1
|
Wu Y, Wu Y, Yu J, Zhang Y, Dai X, Chen J, Sun Y, Yang Y, Zhao K, Xiao Q. Irisin alters D-galactose-induced apoptosis by increasing caveolin-1 expression in C2C12 myoblasts and skeletal muscle fibroblasts. Mol Cell Biochem 2025; 480:577-588. [PMID: 38581552 DOI: 10.1007/s11010-024-04990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
Muscle atrophy and skeletal muscle fibrosis are significant pathological manifestations of primary sarcopenia. The regulation of C2C12 myoblast and skeletal muscle fibroblast apoptosis is associated with these pathological changes. Previous studies have indicated that irisin, the cleaved form of fibronectin type III domain-containing protein 5 (FNDC5), can alleviate primary sarcopenia. However, the mechanisms of the effect of irisin in age-related apoptosis remain unknown. Our present research aimed to explore the effect of irisin and the underlying mechanism of D-galactose (D-gal)-induced apoptosis in skeletal muscle fibroblasts and C2C12 myoblasts. We found the opposite effects of D-gal on C2C12 myoblasts and fibroblasts. We also found that irisin suppressed C2C12 cell apoptosis and promoted fibroblast apoptosis. Mechanistically, irisin altered D-gal-induced apoptosis by increasing caveolin-1 expression. Taken together, these findings further demonstrated that irisin is a potential agent that can treat aged-relative muscle atrophy and fibrosis.
Collapse
Affiliation(s)
- Yaoxuan Wu
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Yongxin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Yingxiao Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Xin Dai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310001, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Yongxue Yang
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China.
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China.
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| |
Collapse
|
2
|
Zhong W, Jia H, Zhu H, Tian Y, Huang W, Yang Q. Sarcopenia is attenuated by mairin in SAMP8 mice via the inhibition of FAPs fibrosis through the AMPK-TGF-β-SMAD axis. Gene 2024; 931:148873. [PMID: 39159793 DOI: 10.1016/j.gene.2024.148873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Sarcopenia has become a prominent health problem among the elderly because of its adverse consequence, including physical disabilities and death. Fibro-adipogenic progenitors (FAPs) exhibit adipogenic and fibrogenic potencies and regulate skeletal muscle development, which plays important role in sarcopenia. Mairin, as an ingredient of Astragalus membranaceus, has the effect of anti-fibrosis. Therefore, we predicted that mairin targeted the fibrosis of FAPs and then affected sarcopenia. To verify our ideas, mairin (30 mg/kg/day or 60 mg/kg/day) was given to senescence accelerated mouse-prone 8 (SAMP8) mice by oral administration. Aging led to loss of weight, skeletal muscle mass, strength, and function, and an increase in muscle atrophy and fibrosis, while mairin administration inhibited physiological decline caused by aging. Similarly, mairin (20 μM or 40 μM) treatment enhanced FAP proliferation but blocked the differentiation into fibroblasts. Mechanically, mairin played an anti-fibrotic role via AMP-activated protein kinase-transforming growth factor beta-drosophila mothers against decapentaplegic protein (AMPK-TGF-β-SMAD) axis, as evidenced by increased phosphorylation of AMPKα and decreased TGF-β and phosphorylated-SMAD2/3. In addition, the potential target genes of mairin were explored by mRNA sequencing in our study. In conclusion, mairin may interfere with the AMPK/TGF-β/SMAD pathway to repress the fibrosis of FAPs and eventually ameliorate sarcopenia.
Collapse
Affiliation(s)
- Wen Zhong
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huanan Jia
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Zhu
- Clinical Medical College, Chengdu Medical College, Chengdu, China
| | - Yuan Tian
- College of Geriatric Health, Chengdu Medical College, Chengdu, China
| | - Wei Huang
- Department of Geriatrics, Hanyuan County Chinese Medicine Hospital, Ya'an, China.
