1
|
Shi W, Zhao Q, Gao H, Yang Y, Tan Z, Li N, Wang H, Ji Y, Zhou Y. Exploring the bioactive ingredients of three traditional Chinese medicine formulas against age-related hearing loss through network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03464-2. [PMID: 39356317 DOI: 10.1007/s00210-024-03464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Traditional Chinese medicine (TCM) formulas, including the Er-Long-Zuo-Ci pill, Tong-Qiao-Er-Long pill, and Er-Long pill, have long been utilized in China for managing age-related hearing loss (ARHL). However, the specific bioactive compounds, pharmacological targets, and underlying mechanisms remain elusive. This study aims to find the shared bioactive ingredients among these three formulas, uncover the molecular pathways they regulate, and identify potential therapeutic targets for ARHL. Furthermore, it seeks to validate the efficacy of these major components through both in vivo and in vitro experiments. Common bioactive ingredients were extracted from the TCMSP database, and their putative target proteins were predicted using the Swiss Target Prediction database. ARHL-related target proteins were collected from GeneCards and OMIM databases. Our approach involved constructing drug-target networks and drug-disease-specific protein-protein interaction networks and conducting clustering, topological property analyses, and functional annotation through GO and KEGG enrichment analysis. Molecular docking analysis was utilized to delineate interaction mechanisms between major bioactive ingredients and key target proteins. Finally, in vivo and in vitro experiments involving ABR recording, immunofluorescent staining, HE staining, and quantitative PCR were conducted to validate the treatment effects of flavonoids on the declining auditory function in DBA/2 J mice. We identified 11 common chemical compounds across the three formulas and their associated 276 putative targets. Additionally, 3350 ARHL-related targets were compiled. As an intersection of the putative targets of the common compounds and ARHL-related proteins, 145 shared targets were determined. Functional enrichment analysis indicated that these compounds may modulate various biological processes, including cell proliferation, apoptosis, inflammatory response, and synaptic connections. Notably, potential targets such as TNFα, MAPK1, SRC, AKT, EGFR, ESR1, and AR were implicated. Flavonoids emerged as major bioactive components against ARHL based on target numbers, with molecular docking demonstrating diverse interaction models between these flavonoids and protein targets. Furthermore, baicalin could mitigate the age-related cochlear damage and hearing loss of DBA/2 J mice through its multi-target and multi-pathway mechanism, involving anti-inflammation, modulation of sex hormone-related pathways, and activation of potassium channels. This study offers an integrated network pharmacology approach, validated by in vivo and in vitro experiments, shedding light on the potential mechanisms, major active components, and therapeutic targets of TCM formulas for treating ARHL.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yaxin Yang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China.
| |
Collapse
|
2
|
Huang HJ, Livneh H, Yen CT, Lu MC, Chen WJ, Tsai TY. Adjunctive Therapy with Chinese Herbal Medicine Lowers Risk of Hearing Loss in Type 2 Diabetes Patients: Results from a Cohort-Based Case-Control Study. Pharmaceuticals (Basel) 2024; 17:1191. [PMID: 39338352 PMCID: PMC11435343 DOI: 10.3390/ph17091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Hearing loss is a frequently observed complication of type 2 diabetes (T2D). Emerging evidence has found that Chinese herbal medicine (CHM) can effectively treat chronic disease; nevertheless, it is unclear if adding CHM to the routine management of T2D would modify sequent risk of hearing loss. This cohort-based case-control study was conducted to address this issue. First, a total of 64,418 subjects aged 20-70 years, diagnosed with T2D between 2002 and 2011, were extracted from a nationwide health claims database. Among them, we identified 4516 cases of hearing loss after T2D by the end of 2013. They were then randomly matched to 9032 controls without hearing loss at a 1:2 ratio. Following conditional logistic regression, we found the addition of CHM to conventional care reduced the risk of developing hearing loss, with an adjusted odds ratio of 0.75 (95% confidence interval: 0.70-0.83). Specifically, taking CHM products for at least two years benefits T2D patients in lowering sequent risk of hearing loss. The findings herein implicated that integrating CHM into conventional care substantially correlated to lower risk of hearing loss for T2D patients, but further basic research is needed to secure the application of finished herbal products.
Collapse
Affiliation(s)
- Hui-Ju Huang
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR 97207-0751, USA
| | - Chieh-Tsung Yen
- Department of Neurology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin Township, Chiayi 62247, Taiwan
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Center of Sports Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Tzung-Yi Tsai
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
3
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
- Tuba Ege
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
4
|
He C, Gai H, Zhao W, Zhang H, Lai L, Ding C, Chen L, Ding J. Advances in the Study of Etiology and Molecular Mechanisms of Sensorineural Hearing Loss. Cell Biochem Biophys 2024; 82:1721-1734. [PMID: 38849694 DOI: 10.1007/s12013-024-01344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sensorineural hearing loss (SNHL), a multifactorial progressive disorder, results from a complex interplay of genetic and environmental factors, with its underlying mechanisms remaining unclear. Several pathological factors are believed to contribute to SNHL, including genetic factors, ion homeostasis, cell apoptosis, immune inflammatory responses, oxidative stress, hormones, metabolic syndrome, human cytomegalovirus infection, mitochondrial damage, and impaired autophagy. These factors collectively interact and play significant roles in the onset and progression of SNHL. The present review offers a comprehensive overview of the various factors that contribute to SNHL, emphasizes recent developments in understanding its etiology, and explores relevant preventive and intervention measures.
