1
|
Xu H, Mao X, Zhang S, Ren J, Jiang S, Cai L, Miao X, Tao Y, Peng C, Lv M, Li Y. Perfluorooctanoic acid triggers premature ovarian insufficiency by impairing NAD+ synthesis and mitochondrial function in adult zebrafish. Toxicol Sci 2024; 201:118-128. [PMID: 38830045 DOI: 10.1093/toxsci/kfae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
High-dose perfluorooctanoic acid (PFOA) impairs oocyte maturation and offspring quality. However, the physiological concentrations of PFOA in follicular fluids of patients with premature ovarian insufficiency (POI) were detected at lower levels, thus the relationship between physiological PFOA and reproductive disorders remains elusive. Here, we investigated whether physiological PFOA exposure affects gonad function in adult zebrafish. Physiological PFOA exposure resulted in POI-like phenotypes in adult females, which exhibited decreased spawning frequency, reduced number of ovulated eggs, abnormal gonadal index, and aberrant embryonic mortality. Meanwhile, oocytes from PFOA-exposed zebrafish showed mitochondrial disintegration and diminished mitochondrial membrane potential. Unlike the high-dose treated oocytes exhibiting high reactive oxygen species (ROS) levels and excessive apoptosis, physiological PFOA reduced the ROS levels and did not trigger apoptosis. Interestingly, physiological PFOA exposure would not affect testis function, indicating specific toxicity in females. Mechanistically, PFOA suppressed the NAD+ biosynthesis and impaired mitochondrial function in oocytes, thus disrupting oocyte maturation and ovarian fertility. Nicotinamide mononucleotide (NMN), a precursor for NAD+ biosynthesis, alleviated the PFOA-induced toxic effects in oocytes and improved the oocyte maturation and fertility upon PFOA exposure. Our findings discover new insights into PFOA-induced reproductive toxicity and provide NMN as a potential drug for POI therapy.
Collapse
Affiliation(s)
- Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, China
| | - Siling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jie Ren
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shanwen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lijuan Cai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaomin Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yixi Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Fisheries Development Department of Agriculture and Rural Committee of Nanchuan District, Chongqing 408400, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Yu J, Wei Y, Zhang Z, Chen J, Fu R, Ye P, Chen S, Yang J. Metabolomic Analysis of Follicular Fluid in Normal-Weight Patients with Polycystic Ovary Syndrome. Biomedicines 2024; 12:1810. [PMID: 39200274 PMCID: PMC11352029 DOI: 10.3390/biomedicines12081810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND This study aimed to examine the differential variations in the metabolic composition of follicular fluid (FF) among normal-weight patients with polycystic ovary syndrome (PCOS) and controls and to identify potential biomarkers that may offer insights into the early identification and management of these patients. METHODS We collected FF samples from 45 normal-weight women with PCOS and 36 normal-weight controls without PCOS who were undergoing in vitro fertilization-embryo transfer. An untargeted metabolomic study of collected FF from infertile women was performed using high-performance liquid chromatography-tandem spectrometry (LC-MS). The tendency of the two groups to separate was demonstrated through multivariate analysis. Univariate analysis and variable importance in projection were used to screen out differential metabolites. Metabolic pathway analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a diagnostic model was established using the random forest algorithm. RESULTS The metabolomics analysis revealed an increase in the expression of 23 metabolites and a decrease in that of 10 metabolites in the FF of normal-weight women with PCOS. According to the KEGG pathway analysis, these differential metabolites primarily participated in the metabolism of glycerophospholipids and the biosynthesis of steroid hormones. Based on the biomarker combination of the top 10 metabolites, the area under the curve value was 0.805. The concentrations of prostaglandin E2 in the FF of individuals with PCOS exhibited an inverse association with the proportion of high-quality embryos (p < 0.05). CONCLUSIONS Our research identified a distinct metabolic profile of the FF from normal-weight women with PCOS. The results offer a broader comprehension of the pathogenesis and advancement of PCOS, and the detected differential metabolites could be potential biomarkers and targets for the treatment of PCOS.
Collapse
Affiliation(s)
- Jiayue Yu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Jiao Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| | - Rongrong Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; (Z.Z.); (R.F.)