| | - Qiyue Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Peng L, Sun W, Cheng D, Jia X, Lian W, Li Z, Xiong H, Wang T, Liu Y, Ni C. NUDT21 regulates lysyl oxidase-like 2(LOXL2) to influence ECM protein cross-linking in silica-induced pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117572. [PMID: 39700768 DOI: 10.1016/j.ecoenv.2024.117572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis. LOXL2 is a copper-dependent lysine oxidase whose main function is to catalyze the cross-linking of extracellular matrix components, particularly collagen and elastin. However, few researchers have investigated the role of LOXL2 in the pathogenesis of silicosis. In this study, we demonstrated that LOXL2 is upregulated in silica-inhaled mouse lung tissue and in a TGF-β-induced fibroblast model. In vitro, we confirmed that LOXL2 functions to promote ECM deposition by binding directly to collagen and elastin. We then used scavenger receptor cysteine-rich (SRCR) domains to show that LOXL2 can induce fibrosis independently of its enzymatic activity. Furthermore, we discovered that NUDT21, the LOXL2 upstream regulatory mechanism of LOXL2, alters LOXL2's 3'UTR usage by substituting alternative polyadenylation (APA), thereby modulating LOXL2 expression. By injecting LOXL2 siRNA-loaded liposomes into the tail vein of mice in the silica dust-treated mouse pulmonary fibrosis model, the severity of lung fibrosis was significantly reduced. In this context, LOXL2 is regulated by NUDT21 and may affect pulmonary fibrosis by influencing the cross-linking of ECM proteins. Our research provides a scientific basis for the development of new anti-fibrosis treatment strategies.
Collapse
Affiliation(s)
- Lan Peng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing medical university, Wuxi, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinying Jia
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiu Lian
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziwei Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haojie Xiong
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210003, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 320700, China.
| |
Collapse
|
4
|
Luo X, Wang J, Ju Q, Li T, Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech Ageing Dev 2024; 223:112020. [PMID: 39667622 DOI: 10.1016/j.mad.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Sarcopenia, a common condition observed in the elderly, presenting a significant public health challenge due to its high prevalence, insidious onset and diverse systemic effects. Despite ongoing research, the precise etiology of sarcopenia remains elusive. Aging-related processes, which included inflammation, oxidative stress, compromised mitochondrial function and apoptosis, have been implicated in its development. Notably, effective pharmacological treatments for sarcopenia are currently lacking, highlighting the necessity for a deeper understanding of its pathogenesis and causative factors to enable proactive interventions. This article is aimed to provide an extensive overview of the pathogenesis of sarcopenia, along with a summary of current treatment and prevention strategies.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qingqing Ju
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianyu Li
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China; Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China.
| |
Collapse
|
5
|
Chen P, Zhang Z, Lei J, Zhu J, Liu G. Ellagitannin Component Punicalin Ameliorates Cognitive Dysfunction, Oxidative Stress, and Neuroinflammation via the Inhibition of cGAS-STING Signaling in the Brain of an Aging Mouse Model. Phytother Res 2024; 38:5690-5712. [PMID: 39313488 DOI: 10.1002/ptr.8343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Despite remarkable breakthroughs in pharmacotherapy, many potential therapies for aging remain unexplored. Punicalin (PUN), an ellagitannin component, exerts anti-inflammatory, antioxidant, and anti-apoptotic effects. This study investigated the beneficial effects of PUN against age-related brain damage in mice and explored the underlying mechanisms. We validated the protective effects of PUN against D-galactose (D-gal)-induced neuroinflammation and subsequent neuronal damage in BV2 microglia and N2a cells, respectively, in vitro. In vivo experiments were conducted on mice that were administered an 8-week regimen of intraperitoneal injections of D-gal at a dosage of 150 mg/kg/day, concurrently with oral gavage of PUN at the same dose. PUN inhibited the production of D-gal-induced inflammatory cytokines (iNOS, COX2, TNF-α, IL-6, IL-2, and IL-1β) in BV2 cells and conferred protection to N2a cells against synaptic damage mediated by BV2 microglia-induced neuroinflammation. The in vivo findings revealed that PUN considerably improved memory and learning deficits, reduced MDA levels, enhanced GSH-Px, CAT, and SOD activities, and modulated the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the secretion of SASP factors (ICAM-1, PAI-1, MMP-3, and MMP-9), decreased microglial activation, and reduced astrocytosis. Additionally, PUN suppressed the expression of cGAS, p-STING, p-TBK1, p-p65, and p-IRF3 in aging mouse brains and cultured BV2 microglia. In conclusion, PUN improved cognitive dysfunction in aging mice through antioxidant and anti-inflammatory mechanisms via inhibition of the cGAS-STING pathway, suggesting that it can be a promising therapeutic agent for brain aging and aging-related diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhongyuan Zhang
- Department of Pharmacy, Wuhan Red Cross Hospital, Wuhan, People's Republic of China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Zhu
- Department of Pharmacy, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Zhu GZ, Zhao K, Li HZ, Wu DZ, Chen YB, Han D, Gao JW, Chen XY, Yu YP, Huang ZW, Tu C, Zhong ZM. Melatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cell. Mol Med 2024; 30:238. [PMID: 39614149 DOI: 10.1186/s10020-024-00998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
The fibrogenic conversion of satellite cells contributes to the atrophy and fibrosis of skeletal muscle, playing a significant role in the pathogenesis of age-related sarcopenia. Melatonin, a hormone secreted by the pineal gland, exhibits anti-aging and anti-fibrotic effects in various conditions. However, the effect of melatonin on satellite cell fate and age-related sarcopenia remains under-explored. Here, we report that melatonin treatment mitigated the loss of muscle mass and strength in aged mice, replenished the satellite cell pool and curtailed muscle fibrosis. When primary SCs were cultured in vitro and subjected to aging induction via D-galactose, they exhibited a diminished myogenic potential and a conversion from myogenic to fibrogenic lineage. Notably, melatonin treatment effectively restored the myogenic potential and inhibited this lineage conversion. Furthermore, melatonin attenuated the expression of the fibrogenic cytokine, transforming growth factor-β1, and reduced the phosphorylation of its downstream targets Smad2/3 both in vivo and in vitro. In summary, our findings show melatonin's capacity to counteract muscle decline and inhibit fibrogenic conversion in aging SCs and highlight its potential therapeutic value for age-related sarcopenia.