Collapse
Affiliation(s)
- Cairong He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hongcun Gai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wen Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haiqin Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Lai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chenyu Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Pineros J, Zhu X, Ding B, Frisina RD. Connexins 30 and 43 expression changes in relation to age-related hearing loss. Hear Res 2024; 444:108971. [PMID: 38359484 PMCID: PMC10939722 DOI: 10.1016/j.heares.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is the number one communication disorder for aging adults. Connexin proteins are essential for intercellular communication throughout the human body, including the cochlea. Mutations in connexin genes have been linked to human syndromic and nonsyndromic deafness; thus, we hypothesize that changes in connexin gene and protein expression with age are involved in the etiology of ARHL. Here, connexin gene and protein expression changes for CBA/CaJ mice at different ages were examined, and correlations were analyzed between the changes in expression levels and functional hearing measures, such as ABRs and DPOAEs. Moreover, we investigated potential treatment options for ARHL. Results showed significant downregulation of Cx30 and Cx43 gene expression and significant correlations between the degree of hearing loss and the changes in gene expression for both genes. Moreover, dose-dependent treatments utilizing cochlear cell lines showed that aldosterone hormone therapy significantly increased Cx expression. In vivo mouse treatments with aldosterone also showed protective effects on connexin expression in aging mice. Based on these functionally relevant findings, next steps can include more investigations of the mechanisms related to connexin family gap junction protein expression changes during ARHL; and expand knowledge of clinically-relevant treatment options by knowing what specific members of the Cx family and related inter-cellular proteins should be targeted therapeutically.
Collapse
Affiliation(s)
- Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Department of Communication Sciences and Disorders, College of Behavioral & Community Sciences, University of South Florida, Tampa, FL 33620, USA; Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
6
|
Simms SS, Milani MN, Kim MJ, Husain R, Infante L, Cooke PS, Someya S. Loss of Esr1 Does Not Affect Hearing and Balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583163. [PMID: 38496399 PMCID: PMC10942324 DOI: 10.1101/2024.03.03.583163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although estrogen affects the structure and function of the nervous system and brain and has a number of effects on cognition, its roles in the auditory and vestibular systems remain unclear. The actions of estrogen are mediated predominately through two classical nuclear estrogen receptors, estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). In the current study, we investigated the roles of ESR1 in normal auditory function and balance performance using 3-month-old wild-type (WT) and Esr1 knockout (KO) mice on a CBA/CaJ background, a normal-hearing strain. As expected, body weight of Esr1 KO females was lower than that of Esr1 KO males. Body weight of Esr1 KO females was higher than that of WT females, while there was no difference in body weight between WT and Esr1 KO males. Similarly, head diameter was higher in Esr1 KO vs. WT females. Contrary to our expectations, there were no differences in auditory brainstem response (ABR) thresholds, ABR waves I-V amplitudes and ABR waves I-V latencies at 8, 16, 32, and 48 kHz, distortion product otoacoustic emission (DPOAE) thresholds and amplitudes at 8, 16, and 32 kHz, and rotarod balance performance (latency to fall) between WT and Esr1 KO mice. Furthermore, there were no sex differences in ABRs, DPOAEs, and rotarod balance performance in Esr1 KO mice. Taken together, our findings show that Esr1 deficiency does not affect auditory function or balance performance in normal hearing mice, and suggest that loss of Esr1 is likely compensated by ESR2 or other estrogen receptors to maintain the structure and function of the auditory and vestibular systems under normal physiological conditions.
Collapse
Affiliation(s)
- Shion S Simms
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Marcus N Milani
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Ryan Husain
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Laura Infante
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Fernández-Vargas M, Macedo-Lima M, Remage-Healey L. Acute Aromatase Inhibition Impairs Neural and Behavioral Auditory Scene Analysis in Zebra Finches. eNeuro 2024; 11:ENEURO.0423-23.2024. [PMID: 38467426 PMCID: PMC10960633 DOI: 10.1523/eneuro.0423-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 03/13/2024] Open
Abstract
Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments. Neurons in their secondary auditory pallial cortex (caudomedial nidopallium, NCM) can encode song from background chorus, or scenes, and this capacity may aid behavioral ASA. Furthermore, song processing is modulated by the rapid synthesis of neuroestrogens when hearing conspecific song. To examine whether neuroestrogens support neural and behavioral ASA in both sexes, we retrodialyzed fadrozole (aromatase inhibitor, FAD) and recorded in vivo awake extracellular NCM responses to songs and scenes. We found that FAD affected neural encoding of songs by decreasing responsiveness and timing reliability in inhibitory (narrow-spiking), but not in excitatory (broad-spiking) neurons. Congruently, FAD decreased neural encoding of songs in scenes for both cell types, particularly in females. Behaviorally, we trained birds using operant conditioning and tested their ability to detect songs in scenes after administering FAD orally or injected bilaterally into NCM. Oral FAD increased response bias and decreased correct rejections in females, but not in males. FAD in NCM did not affect performance. Thus, FAD in the NCM impaired neuronal ASA but that did not lead to behavioral disruption suggesting the existence of resilience or compensatory responses. Moreover, impaired performance after systemic FAD suggests involvement of other aromatase-rich networks outside the auditory pathway in ASA. This work highlights how transient estrogen synthesis disruption can modulate higher-order processing in an animal model of vocal communication.
Collapse
Affiliation(s)
- Marcela Fernández-Vargas
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
8
|
Wang S, Luo J, Zhang F, Zhang R, Ju W, Wu N, Zhang J, Liu Y. Association between blood volatile organic aromatic compound concentrations and hearing loss in US adults. BMC Public Health 2024; 24:623. [PMID: 38413886 PMCID: PMC10897984 DOI: 10.1186/s12889-024-18065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE Benzene, ethylbenzene, meta/para-xylene, and ortho-xylene, collectively referred to as benzene, ethylbenzene, and xylene (BEX), constitute the main components of volatile organic aromatic compounds (VOACs) and can have adverse effects on human health. The relationship between exposure to BEX and hearing loss (HL) in the adult U.S. population was aimed to be assessed. METHODS Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) for the years 2003-2004, 2011-2012, and 2015-2016 were analyzed. This dataset included complete demographic characteristics, pure-tone audiometry measurements, and volatile organic compound detection data from the NHANES database. A weighted multivariate logistic regression model was employed to investigate the associations between blood BEX concentrations HL, low-frequency hearing loss (SFHL), and high-frequency hearing loss (HFHL). RESULTS 2174 participants were included, with weighted prevalence rates of HL, SFHL, and HFHL being 46.81%, 25.23%, and 45.86%, respectively. Exposure to benzene, ethylbenzene, meta/para-xylene, and ortho-xylene, and cumulative BEX concentrations increased the risk of hearing loss (odds ratios [ORs] were 1.36, 1.22, 1.42, 1.23, and 1.31, respectively; all P < 0.05). In the analysis with SFHL as the outcome, ethylbenzene, m-/p-xylene, o-xylene, benzene, and overall BEX increased the risk (OR 1.26, 1.21, 1.28, 1.20, and 1.25, respectively; all P < 0.05). For HFHL, exposure to ethylbenzene, m-/p-xylene, o-xylene, benzene, and overall BEX increased the risk (OR 1.36, 1.22, 1.42, 1.22, and 1.31, respectively; all P < 0.05). CONCLUSION Our study indicated that a positive correlation between individual or cumulative exposure to benzene, ethylbenzene, meta/para-xylene, and ortho-xylene and the risk of HL, SFHL, and HFHL. Further research is imperative to acquire a more comprehensive understanding of the mechanisms by which organic compounds, notably BEX, in causing hearing loss and to validate these findings in longitudinal environmental studies.
