. [PMID: 30607481 DOI: 10.1007/s00213-018-5138-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hippocampal neurogenesis has been widely considered as one of the potential biological mechanisms for the treatment of depression caused by chronic stress. Many natural products have been reported to be beneficial for neurogenesis. OBJECTIVES The present study is designed to investigate the effect of dragon's blood extract (DBE) and its biologically active compound, pterostilbene (PTE), on hippocampal neurogenesis. METHODS The male Sprague-Dawley (SD) rats were used in this study, which were maintained on the normal, DBE and PTE diet groups for 4 weeks before dissection in the normal rat model and behavioral testing in the CUS depression rat model. Meanwhile, DMI-treated rats are subcutaneously injected with DMI (10 mg/kg, i.p.). RESULTS Results revealed that DBE and PTE have the ability to promote hippocampal neurogenesis. DBE and PTE also promoted the proliferation of neural stem cells isolated from the brain of suckling rats. Oral administration of DBE and PTE induced the proliferation, migration, and differentiation of neural progenitor cells (NPCs) in chronic unexpected stressed (CUS) model rats, and improved the behavioral ability and alleviated depress-like symptoms of CUS rats. It was also observed that PTE treatment significantly induced the expression of neurogenesis-related factors, including BDNF, pERK, and pCREB. CONCLUSION Oral administration of PTE could affect neurogenesis and it is likely to be achieved via BDNF/ERK/CREB-associated signaling pathways.
Collapse
Affiliation(s)
- Liang Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, People's Republic of China
| | - Yuanyuan Ran
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Central Laboratory, BeijingLuhe Hospital, Capital Medical University, Beijing, 101100, People's Republic of China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ran Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, People's Republic of China
| | - Qiutian Jia
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Heao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yanhui Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yiheng Peng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - JianHua Liang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Hui Wang
- Biomedical School, Beijing City University, Beijing, 100094, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
48
|
Zhu Y, Shi Y, Cao C, Han Z, Liu M, Qi M, Huang R, Zhu Z, Qian D, Duan JA. Jia-Wei-Kai-Xin-San, an Herbal Medicine Formula, Ameliorates Cognitive Deficits via Modulating Metabolism of Beta Amyloid Protein and Neurotrophic Factors in Hippocampus of Aβ 1-42 Induced Cognitive Deficit Mice. Front Pharmacol 2019; 10:258. [PMID: 30941041 PMCID: PMC6433786 DOI: 10.3389/fphar.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Jia-Wei-Kai-Xin-San (JWKXS) is a Chinese medicine formula applied for treating morbid forgetfulness in ancient China. Today, this formula is frequently applied for Alzheimer's disease and vascular dementia (VD) in clinic. Here, we developed it as granules and aimed to evaluate its anti-AD effect on β amyloid protein 1-42 (Aβ1-42) induced cognitive deficit mice and reveal the possible molecular mechanisms. Firstly, daily intra-gastric administration of chemically standardized of JWKXS granules for 7 days significantly ameliorated the cognitive deficit symptoms and inhibited cell apoptosis in hippocampus on Aβ1-42 injection mice. JWKXS granules significantly decreased Aβ level, increased superoxide dismutase activity and decreased malondialdehyde level in hippocampus of model mice. It also restored acetylcholine amounts, inhibited acetylcholinesterase activities and increased choline acetyltransferase activities. In addition, JWKXS granules enabled the transformation of precursors of NGF and BDNF into mature forms. Furthermore, JWKXS granules could regulate gene expressions related to Aβ production, transportation, degradation and neurotrophic factor transformation, which led to down-regulation of Aβ and up-regulation of NGF and BDNF. These findings suggested that JWKXS granules ameliorated cognitive deficit via decreasing Aβ levels, protecting neuron from oxidation damages and nourishing neuron, which could serve as alternative medicine for patients suffering from AD.
Collapse
Affiliation(s)
- Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiwei Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengqiu Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingzhu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjie Huang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
49
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
50
|
Chen Y, Zhang W, Wu H, Lao L, Xu J, Xu S. Combination of acupuncture and Chinese herbal formula for elderly adults with mild cognitive impairment: protocol for a randomized controlled trial. Trials 2019; 20:117. [PMID: 30744676 PMCID: PMC6371495 DOI: 10.1186/s13063-019-3212-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 01/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is known as a transitional status between normal cognitive function and Alzheimer’s disease (AD). Acupuncture and Chinese herbal medicines (CHMs) are considered to be beneficial to patients with cognitive impairment. However, it is still unknown whether the combination of the two therapies could optimize the therapeutic effect for MCI. This trial is aimed to evaluate the therapeutic effects of acupuncture and the herbal formula Yishen Granule (YSG) for elderly patients with MCI. Methods/design This is a multi-sited, patient-blinded, randomized controlled trial (RCT). Two hundred and forty eligible patients will be randomly divided into four groups: A. acupuncture with YSG, B. acupuncture with placebo herbal medicine, C. sham acupuncture with YSG or D. sham acupuncture with placebo herbal medicine. Acupuncture treatment will be given twice a week for 8 weeks and then once a week for 4 weeks. The herbal treatment patients will be given granules daily for 12 weeks, 8 weeks of standard-dose followed by 4 weeks of mid-dose. The primary outcome is scored by the Montreal Cognitive Assessment (MoCA). The secondary outcomes will be scored by the Mini-Mental State Examination (MMSE) and event-related potential (ERP). All the assessments will be conducted at baseline, and at the eighth and 12th week after intervention starts. The follow-up assessments will be performed with the MoCA in the 12th, 24th, and 36th weeks after intervention ends. Intention-to-treat (ITT) analysis will be used in this RCT. Discussion This RCT will provide us information on the effect of treating MCI patients with only acupuncture, herbal formula as well as the combination of both. The additive effect or synergistic effect of acupuncture and Chinese herbal formula will then be analyzed. Trial registration This trial is registered with ChiCTR-INR-17011569 on 5 June 2017, and has been approved by the Ethics Committee of Shanghai Municipal Hospital of Traditional Chinese Medicine (2017SHL-KY-05). Electronic supplementary material The online version of this article (10.1186/s13063-019-3212-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueqi Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenjing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Huangan Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|