Collapse
Affiliation(s)
- Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Zhao
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Yun-Biao Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Yong-Peng Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Zhi-Wei Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
7
|
Guo A, Huang K, Lu Q, Tao B, Li K, Jiang D. TRIM16 facilitates SIRT-1-dependent regulation of antioxidant response to alleviate age-related sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:2056-2070. [PMID: 39192479 PMCID: PMC11446700 DOI: 10.1002/jcsm.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Age-related sarcopenia, characterized by reduced skeletal muscle mass and function, significantly affects the health of the elderly individuals. Oxidative stress plays a crucial role in the development of sarcopenia. Tripartite motif containing 16 (TRIM16) is implicated in orchestrating antioxidant responses to mitigate oxidative stress, yet its regulatory role in skeletal muscle remains unclear. This study aims to elucidate the impact of TRIM16 on enhancing antioxidant response through SIRT-1, consequently mitigating age-related oxidative stress, and ameliorating muscle atrophy. METHODS Aged mouse models were established utilizing male mice at 18 months with D-galactose (D-gal, 200 mg/kg) intervention and at 24 months with natural aging, while 3-month-old young mice served as controls. Muscle cell senescence was induced in C2C12 myoblasts using 30 g/L D-gal. TRIM16 was overexpressed in the skeletal muscle of aged mice and silenced/overexpressed in C2C12 myoblasts. The effects of TRIM16 on skeletal muscle mass, grip strength, morphological changes, myotube formation, myogenic differentiation, and muscle atrophy indicators were evaluated. Reactive oxygen species (ROS) levels and oxidative stress-related parameters were measured. The SIRT-1 inhibitor EX-527 was employed to elucidate the protective role of TRIM16 mediated through SIRT-1. RESULTS Aged mice displayed significant reductions in lean mass (-11.58%; -14.47% vs. young, P < 0.05), hindlimb lean mass (-17.38%; -15.95% vs. young, P < 0.05), and grip strength (-22.29%; -31.45% vs. young, P < 0.01). Skeletal muscle fibre cross-sectional area (CSA) decreased (-29.30%; -24.12% vs. young, P < 0.05). TRIM16 expression significantly decreased in aging skeletal muscle (-56.82%; -66.27% vs. young, P < 0.001) and senescent muscle cells (-46.53% vs. control, P < 0.001). ROS levels increased (+69.83% vs. control, P < 0.001), and myotube formation decreased in senescent muscle cells (-56.68% vs. control, P < 0.001). Expression of myogenic differentiation and antioxidant indicators decreased, while muscle atrophy markers increased in vivo and in vitro (all P < 0.05). Silencing TRIM16 in myoblasts induced oxidative stress and myotube atrophy, while TRIM16 overexpression partially mitigated aging effects on skeletal muscle. TRIM16 activation enhanced SIRT-1 expression (+75.38% vs. control, P < 0.001). SIRT-1 inhibitor EX-527 (100 μM) suppressed TRIM16's antioxidant response and mitigating muscle atrophy, offsetting the protective effect of TRIM16 on senescent muscle cells. CONCLUSIONS This study elucidates TRIM16's role in mitigating oxidative stress and ameliorating muscle atrophy through the activation of SIRT-1-dependent antioxidant effects. TRIM16 emerges as a potential therapeutic target for age-related sarcopenia.