Collapse
Affiliation(s)
- Senlin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jing Luo
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Otolaryngology head and neck surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Fang Zhang
- Department of Otolaryngology head and neck surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ruimin Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Wantao Ju
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Nianwei Wu
- Department of General Surgery, Center for Obesity and Metabolic Health, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.
- Research Center for Obesity and Metabolic Health, College of Medicine, Southwest Jiaotong University, Chengdu, China.
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.
| | - Jianhui Zhang
- Department of Otolaryngology head and neck surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.
| |
Collapse
|
9
|
Gulej R, Csik B, Faakye J, Tarantini S, Shanmugarama S, Chandragiri SS, Mukli P, Conley S, Csiszar A, Ungvari Z, Yabluchanskiy A, Nyúl-Tóth Á. Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype. Microcirculation 2024; 31:e12840. [PMID: 38082450 PMCID: PMC10922445 DOI: 10.1111/micc.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Silva VAR, Pauna HF, Lavinsky J, Guimarães GC, Abrahão NM, Massuda ET, Vianna MF, Ikino CMY, Santos VM, Polanski JF, Silva MNLD, Sampaio ALL, Zanini RVR, Lourençone LFM, Denaro MMDC, Calil DB, Chone CT, Castilho AM. Brazilian Society of Otology task force - Otosclerosis: evaluation and treatment. Braz J Otorhinolaryngol 2023; 89:101303. [PMID: 37647735 PMCID: PMC10474207 DOI: 10.1016/j.bjorl.2023.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVES To review and provide evidence-based recommendations for the diagnosis and treatment of otosclerosis. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on otosclerosis were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The topics were divided into 2 parts: 1) Diagnosis - audiologic and radiologic; 2) Treatment - hearing AIDS, pharmacological therapy, stapes surgery, and implantable devices - bone-anchored devices, active middle ear implants, and Cochlear Implants (CI). CONCLUSIONS The pathophysiology of otosclerosis has not yet been fully elucidated, but environmental factors and unidentified genes are likely to play a significant role in it. Women with otosclerosis are not at increased risk of worsening clinical condition due to the use of contraceptives or during pregnancy. Drug treatment has shown little benefit. If the patient does not want to undergo stapedotomy, the use of hearing aids is well indicated. Implantable systems should be indicated only in rare cases, and the CI should be indicated in cases of profound deafness.
Collapse
Affiliation(s)
- Vagner Antonio Rodrigues Silva
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Henrique Furlan Pauna
- Hospital Universitário Cajuru, Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Guilherme Corrêa Guimarães
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Nicolau Moreira Abrahão
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Eduardo Tanaka Massuda
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Melissa Ferreira Vianna
- Irmandade Santa Casa de Misericordia de São Paulo, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Cláudio Márcio Yudi Ikino
- Universidade Federal de Santa Catarina, Departamento de Cirurgia e Hospital Universitário, Florianópolis, SC, Brazil
| | - Vanessa Mazanek Santos
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Curitiba, PR, Brazil
| | - José Fernando Polanski
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Curitiba, PR, Brazil; Faculdade Evangélica Mackensie do Paraná, Curitiba, PR, Brazil
| | | | - André Luiz Lopes Sampaio
- Universidade de Brasília (UnB), Faculdade de Medicina, Laboratório de Ensino e Pesquisa em Otorrinolaringologia, Brasília, DF, Brazil
| | | | - Luiz Fernando Manzoni Lourençone
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Bauru, SP, Brazil; Universidade de São Paulo, Hospital de Reabilitação de Anomalias Craniofaciais, Bauru, SP, Brazil
| | | | - Daniela Bortoloti Calil
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Carlos Takahiro Chone
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Arthur Menino Castilho
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia, Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| |
Collapse
|
11
|
Yang H, Li J, Sun X, Li W, Wang Y, Huang C. The association of sex steroid hormone concentrations with hearing loss: a cross-sectional study. Acta Otolaryngol 2023; 143:582-588. [PMID: 37354484 DOI: 10.1080/00016489.2023.2224398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Hearing loss is the most prevalent sensory disorder worldwide. Several studies have indicated that sex steroid hormone levels may be vital to hearing. OBJECTIVE We aimed to explore the associations between speech-frequency hearing loss and sex steroid hormones. METHODS We conducted a secondary analysis based on 3558 adult participants' data from the National Health and Nutrition Examination Survey (NHANES) from 2015 to 2016. We defined hearing loss as a pure-tone average (PTA) at 0.5, 1, 2, and 4 kHz ≥20 dB in the better ear. Multivariate logistic regression analysis was used to evaluate the association between sex steroid hormones and hearing loss risk. A nomogram model for the risk of hearing loss was constructed. RESULTS There were 560 (15.7%) cases who had hearing loss among the participants enrolled in this study. Participants with hearing loss had a higher total testosterone level and a lower estradiol level. Individuals with estradiol levels in the highest tertile still had lower hearing loss risks than those in the lowest tertile. Nevertheless, the total testosterone level had no influence on the risk of hearing loss. CONCLUSION Our research indicated that low estradiol concentrations were significantly associated with hearing loss, especially in menopausal women.
Collapse
Affiliation(s)
- Huifen Yang
- Department of Otolaryngology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Jing Li
- Department of Otolaryngology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xinyuan Sun
- School of Computer Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu Province, P.R. China
| | - Wangwei Li
- Department of Otolaryngology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yuan Wang
- Department of Otolaryngology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Caiqin Huang
- Department of Otolaryngology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
12
|
Lozier NR, Muscio S, Pal I, Cai HM, Rubio ME. Sex differences in glutamate AMPA receptor subunits mRNA with fast gating kinetics in the mouse cochlea. Front Syst Neurosci 2023; 17:1100505. [PMID: 36936507 PMCID: PMC10017478 DOI: 10.3389/fnsys.2023.1100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Evidence shows that females have increased supra-threshold peripheral auditory processing compared to males. This is indicated by larger auditory brainstem responses (ABR) wave I amplitude, which measures afferent spiral ganglion neuron (SGN)-auditory nerve synchrony. However, the underlying molecular mechanisms of this sex difference are mostly unknown. We sought to elucidate sex differences in ABR wave I amplitude by examining molecular markers known to affect synaptic transmission kinetics. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate fast excitatory transmission in mature SGN afferent synapses. Each AMPAR channel is a tetramer composed of GluA2, 3, and 4 subunits (Gria2, 3, and 4 genes), and those lacking GluA2 subunits have larger currents, are calcium-permeable, and have faster gating kinetics. Moreover, alternatively spliced flip and flop isoforms of each AMPAR subunit affect channel kinetics, having faster kinetics those AMPARs containing Gria3 and Gria4 flop isoforms. We hypothesized that SGNs of females have more fast-gating AMPAR subunit mRNA than males, which could contribute to more temporally precise synaptic transmission and increased SGN synchrony. Our data show that the index of Gria3 relative to Gria2 transcripts on SGN was higher in females than males (females: 48%; males: 43%), suggesting that females have more SGNs with higher Gria3 mRNA relative to Gria2. Analysis of the relative abundance of the flip and flop alternatively spliced isoforms showed that females have a 2-fold increase in fast-gating Gria3 flop mRNA, while males have more slow-gating (2.5-fold) of the flip. We propose that Gria3 may in part mediate greater SGN synchrony in females. Significance Statement: Females of multiple vertebrate species, including fish and mammals, have been reported to have enhanced sound-evoked synchrony of afferents in the auditory nerve. However, the underlying molecular mediators of this physiologic sex difference are unknown. Elucidating potential molecular mechanisms related to sex differences in auditory processing is important for maintaining healthy ears and developing potential treatments for hearing loss in both sexes. This study found that females have a 2-fold increase in Gria3 flop mRNA, a fast-gating AMPA-type glutamate receptor subunit. This difference may contribute to greater neural synchrony in the auditory nerve of female mice compared to males, and this sex difference may be conserved in all vertebrates.
Collapse
Affiliation(s)
- Nicholas R. Lozier
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Muscio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indra Pal
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hou-Ming Cai
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - María E. Rubio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Reavis KM, Bisgaard N, Canlon B, Dubno JR, Frisina RD, Hertzano R, Humes LE, Mick P, Phillips NA, Pichora-Fuller MK, Shuster B, Singh G. Sex-Linked Biology and Gender-Related Research Is Essential to Advancing Hearing Health. Ear Hear 2023; 44:10-27. [PMID: 36384870 PMCID: PMC10234332 DOI: 10.1097/aud.0000000000001291] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
There is robust evidence that sex (biological) and gender (behavioral/social) differences influence hearing loss risk and outcomes. These differences are noted for animals and humans-in the occurrence of hearing loss, hearing loss progression, and response to interventions. Nevertheless, many studies have not reported or disaggregated data by sex or gender. This article describes the influence of sex-linked biology (specifically sex-linked hormones) and gender on hearing and hearing interventions, including the role of sex-linked biology and gender in modifying the association between risk factors and hearing loss, and the effects of hearing loss on quality of life and functioning. Most prevalence studies indicate that hearing loss begins earlier and is more common and severe among men than women. Intrinsic sex-linked biological differences in the auditory system may account, in part, for the predominance of hearing loss in males. Sex- and gender-related differences in the effects of noise exposure or cardiovascular disease on the auditory system may help explain some of these differences in the prevalence of hearing loss. Further still, differences in hearing aid use and uptake, and the effects of hearing loss on health may also vary by sex and gender. Recognizing that sex-linked biology and gender are key determinants of hearing health, the present review concludes by emphasizing the importance of a well-developed research platform that proactively measures and assesses sex- and gender-related differences in hearing, including in understudied populations. Such research focus is necessary to advance the field of hearing science and benefit all members of society.