Collapse
Affiliation(s)
- Ai Guo
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Huang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quanyi Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Li K, Huang K, Lu Q, Geng W, Jiang D, Guo A. TRIM16 mitigates impaired osteogenic differentiation and antioxidant response in D-galactose-induced senescent osteoblasts. Eur J Pharmacol 2024; 979:176849. [PMID: 39059569 DOI: 10.1016/j.ejphar.2024.176849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Senile osteoporosis (SOP), characterized by significant bone loss, poses a substantial threat to elderly skeletal health, with oxidative stress playing a crucial role in its pathogenesis. Although Tripartite Motif 16 (TRIM16) has been identified as a promoter of antioxidant response and osteogenic differentiation, its regulatory role in SOP remains incompletely understood. This study aims to elucidate the underlying mechanism of TRIM16 in mitigating D-galactose (D-gal)-induced senescent osteoblasts. Initially, we observed diminished bone mineral density (BMD) and impaired bone microstructure in naturally aging (24 months) and D-gal-induced (18 months) aged mice through Dual-energy X-ray absorptiometry (DEXA), micro-CT, hematoxylin and eosin staining, and Masson staining. Immunohistochemistry analysis revealed downregulation of TRIM16 and osteogenic differentiation markers (Collagen-1, Runx-2, osteopontin) in femur samples of aged mice. Furthermore, in D-gal-induced senescent MC3T3-E1 osteoblasts, we observed the suppression of osteogenic differentiation and maturity, along with cytoskeleton impairment via Alkaline phosphatase (ALP), Alizarin Red S, and Rhodamine-phalloidin staining. The protein expression of TRIM16, osteogenic differentiation markers, and antioxidant indicators (Nrf-2, HO-1, SOD1) decreased, while the production of reactive oxygen species (ROS) significantly increased. Knockdown and overexpression of TRIM16 using lentivirus in osteoblasts revealed that the downregulation of TRIM16 inhibited osteogenic differentiation and induced oxidative stress. Notably, TRIM16 overexpression partially attenuated D-gal-induced inhibition of osteogenic differentiation and increased oxidative stress. These findings suggest TRIM16 may mitigate impaired osteogenic differentiation and antioxidant response in D-gal-induced senescent osteoblasts, suggesting its potential as a therapeutic target for SOP.
Collapse
Affiliation(s)
- Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Quanyi Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Geng
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ai Guo
- Chongqing Institute of Cadre Health Care Research, The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| |
Collapse
|
9
|
Liang R, Xiang Q, Dai M, Lin T, Xie D, Song Q, Liu Y, Yue J. Identification of nicotinamide N-methyltransferase as a promising therapeutic target for sarcopenia. Aging Cell 2024; 23:e14236. [PMID: 38838088 PMCID: PMC11488295 DOI: 10.1111/acel.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia is a significant geriatric syndrome that involves the loss of skeletal muscle mass and strength. Due to its substantial endocrine role, the metabolic microenvironment of skeletal muscle undergoes changes with age. Examining the pathogenesis of sarcopenia through focusing on metabolic dysregulation could offer insights for developing more effective intervention strategies. In this study, we analyzed the transcriptomics data to identify specific genes involved in the regulation of metabolism in skeletal muscle during the development of sarcopenia. Three machine learning algorithms were employed to screen key target genes exhibiting strong correlations with metabolism, which were further validated using RNA-sequencing data and publicly accessible datasets. Among them, the metabolic enzyme nicotinamide N-methyltransferase (NNMT) was elevated in sarcopenia, and predicted sarcopenia with an area under the curve exceeding 0.7, suggesting it as a potential therapeutic target for sarcopenia. As expected, inhibition of NNMT improved the grip strength in aging mice and alleviated age-related decline in the mass index of the quadriceps femoris muscles and whole-body lean mass index. Additionally, the NNMTi treatment increased the levels of nicotinamide adenine dinucleotide (NAD+) content, as well as PGC1α and p-AMPK expression in the muscles of both the D-galactose-treated mouse model and naturally aging mouse model. Overall, this work demonstrates NNMT as a promising target for preventing age-related decline in muscle mass and strength.