Collapse
Affiliation(s)
- Kelly M. Reavis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Judy R. Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert D. Frisina
- Department of Medical Engineering and Communication Sciences & Disorders, University of South Florida, Tampa, Florida, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Larry E. Humes
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana, USA
| | - Paul Mick
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
14
|
Toth L, Czigler A, Hegedus E, Komaromy H, Amrein K, Czeiter E, Yabluchanskiy A, Koller A, Orsi G, Perlaki G, Schwarcz A, Buki A, Ungvari Z, Toth PJ. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. GeroScience 2022; 44:2771-2783. [PMID: 35869380 PMCID: PMC9768079 DOI: 10.1007/s11357-022-00623-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023] Open
Abstract
Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Hedvig Komaromy
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Akos Koller
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Gergely Orsi
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Gabor Perlaki
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andras Buki
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter J Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
15
|
Bazard P, Pineros J, Acosta AA, Thivierge M, Paganella LR, Zucker S, Mannering FL, Modukuri S, Zhu X, Frisina RD, Ding B. Post-Translational Modifications and Age-related Hearing Loss. Hear Res 2022; 426:108625. [DOI: 10.1016/j.heares.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
16
|
Chen X, Zheng Z, Xiao L, Liu C, Shen Y, Ma N, Dong H, Yin S, Feng Y. Bone-turnover biomarkers as potential prognostic factors in sudden sensorineural hearing loss: A prospective cohort study. Front Neurol 2022; 13:980150. [PMID: 36090873 PMCID: PMC9453032 DOI: 10.3389/fneur.2022.980150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aims to explore the relationship between bone-turnover biomarkers and the recovery of SSNHL to provide clues for further improvements in etiological research and predictors. Methods The medical history, hearing thresholds, biomarkers of bone-turnover, and related hormones of 117 SSNHL patients were collected prospectively between August 2018 and December 2021. Linear correlation and logistic regression models were applied to examine the association between bone-turnover biomarkers and the prognosis of SSNHL. Results Age, the incidence of vertigo, pure tone average of the impaired frequencies (PTAimpairedfre), and the levels of bone turnover [including alkaline phosphatase (ALP), β-carboxy terminal crosslinked telopeptide of type 1 collagen (β-CTX), and N-terminal-midfragment of osteocalcin (N-MID)] were higher in the nonresponders than responders (P < 0.05). Logistic regression showed that the age (OR = 1.035, P = 0.027), time to treatment (OR = 1.157, P = 0.038), PTAimpairedfre (OR = 1.031, P = 0.008), and β-CTX (OR = 1.004, P = 0.001) were independent risk factors for the prognosis of SSNHL. In the women SSNHL subgroup, age, postmenopause percentage, PTAimpairedfre, the activity of ALP, levels of β-CTX, and N-MID were significantly higher in the nonresponders than the responders (P < 0.05). Compared to the men SSNHL subgroup, β-CTX has a higher correlation coefficient and predictive efficiency in the women SSNHL subgroup, and logistic regression showed that β-CTX (OR = 1.004, P = 0.004) was an independent risk factor for the women SSNHL. Conclusions Bone-turnover biomarkers are risk factors for poor prognosis in SSNHL, especially β-CTX. The differences were significant in women SSNHL, which may be related to the rapid regression of estrogen after menopause that leads to the occurrence of osteoporosis with a high conversion rate.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengqi Liu
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Shen
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ning Ma
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongjun Dong
- Department of Otorhinolaryngology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
17
|
Ricci G, Gambacorta V, Lapenna R, della Volpe A, La Mantia I, Ralli M, Di Stadio A. The effect of female hormone in otosclerosis. A comparative study and speculation about their effect on the ossicular chain based on the clinical results. Eur Arch Otorhinolaryngol 2022; 279:4831-4838. [PMID: 35187596 PMCID: PMC9474451 DOI: 10.1007/s00405-022-07295-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Abstract
Purpose
This study aimed at identifying gender differences in the hearing thresholds in a sample of patients with otosclerosis before and after surgery to understand the impact of female hormones on auditory thresholds.
Methods
This retrospective study analyzed 184 patients (123 women and 61 men) affected by otosclerosis. All the patients were affected by conductive hearing loss and treated by stapedoplasty. Auditory thresholds at the baseline (T0) and one month after surgery (T30) were collected. Air and bone thresholds and Air Bone Gap (ABG) were compared between females and males using one-way ANOVA.
Results
Statistically significant differences were observed comparing the air threshold at T0 vs T30 both in women and men (p < 0.0001). No statistically significant differences were observed in the bone conduction thresholds before and after surgery. The comparison between females and males showed statistically significant differences both at T0 (p < 0.01) and T30 (p < 0.05) for air conduction thresholds and ABG at 4000 Hz.
Conclusion
Although stapedoplasty reduced the difference between females and males in the air conduction thresholds and ABG, women showed better recovery of their middle ear function with better auditory thresholds and ABG. The female hormones might positively impact the ligaments of the incudostapedial joint improving chain flexibility. This benefit might explain the statistically significant difference observed in women at 4000 Hz before and after surgery.
Collapse
|
18
|
Feng ZY, Huang TL, Li XR, Chen L, Deng S, Xu SR, Ma KT, Li L, Si JQ. 17β-Estradiol promotes angiogenesis of stria vascular in cochlea of C57BL/6J mice. Eur J Pharmacol 2021; 913:174642. [PMID: 34822791 DOI: 10.1016/j.ejphar.2021.174642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
It is widely accepted that the stria vascularis (SV) in cochlea plays a critical role in the generation of endocochlear potential (EP) and the secretion of the endolymph. 17β-estradiol (E2) is the most potent and abundant endogenous estrogen during the premenopausal period, thus, considered as the reference estrogen. This study aimd to investigate the protective effect of E2 by promoting the expression of vascular endothelial growth factor (VEGF) and thus promoting the vascular regeneration of the SV in elderly mice. After being treated with E2 either in vivo or in vitro, the hearing threshold changes of C57BL/6J elder mice continuously reduced, endothelial cell morphology improved, the number of endothelial cells (ECs) tubular nodes increased significantly, the ability of tubular formation enhanced significantly and the expression of VEGF increased. In vitro, cell model in conjunction with in vivo ovariectomized model was established to demonstrate for the first time that E2 promotes angiogenesis by promoting the secretion of VEGF through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway (PI3K/AKT). In conclusion, E2 demonstrated potent angiogenesis properties with significant protection against Age-Related Hearing Loss (ARHL), which provides a new idea for the improvement of ARHL.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China; Maternal and Child Health Care Hospital, Urumqi, Xinjiang, 830000, China
| | - Tian-Lan Huang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xue-Rui Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Long Chen
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shuang Deng
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shao-Ran Xu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China; Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China.
| |
Collapse
|
19
|
Bazard P, Pineros J, Frisina RD, Bauer MA, Acosta AA, Paganella LR, Borakiewicz D, Thivierge M, Mannering FL, Zhu X, Ding B. Cochlear Inflammaging in Relation to Ion Channels and Mitochondrial Functions. Cells 2021; 10:2761. [PMID: 34685743 PMCID: PMC8534887 DOI: 10.3390/cells10102761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
The slow accumulation of inflammatory biomarker levels in the body-also known as inflammaging-has been linked to a myriad of age-related diseases. Some of these include neurodegenerative conditions such as Parkinson's disease, obesity, type II diabetes, cardiovascular disease, and many others. Though a direct correlation has not been established, research connecting age-related hearing loss (ARHL)-the number one communication disorder and one of the most prevalent neurodegenerative diseases of our aged population-and inflammaging has gained interest. Research, thus far, has found that inflammatory markers, such as IL-6 and white blood cells, are associated with ARHL in humans and animals. Moreover, studies investigating ion channels and mitochondrial involvement have shown promising relationships between their functions and inflammaging in the cochlea. In this review, we summarize key findings in inflammaging within the auditory system, the involvement of ion channels and mitochondrial functions, and lastly discuss potential treatment options focusing on controlling inflammation as we age.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Jennifer Pineros
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren R. Paganella
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Dominika Borakiewicz
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Mark Thivierge
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Freyda L. Mannering
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (J.P.); (M.A.B.); (A.A.A.); (L.R.P.); (D.B.); (M.T.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
20
|
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience 2021; 43:2387-2394. [PMID: 34383203 PMCID: PMC8599783 DOI: 10.1007/s11357-021-00405-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; or "functional hyperemia") compromises moment-to-moment adjustment of regional cerebral blood flow to increased neuronal activity and thereby contributes to the pathogenesis of vascular cognitive impairment (VCI). Previous studies established a causal link among age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), neurovascular dysfunction and cognitive impairment. Endothelium-mediated microvascular dilation plays a central role in NVC responses. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, endothelium-mediated NVC responses were studied in a novel mouse model of accelerated neurovascular aging: mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in cerebral blood flow in the somatosensory whisker barrel cortex (assessed using laser speckle contrast imaging through a cranial window) in response to contralateral whisker stimulation were significantly attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as compared to control mice. In VE-Cadherin-CreERT2/Igf1rf/f mice, the effects of the NO synthase inhibitor L-NAME were significantly decreased, suggesting that endothelium-specific disruption of IGF1R signaling impairs the endothelial NO-dependent component of NVC responses. Collectively, these findings provide additional evidence that IGF-1 is critical for cerebromicrovascular endothelial health and maintenance of normal NVC responses.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Peter Toth
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, 72359, Pecs, Baranya, Hungary
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences, Center 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
21
|
Luo SD, Chiu TJ, Chen WC, Wang CS. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int J Mol Sci 2021; 22:ijms22168768. [PMID: 34445474 PMCID: PMC8395901 DOI: 10.3390/ijms22168768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-227-361-661 (ext. 5166)
| |
Collapse
|
22
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
23
|
Li HH, Livneh H, Chen WJ, Fan WL, Lu MC, Guo HR, Tsai TY. Effect of Chinese Herbal Medicines on Hearing Loss Risk in Rheumatoid Arthritis Patients: Retrospective Claims Analysis. Front Med (Lausanne) 2021; 8:683211. [PMID: 34355003 PMCID: PMC8329330 DOI: 10.3389/fmed.2021.683211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives: Patients with rheumatoid arthritis (RA) are at a higher risk of extra-articular manifestations, especially hearing loss (HL). Although Chinese herbal medicines (CHM) are proven safe and effective treatments for inflammatory conditions, the effect of CHM use on HL in RA patients is unknown. This cohort study aims to determine the relationship between CHM use and the subsequent risk of HL among RA patients. Methods: From health insurance claims data in Taiwan, a total of 6,905 persons aged 20-80 years with newly-diagnosed RA in 2000-2009 were identified. Of these, we recruited 2,765 CHM users and randomly selected 2,765 non-CHM users who matched with the users by the propensity score. Both cohorts were followed up until the end of 2012 to estimate the incidence of HL. Cox proportional hazards regression was used to estimate the adjusted hazard ratio (HR) for HL. Results: The incidence of HL was lower in the CHM users than in the comparison cohort (8.06 vs. 10.54 per 1,000 person-years) (adjusted HR, 0.77; 95% CI, 0.63-0.94). Those who received CHM for more than 2 years had the greatest benefit against the onset of HL, with over 50% risk reduction. Prescriptions of Hai Piao Xiao, Yan Hu Suo, San-Qi, Huang Qin, Dang Shen, Jia-Wei-Xiao-Yao-San, Shu-Jing-Huo-Xue-Tang, and Dang-Gui-Nian-Tong-Tang were found to be associated with a reduced risk of HL. Conclusions: Our findings suggest that adding CHM to conventional therapy may reduce the subsequent risk of HL in RA patients. Prospective randomized trials are recommended to further clarify whether the association revealed in this study supports such a causal relationship.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, United States
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan.,School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,Center of Sports Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Wen-Lin Fan
- Emergency Department, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Occupational Safety, Health, and Medicine Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
24
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
25
|
Liu YR, Yang NJ, Zhao ML, Tang ZS, Duan JA, Zhou R, Chen L, Sun J, Song ZX, Hu JH, Shi XB. Hypericum perforatum L. Regulates Glutathione Redox Stress and Normalizes Ggt1/Anpep Signaling to Alleviate OVX-Induced Kidney Dysfunction. Front Pharmacol 2021; 12:628651. [PMID: 33981220 PMCID: PMC8109178 DOI: 10.3389/fphar.2021.628651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/19/2021] [Indexed: 11/28/2022] Open
Abstract
Menopause and associated renal complications are linked to systemic redox stress, and the causal factors remain unclear. As the role of Hypericum perforatum L. (HPL) in menopause-induced kidney disease therapy is still ambiguous, we aim to explore the effects of HPL on systemic redox stress under ovariectomy (OVX)-induced kidney dysfunction conditions. Here, using combined proteomic and metabolomic approaches, we constructed a multi-scaled “HPL-disease-gene-metabolite” network to generate a therapeutic “big picture” that indicated an important link between glutathione redox stress and kidney impairment. HPL exhibited the potential to maintain cellular redox homeostasis by inhibiting gamma-glutamyltransferase 1 (Ggt1) overexpression, along with promoting the efflux of accumulated toxic amino acids and their metabolites. Moreover, HPL restored alanyl-aminopeptidase (Anpep) expression and metabolite shifts, promoting antioxidative metabolite processing, and recovery. These findings provide a comprehensive description of OVX-induced glutathione redox stress at multiple levels and support HPL therapy as an effective modulator in renal tissues to locally influence the glutathione metabolism pathway and subsequent redox homeostasis.