Collapse
Affiliation(s)
- Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Qiao Xiang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Miao Dai
- Department of GeriatricsJiujiang No 1 People's HospitalJiujiangJiangxiChina
| | - Taiping Lin
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Dongmei Xie
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Quhong Song
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Yu Liu
- National Clinical Research Center for Geriatrics, General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Ma L, Meng Y, An Y, Han P, Zhang C, Yue Y, Wen C, Shi X, Jin J, Yang G, Li X. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling. J Cachexia Sarcopenia Muscle 2024; 15:1388-1403. [PMID: 38751367 PMCID: PMC11294021 DOI: 10.1002/jcsm.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Muscle satellite cells (MuSCs) exert essential roles in skeletal muscle adaptation to growth, injury and ageing, and their functions are extensively modulated by microenvironmental factors. However, the current knowledge about the interaction of MuSCs with niche cells is quite limited. METHODS A 10× single-cell RNA sequencing (scRNA-seq) was performed on porcine longissimus dorsi and soleus (SOL) muscles to generate a single-cell transcriptomic dataset of myogenic cells and other cell types. Sophisticated bioinformatic analyses, including unsupervised clustering analysis, marker gene, gene set variation analysis (GSVA), AUCell, pseudotime analysis and RNA velocity analysis, were performed to explore the heterogeneity of myogenic cells. CellChat analysis was used to demonstrate cell-cell communications across myogenic cell subpopulations and niche cells, especially fibro-adipogenic progenitors (FAPs). Integrated analysis with human and mice datasets was performed to verify the expression of FGF7 across diverse species. The role of FGF7 on MuSC proliferation was evaluated through administering recombinant FGF7 to porcine MuSCs, C2C12, cardiotoxin (CTX)-injured muscle and d-galactose (d-gal)-induced ageing model. RESULTS ScRNA-seq totally figured out five cell types including myo-lineage cells and FAPs, and myo-lineage cells were further classified into six subpopulations, termed as RCN3+, S100A4+, ID3+, cycling (MKI67+), MYF6+ and MYMK+ satellite cells, respectively. There was a higher proportion of cycling and MYF6+ cells in the SOL population. CellChat analysis uncovered a particular impact of FAPs on myogenic cells mediated by FGF7, which was relatively highly expressed in SOL samples. Administration of FGF7 (10 ng/mL) significantly increased the proportion of EdU+ porcine MuSCs and C2C12 by 4.03 ± 0.81% (P < 0.01) and 6.87 ± 2.17% (P < 0.05), respectively, and knockdown of FGFR2 dramatically abolished the pro-proliferating effects (P < 0.05). In CTX-injured muscle, FGF7 significantly increased the ratio of EdU+/Pax7+ cells by 15.68 ± 5.45% (P < 0.05) and elevated the number of eMyHC+ regenerating myofibres by 19.7 ± 4.25% (P < 0.01). Under d-gal stimuli, FGF7 significantly reduced γH2AX+ cells by 17.19 ± 3.05% (P < 0.01) in porcine MuSCs, induced EdU+ cells by 4.34 ± 1.54% (P < 0.05) in C2C12, and restored myofibre size loss and running exhaustion in vivo (all P < 0.05). CONCLUSIONS Our scRNA-seq reveals a novel interaction between muscle FAPs and satellite cells mediated by FGF7-FGFR2. Exogenous FGF7 augments the proliferation of satellite cells and thus benefits muscle regeneration and counteracts age-related myopathy.
Collapse
Affiliation(s)
- Lu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yingying Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yalong An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Peiyuan Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Chen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Yongqi Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Chenglong Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Jianjun Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| |
Collapse
|
11
|
Zeng R, Zhang D, Zhang J, Pan Y, Liu X, Qi Q, Xu J, Xu C, Shi S, Wang J, Liu T, Dong L. Targeting lysyl oxidase like 2 attenuates OVA-induced airway remodeling partly via the AKT signaling pathway. Respir Res 2024; 25:230. [PMID: 38824593 PMCID: PMC11144323 DOI: 10.1186/s12931-024-02811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/12/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Airway epithelium is an important component of airway structure and the initiator of airway remodeling in asthma. The changes of extracellular matrix (ECM), such as collagen deposition and structural disturbance, are typical pathological features of airway remodeling. Thus, identifying key mediators that derived from airway epithelium and capable of modulating ECM may provide valuable insights for targeted therapy of asthma. METHODS The datasets from Gene Expression Omnibus database were analyzed to screen differentially expressed genes in airway epithelium of asthma. We collected bronchoscopic biopsies and serum samples from asthmatic and healthy subjects to assess lysyl oxidase like 2 (LOXL2) expression. RNA sequencing and various experiments were performed to determine the influences of LOXL2 knockdown in ovalbumin (OVA)-induced mouse models. The roles and mechanisms of LOXL2 in bronchial epithelial cells were explored using LOXL2 small interfering RNA, overexpression plasmid and AKT inhibitor. RESULTS Both bioinformatics analysis and further experiments revealed that LOXL2 is highly expressed in airway epithelium of asthmatics. In vivo, LOXL2 knockdown significantly inhibited OVA-induced ECM deposition and epithelial-mesenchymal transition (EMT) in mice. In vitro, the transfection experiments on 16HBE cells demonstrated that LOXL2 overexpression increases the expression of N-cadherin and fibronectin and reduces the expression of E-cadherin. Conversely, after silencing LOXL2, the expression of E-cadherin is up-regulated. In addition, the remodeling and EMT process that induced by transforming growth factor-β1 could be enhanced and weakened after LOXL2 overexpression and silencing in 16HBE cells. Combining the RNA sequencing of mouse lung tissues and experiments in vitro, LOXL2 was involved in the regulation of AKT signaling pathway. Moreover, the treatment with AKT inhibitor in vitro partially alleviated the consequences associated with LOXL2 overexpression. CONCLUSIONS Taken together, the results demonstrated that epithelial LOXL2 plays a role in asthmatic airway remodeling partly via the AKT signaling pathway and highlighted the potential of LOXL2 as a therapeutic target for airway remodeling in asthma.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qian Qi