Collapse
Affiliation(s)
- Yan-Ru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ning-Juan Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meng-Li Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Shu Tang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Ao Duan
- Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Zhou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lin Chen
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhong-Xing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin-Hang Hu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xin-Bo Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
26
|
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, Ungvari A, Nyúl-Tóth Á, Schwartzman ML, Benyo Z, Sonntag WE, Csiszar A, Ungvari Z. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience 2021; 43:901-911. [PMID: 33674953 PMCID: PMC8110646 DOI: 10.1007/s11357-021-00350-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Sreemathi Logan
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Vahl JM, Goldberg-Bockhorn E, Hoffmann TK, Wigand MC. [Hormonal influence on hearing]. HNO 2021; 69:987-995. [PMID: 33725160 DOI: 10.1007/s00106-021-01019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hearing loss leads to impairments in communication, social interactions, and cognitive functions. This renders early treatment particularly important. A causal therapy is not yet available. Human and animal studies have shown that certain hormones can have a positive effect on hearing. OBJECTIVE This review provides an overview of the effects of various hormones on hearing and describes the potential benefit for future therapeutic approaches. MATERIALS AND METHODS A systematic literature review of reviews dealing with the effects of various hormones on hearing in humans and animals published in PubMed between 2015 and 2020 was conducted. RESULTS Hormones may mediate antiapoptotic effects on structure-relevant cells of the cochlea and auditory pathway, and may influence hair cell functionality or the electrolyte balance of the endo- and perilymph. Current research focuses on glucocorticoids; the mineral corticoid aldosterone; the sex hormones estrogen, progesterone, and testosterone; the growth hormones GH (growth hormone) and IGF‑1 (insulin-like growth factor 1); thyroid hormones; and insulin. Study results are still inconsistent at this time, but various hormones appear to represent a possible future treatment option for acute hearing loss. Long-term hormone treatment, which would be necessary particularly in the case of age-related hearing loss, does not currently represent a sensible course of action due to the side effect profile of the systemic treatment/lack of practicable topical application options. CONCLUSION The mode of action of hormones is complex. Whether they can be used in the future for individualized treatment of patients with acute hearing impairment requires further investigation.
Collapse
Affiliation(s)
- J M Vahl
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89070, Ulm, Deutschland.
| | - E Goldberg-Bockhorn
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89070, Ulm, Deutschland
| | - T K Hoffmann
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89070, Ulm, Deutschland
| | - M C Wigand
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89070, Ulm, Deutschland
| |
Collapse
|
28
|
Suh MJ, Oh SK, Lee SB, Kim SH. Effects of endogenous and exogenous oestrogen exposure on hearing level in postmenopausal women: A cross-sectional study. Clin Otolaryngol 2020; 46:508-514. [PMID: 33290638 DOI: 10.1111/coa.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the effect of endogenous and exogenous oestrogen exposure on hearing levels in postmenopausal women. STUDY DESIGN Retrospective cross-sectional study. SETTING Population-based survey data collected by the Korean National Health and Nutrition Survey between 1 January 2010 and 31 December 2012. SUBJECTS AND METHODS Participants comprised 3653 postmenopausal women. Detailed histories for reproductive factors and data on the use of hormone replacement therapy were obtained through health questionnaires and otologic examinations, including pure-tone audiogram and otoscopic findings. Complex-sample linear regression models controlling for confounding factors were generated to determine whether hormone-related factors were associated with hearing loss. RESULTS Women who experienced a longer duration of oestrogen exposure had better hearing compared to those who do not in multivariate model adjusting for confounding factors with a lower adjusted beta coefficient of hearing threshold (β = -0.18, 95% confidence interval = -0.3 to -0.07, P = .002). The results also suggested that hormone replacement therapy may be beneficial for attenuating hearing loss (β = -1.22, 95% confidence interval = -2.19 to -0.25, P = .014), particularly in the high-frequency range from 3 to 6 KHz. CONCLUSION A longer duration of lifetime oestrogen exposure (LEE) and the use of hormone replacement therapy are likely to attenuate hearing loss. These epidemiologic data provide evidence that oestrogen may be beneficial for attenuating age-related hearing decline.
Collapse
Affiliation(s)
- Michelle J Suh
- Department of Otorhinolaryngology, Jeju National University College of Medicine, Jeju-do, Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Kyung Oh
- Medical Course, Jeju National University College of Medicine, Jeju-do, Korea
| | - Soo Bin Lee
- Medical Course, Jeju National University College of Medicine, Jeju-do, Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Frisina RD, Bazard P, Bauer M, Pineros J, Zhu X, Ding B. Translational implications of the interactions between hormones and age-related hearing loss. Hear Res 2020; 402:108093. [PMID: 33097316 DOI: 10.1016/j.heares.2020.108093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
Provocative research has revealed both positive and negative effects of hormones on hearing as we age; with in some cases, mis-regulation of hormonal levels in instances of medical comorbidities linked to aging, lying at the heart of the problem. Animal model studies have discovered that hormonal fluctuations can sharpen hearing for improved communication and processing of mating calls during reproductive seasons. Sex hormones sometimes have positive effects on auditory processing, as is often the case with estrogen, whereas combinations of estrogen and progesterone, and testosterone, can have negative effects on hearing abilities, particularly in aging subjects. Too much or too little of some hormones can be detrimental, as is the case for aldosterone and thyroid hormones, which generally decline in older individuals. Too little insulin, as in Type 1 diabetics, or poor regulation of insulin, as in Type 2 diabetics, is also harmful to hearing in our aged population. In terms of clinical translational possibilities, hormone therapies can be problematic due to systemic side effects, as has happened for estrogen/progestin combination hormone replacement therapy (HRT) in older women, where the HRT induces a hearing loss. As hormone therapy approaches are further developed, it may be possible to lower needed doses of hormones by combining them with supplements, such as antioxidants. Another option will be to take advantage of emerging technologies for local drug delivery to the inner ear, including biodegradeable, sustained-release hydrogels and micro-pumps which can be implanted in the middle ear near the round window. In closing, exciting research completed to date, summarized in the present report bodes well for emerging biomedical therapies to prevent or treat age-related hearing loss utilizing hormonal strategies.