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Changjuan Xu
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuochuan Shi
- Department of Respiratory, Shandong Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junfei Wang
- Department of Respiratory and Critical Care Medicine, Qilu hospital of Shandong University, Jinan, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu hospital of Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
12
|
Liu H, Yuan S, Liu G, Li J, Zheng K, Zhang Z, Zheng S, Yin L, Li Y. Satellite Cell-Derived Exosomes: A Novel Approach to Alleviate Skeletal Muscle Atrophy and Fibrosis. Adv Biol (Weinh) 2024; 8:e2300558. [PMID: 38329214 DOI: 10.1002/adbi.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Skeletal muscle atrophy coincides with extensive fibrous tissue hyperplasia in muscle-atrophied patients, and fibrous tissue plays a vital role in skeletal muscle function and hinders muscle fiber regeneration. However, effective drugs to manage skeletal muscle atrophy and fibrosis remain elusive. This study isolated and characterized exosomes derived from skeletal muscle satellite cells (MuSC-Exo). The study investigated their effects on denervated skeletal muscle atrophy and fibrosis in Sprague Dawley (SD) rats via intramuscular injection. MuSC-Exo demonstrated the potential to alleviate skeletal muscle atrophy and fibrosis. The underlying mechanism using single-cell RNA sequencing data and functional analysis are analyzed. Mechanistic studies reveal close associations between fibroblasts and myoblasts, with the transforming growth factor β1 (TGF-β1)-Smad3-Pax7 axis governing fibroblast activation in atrophic skeletal muscle. MuSC-Exo intervention inhibited the TGF-β1/Smad3 pathway and improved muscle atrophy and fibrosis. In conclusion, MuSC-Exo-based therapy may represent a novel strategy to alleviate skeletal muscle atrophy and reduce excessive fibrotic tissue by targeting Pax7 through the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Shiguo Yuan
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, 570203, China
- School of Chinese Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Gaofeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kai Zheng
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, 570203, China
- School of Chinese Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Zhiwei Zhang
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, 570203, China
- School of Chinese Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Sheng Zheng
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Li Yin
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Yikai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
13
|
Sun AR, Hengst RM, Young JL. All the small things: Nanoscale matrix alterations in aging tissues. Curr Opin Cell Biol 2024; 87:102322. [PMID: 38277866 DOI: 10.1016/j.ceb.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Cellular aging stems from multifaceted intra- and extracellular molecular changes that lead to the gradual deterioration of biological function. Altered extracellular matrix (ECM) properties that include biochemical, structural, and mechanical perturbations direct cellular- and tissue-level dysfunction. With recent advancements in high-resolution imaging modalities and nanomaterial strategies, the importance of nanoscale ECM features has come into focus. Here, we provide an updated window into micro- to nano-scale ECM properties that are altered with age and in age-related disease, and the impact these altered small-scale ECM properties have on cellular function. We anticipate future impactful research will incorporate nanoscale ECM features in the design of new biomaterials and call on the tissue biology field to work collaboratively with the nanomaterials community.
Collapse
Affiliation(s)
- Avery Rui Sun
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| | - Ranmadusha M Hengst
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Jennifer L Young
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore.
| |
Collapse
|
14
|
Nie L, He K, Qiu C, Li Q, Xiong B, Gao C, Zhang X, Jing M, Wu W, Liu J, Zhang G, Zhang Z, Yang X, Sun Y, Wang Y. Tetramethylpyrazine Nitrone alleviates D-galactose-induced murine skeletal muscle aging and motor deficits by activating the AMPK signaling pathway. Biomed Pharmacother 2024; 173:116415. [PMID: 38479182 DOI: 10.1016/j.biopha.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Tetramethylpyrazine nitrone (TBN), a novel derivative of tetramethylpyrazine (TMP) designed and synthesized by our group, possesses multi-functional mechanisms of action and displays broad protective effects in vitro and in animal models of age-related brain disorders such as stroke, Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's disease (PD). In the present report, we investigated the effects of TBN on aging, specifically on muscle aging and the associated decline of motor functions. Using a D-galactose-induced aging mouse model, we found that TBN could reverse the levels of several senescence and aging markers including p16, p21, ceramides, and telomere length and increase the wet-weight ratio of gastrocnemius muscle tissue, demonstrating its efficacy in ameliorating muscle aging. Additionally, the pharmacological effects of TBN on motor deficits (gait analysis, pole-climbing test and grip strength test), muscle fibrosis (hematoxylin & eosin (HE), Masson staining, and αSMA staining), inflammatory response (IL-1β, IL-6, and TNF-α), and mitochondrial function (ATP, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were also confirmed in the D-galactose-induced aging models. Further experiments demonstrated that TBN alleviated muscle aging and improved the decline of age-related motor deficits through an AMPK-dependent mechanism. These findings highlight the significance of TBN as a potential anti-aging agent to combat the occurrence and development of aging and age-related diseases.