Collapse
Affiliation(s)
- R D Frisina
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA; Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA.
| | - P Bazard
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - M Bauer
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - J Pineros
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - X Zhu
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - B Ding
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| |
Collapse
|
30
|
Insulin-like growth factor 1: role in the auditory system and therapeutic potential in otology. Curr Opin Otolaryngol Head Neck Surg 2020; 28:286-290. [DOI: 10.1097/moo.0000000000000652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Williamson TT, Zhu X, Pineros J, Ding B, Frisina RD. Understanding hormone and hormone therapies' impact on the auditory system. J Neurosci Res 2020; 98:1721-1730. [PMID: 32026519 DOI: 10.1002/jnr.24588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 11/10/2022]
Abstract
Hormones such as estrogen, progesterone, and aldosterone all demonstrate vital roles in sustaining auditory function through either the maintenance of cochlear neurons, up/down regulation of critical molecules (i.e., IGF-1, BDNF, etc.), or generation of the endocochlear potential. With disease and/or age, hormone expression begins to decline drastically, which ultimately affects cochlear structures and the integrity of cochlear cells. The following review explores the latest findings as well as realistic outcomes for hormone therapy treatment in the auditory system. This information could serve as a potential guide for patients considering hormone therapy as a medicinal choice to alleviate the signs of onset of presbycusis-age-related hearing loss. Additional scientific investigations could also be carried out to further enhance recent findings.
Collapse
Affiliation(s)
- Tanika T Williamson
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Jennifer Pineros
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Bo Ding
- Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Robert D Frisina
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
32
|
Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S, Singh R, Griffiths C, Martin D, Boger E, Morell RJ, Hoa M. Single Cell and Single Nucleus RNA-Seq Reveal Cellular Heterogeneity and Homeostatic Regulatory Networks in Adult Mouse Stria Vascularis. Front Mol Neurosci 2019; 12:316. [PMID: 31920542 PMCID: PMC6933021 DOI: 10.3389/fnmol.2019.00316] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell mechanotransduction and hearing. While channels belonging to SV cell types are known to play crucial roles in EP generation, relatively little is known about gene regulatory networks that underlie the ability of the SV to generate and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify and validate known and rare cell populations in the SV. Furthermore, we establish a basis for understanding molecular mechanisms underlying SV function by identifying potential gene regulatory networks as well as druggable gene targets. Finally, we associate known deafness genes with adult SV cell types. This work establishes a basis for dissecting the genetic mechanisms underlying the role of the SV in hearing and will serve as a basis for designing therapeutic approaches to hearing loss related to SV dysfunction.
Collapse
Affiliation(s)
- Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Madeline Pyle
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Riya Singh
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carla Griffiths
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Shuster BZ, Depireux DA, Mong JA, Hertzano R. Sex differences in hearing: Probing the role of estrogen signaling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:3656. [PMID: 31255106 PMCID: PMC6588519 DOI: 10.1121/1.5111870] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/18/2019] [Indexed: 05/08/2023]
Abstract
Hearing loss is the most common form of sensory impairment in humans, with an anticipated rise in incidence as the result of recreational noise exposures. Hearing loss is also the second most common health issue afflicting military veterans. Currently, there are no approved therapeutics to treat sensorineural hearing loss in humans. While hearing loss affects both men and women, sexual dimorphism is documented with respect to peripheral and central auditory physiology, as well as susceptibility to age-related and noise-induced hearing loss. Physiological differences between the sexes are often hormone-driven, and an increasing body of literature demonstrates that the hormone estrogen and its related signaling pathways may in part, modulate the aforementioned differences in hearing. From a mechanistic perspective, understanding the underpinnings of the hormonal modulation of hearing may lead to the development of therapeutics for age related and noise induced hearing loss. Here the authors review a number of studies that range from human populations to animal models, which have begun to provide a framework for understanding the functional role of estrogen signaling in hearing, particularly in normal and aberrant peripheral auditory physiology.
Collapse
Affiliation(s)
- Benjamin Z Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| | - Didier A Depireux
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, Maryland 21201, USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Suite 500, Baltimore, Maryland 21201, USA
| |
Collapse
|
34
|
Williamson TT, Ding B, Zhu X, Frisina RD. Hormone replacement therapy attenuates hearing loss: Mechanisms involving estrogen and the IGF-1 pathway. Aging Cell 2019; 18:e12939. [PMID: 30845368 PMCID: PMC6516159 DOI: 10.1111/acel.12939] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/18/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
Estradiol (E) is a multitasking hormone that plays a prominent role in the reproductive system, and also contributes to physiological and growth mechanisms throughout the body. Frisina and colleagues have previously demonstrated the beneficial effects of this hormone, with E‐treated subjects maintaining low auditory brainstem response (ABR) thresholds relative to control subjects (Proceedings of the National Academy of Sciences of the United States of America, 2006;103:14246; Hearing Research, 2009;252:29). In the present study, we evaluated the functionality of the peripheral and central auditory systems in female CBA/CaJ middle‐aged mice during and after long‐term hormone replacement therapy (HRT) via electrophysiological and molecular techniques. Surprisingly, there are very few investigations about the side effects of HRT in the auditory system after it has been discontinued. Our results show that the long‐term effects of HRT are permanent on ABR thresholds and ABR gap‐in‐noise (GIN) amplitude levels. E‐treated animals had lower thresholds and higher amplitude values compared to other hormone treatment subject groups. Interestingly, progesterone (P)‐treated animals had ABR thresholds that increased but amplitude levels that remained relatively the same throughout treatment. These results were consistent with qPCR experiments that displayed high levels of IGF‐1R in the stria vascularis (SV) of both E and P animal groups compared to combination treatment (E + P) animals. IGF‐1R plays a vital role in mediating anti‐apoptotic responses via the PI3K/AKT pathway. Overall, our findings gain insights into the neuro‐protective properties of E hormone treatments as well as expand the scientific knowledge base to help women decide whether HRT is the right choice for them.
Collapse
Affiliation(s)
- Tanika T. Williamson
- Departments of Chemical & Biomedical and Medical Engineering, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| | - Bo Ding
- Departments of Communication Sciences & Disorders, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| | - Xiaoxia Zhu
- Departments of Chemical & Biomedical and Medical Engineering, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| | - Robert D. Frisina
- Departments of Chemical & Biomedical and Medical Engineering, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
- Departments of Communication Sciences & Disorders, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| |
Collapse
|