Collapse
Affiliation(s)
- Lulin Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kaiwu He
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Chaoming Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qing Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Bocheng Xiong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chuanyue Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiufen Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Mei Jing
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Wei Wu
- Department of Hematology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| |
Collapse
|
15
|
Wu X, Li X, Wang L, Bi X, Zhong W, Yue J, Chin YE. Lysine Deacetylation Is a Key Function of the Lysyl Oxidase Family of Proteins in Cancer. Cancer Res 2024; 84:652-658. [PMID: 38194336 DOI: 10.1158/0008-5472.can-23-2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Mammalian members of the lysyl oxidase (LOX) family of proteins carry a copper-dependent monoamine oxidase domain exclusively within the C-terminal region, which catalyzes ε-amine oxidation of lysine residues of various proteins. However, recent studies have demonstrated that in LOX-like (LOXL) 2-4 the C-terminal canonical catalytic domain and N-terminal scavenger receptor cysteine-rich (SRCR) repeats domain exhibit lysine deacetylation and deacetylimination catalytic activities. Moreover, the N-terminal SRCR repeats domain is more catalytically active than the C-terminal oxidase domain. Thus, LOX is the third family of lysine deacetylases in addition to histone deacetylase and sirtuin families. In this review, we discuss how the LOX family targets different cellular proteins for deacetylation and deacetylimination to control the development and metastasis of cancer.
Collapse
Affiliation(s)
- Xingxing Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Luwei Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Xianxia Bi
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jicheng Yue
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
16
|
Homolak J, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. D-galactose might mediate some of the skeletal muscle hypertrophy-promoting effects of milk-A nutrient to consider for sarcopenia? Bioessays 2024; 46:e2300061. [PMID: 38058119 DOI: 10.1002/bies.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Sarcopenia is a process of progressive aging-associated loss of skeletal muscle mass (SMM) recognized as a serious global health issue contributing to frailty and increased all-cause mortality. Exercise and nutritional interventions (particularly intake of dairy products and milk) demonstrate good efficacy, safety, and broad applicability. Here, we propose that at least some of the well-documented favorable effects of milk and milk-derived protein supplements on SMM might be mediated by D-galactose, a monosaccharide present in large quantities in milk in the form of disaccharide lactose (milk sugar). We suggest that ingestion of dairy products results in exposure to D-galactose in concentrations metabolized primarily via the Leloir pathway with the potential to (i) promote anabolic signaling via maintenance of growth factor (e.g., insulin-like growth factor 1 [IGF-1]) receptor mature glycosylation patterns; and (ii) provide extracellular (liver glycogen) and intracellular substrates for short (muscle glycolysis) and long-term (muscle glycogen, intramyocellular lipids) energy availability. Additionally, D-galactose might optimize the metabolic function of skeletal muscles by increasing mitochondrial content and stimulating glucose and fatty acid utilization. The proposed potential of D-galactose to promote the accretion of SMM is discussed in the context of its therapeutic potential in sarcopenia.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen, Germany
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Davor Virag
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
17
|
Kaplan JL, Rivas VN, Connolly DJ. Advancing Treatments for Feline Hypertrophic Cardiomyopathy: The Role of Animal Models and Targeted Therapeutics. Vet Clin North Am Small Anim Pract 2023; 53:1293-1308. [PMID: 37414693 DOI: 10.1016/j.cvsm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Feline HCM is the most common cardiovascular disease in cats, leading to devastating outcomes, including congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden death. Evidence demonstrating long-term survival benefit with currently available therapies is lacking. Therefore, it is imperative to explore intricate genetic and molecular pathways that drive HCM pathophysiology to inspire the development of novel therapeutics. Several clinical trials exploring new drug therapies are currently underway, including those investigating small molecule inhibitors and rapamycin. This article outlines the key work performed using cellular and animal models that has led to and continues to guide the development of new innovative therapeutic strategies.
Collapse
Affiliation(s)
- Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
18
|
Loomis T, Smith LR. Thrown for a loop: fibro-adipogenic progenitors in skeletal muscle fibrosis. Am J Physiol Cell Physiol 2023; 325:C895-C906. [PMID: 37602412 DOI: 10.1152/ajpcell.00245.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Fibro-adipogenic progenitors (FAPs) are key regulators of skeletal muscle regeneration and homeostasis. However, dysregulation of these cells leads to fibro-fatty infiltration across various muscle diseases. FAPs are the key source of extracellular matrix (ECM) deposition in muscle, and disruption to this process leads to a pathological accumulation of ECM, known as fibrosis. The replacement of contractile tissue with fibrotic ECM functionally impairs the muscle and increases muscle stiffness. FAPs and fibrotic muscle form a progressively degenerative feedback loop where, as a muscle becomes fibrotic, it induces a fibrotic FAP phenotype leading to further development of fibrosis. In this review, we summarize FAPs' role in fibrosis in terms of their activation, heterogeneity, contributions to fibrotic degeneration, and role across musculoskeletal diseases. We also discuss current research on potential therapeutic avenues to attenuate fibrosis by targeting FAPs.
Collapse
Affiliation(s)
- Taryn Loomis
- Biomedical Engineering Graduate Group, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
19
|
Wang HH, Zhang Y, Qu TQ, Sang XQ, Li YX, Ren FZ, Wen PC, Sun YN. Nobiletin Improves D-Galactose-Induced Aging Mice Skeletal Muscle Atrophy by Regulating Protein Homeostasis. Nutrients 2023; 15:nu15081801. [PMID: 37111020 PMCID: PMC10146842 DOI: 10.3390/nu15081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia, a decrease in skeletal muscle mass and function caused by aging, impairs mobility, raises the risk of fractures, diabetes, and other illnesses, and severely affects a senior's quality of life. Nobiletin (Nob), polymethoxyl flavonoid, has various biological effects, such as anti-diabetic, anti-atherogenic, anti-inflammatory, anti-oxidative, and anti-tumor properties. In this investigation, we hypothesized that Nob potentially regulates protein homeostasis to prevent and treat sarcopenia. To investigate whether Nob could block skeletal muscle atrophy and elucidate its underlying molecular mechanism, we used the D-galactose-induced (D-gal-induced) C57BL/6J mice for 10 weeks to establish a skeletal muscle atrophy model. The findings demonstrated that Nob increased body weight, hindlimb muscle mass, lean mass and improved the function of skeletal muscle in D-gal-induced aging mice. Nob improved myofiber sizes and increased skeletal muscle main proteins composition in D-gal-induced aging mice. Notably, Nob activated mTOR/Akt signaling to increase protein synthesis and inhibited FOXO3a-MAFbx/MuRF1 pathway and inflammatory cytokines, thereby reducing protein degradation in D-gal-induced aging mice. In conclusion, Nob attenuated D-gal-induced skeletal muscle atrophy. It is a promising candidate for preventing and treating age-associated atrophy of skeletal muscles.
Collapse
Affiliation(s)
- Hui-Hui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tai-Qi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xue-Qin Sang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Peng-Cheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ya-Nan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
20
|
Nie C, Wang B, Fan M, Wang Y, Sun Y, Qian H, Li Y, Wang L. Highland Barley Tea Polyphenols Extract Alleviates Skeletal Muscle Fibrosis in Mice by Reducing Oxidative Stress, Inflammation, and Cell Senescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:739-748. [PMID: 36538519 DOI: 10.1021/acs.jafc.2c05246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The tea of roasted Highland barley is a cereal-based drink rich in polyphenols. A model of skeletal muscle senescence and fibrosis was constructed using d-galactose-induced C2C12 myotubes, and Highland barley tea Polyphenols (HBP) were extracted for the intervention. We found that HBP effectively alleviated oxidative stress, inflammation, and fibrosis induced by d-galactose-induced skeletal muscle senescence. Also, HBP treatment significantly down-regulated pro-fibrotic genes, inflammation, and oxidative stress levels in a contusion model of senescent mice. Reduced levels of SIRT3 protein was found to be an essential factor in skeletal muscle senescence and fibrosis in both cellular and animal models, while HBP treatment significantly increased SIRT3 protein levels and viability in skeletal muscle. The ability of HBP to mitigate skeletal muscle fibrosis and oxidative stress was significantly reduced after SIRT3 silencing. Together, these results suggest that HBP intervention can significantly alleviate aging-induced oxidative stress, inflammation, and skeletal muscle fibrosis, with the activation of SIRT3 as the underlying mechanism of action.
Collapse
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ben Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|