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.Y.); (Y.W.); (J.C.)
| |
Collapse
|
3
|
Wang W, Liu H, Liu S, Hao T, Wei Y, Wei H, Zhou W, Zhang X, Hao X, Zhang M. Oocyte-specific deletion of eukaryotic translation initiation factor 5 causes apoptosis of mouse oocytes within the early-growing follicles by mitochondrial fission defect-reactive oxygen species-DNA damage. Clin Transl Med 2024; 14:e1791. [PMID: 39113233 PMCID: PMC11306288 DOI: 10.1002/ctm2.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.
Collapse
Affiliation(s)
- Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Tiantian Hao
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying Wei
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Wenjun Zhou
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xiaodan Zhang
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Xiaoqiong Hao
- Department of PhysiologyBaotou Medical CollegeBaotouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and Diseasesthe Second Affiliated HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
4
|
Ren C, Zhang S, Chen Y, Deng K, Kuang M, Gong Z, Zhang K, Wang P, Huang P, Zhou Z, Gong A. Exploring nicotinamide adenine dinucleotide precursors across biosynthesis pathways: Unraveling their role in the ovary. FASEB J 2024; 38:e23804. [PMID: 39037422 DOI: 10.1096/fj.202400453r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Natural Nicotinamide Adenine Dinucleotide (NAD+) precursors have attracted much attention due to their positive effects in promoting ovarian health. However, their target tissue, synthesis efficiency, advantages, and disadvantages are still unclear. This review summarizes the distribution of NAD+ at the tissue, cellular and subcellular levels, discusses its biosynthetic pathways and the latest findings in ovary, include: (1) NAD+ plays distinct roles both intracellularly and extracellularly, adapting its distribution in response to requirements. (2) Different precursors differs in target tissues, synthetic efficiency, biological utilization, and adverse effects. Importantly: tryptophan is primarily utilized in the liver and kidneys, posing metabolic risks in excess; nicotinamide (NAM) is indispensable for maintaining NAD+ levels; nicotinic acid (NA) constructs a crucial bridge between intestinal microbiota and the host with diverse functions; nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) increase NAD+ systemically and can be influenced by delivery route, tissue specificity, and transport efficiency. (3) The biosynthetic pathways of NAD+ are intricately intertwined. They provide multiple sources and techniques for NAD+ synthesis, thereby reducing the dependence on a single molecule to maintain cellular NAD+ levels. However, an excess of a specific precursor potentially influencing other pathways. In addition, Protein expression analysis suggest that ovarian tissues may preferentially utilize NAM and NMN. These findings summarize the specific roles and potential of NAD+ precursors in enhancing ovarian health. Future research should delve into the molecular mechanisms and intervention strategies of different precursors, aiming to achieve personalized prevention or treatment of ovarian diseases, and reveal their clinical application value.
Collapse
Affiliation(s)
- Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shuang Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kaiping Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meiqian Kuang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihao Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Panqi Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Hense JD, Isola JVV, Garcia DN, Magalhães LS, Masternak MM, Stout MB, Schneider A. The role of cellular senescence in ovarian aging. NPJ AGING 2024; 10:35. [PMID: 39033161 PMCID: PMC11271274 DOI: 10.1038/s41514-024-00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
This review explores the relationship between ovarian aging and senescent cell accumulation, as well as the efficacy of senolytics to improve reproductive longevity. Reproductive longevity is determined by the age-associated decline in ovarian reserve, resulting in reduced fertility and eventually menopause. Cellular senescence is a state of permanent cell cycle arrest and resistance to apoptosis. Senescent cells accumulate in several tissues with advancing age, thereby promoting chronic inflammation and age-related diseases. Ovaries also appear to accumulate senescent cells with age, which might contribute to aging of the reproductive system and whole organism through SASP production. Importantly, senolytic drugs can eliminate senescent cells and may present a potential intervention to mitigate ovarian aging. Herein, we review the current literature related to the efficacy of senolytic drugs for extending the reproductive window in mice.
Collapse
Affiliation(s)
- Jéssica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Zheng B, Hu X, Hu Y, Dong S, Xiao X, Qi H, Wang Y, Wang W, Wang Z. Type III adenylyl cyclase is essential for follicular development in female mice and their reproductive lifespan. iScience 2024; 27:110293. [PMID: 39050703 PMCID: PMC11267094 DOI: 10.1016/j.isci.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Premature ovarian failure (POF) is a complex and heterogeneous disease that causes infertility and subfertility. However, the molecular mechanism of POF has not been fully elucidated. Here, we show that the loss of adenylyl cyclase III (Adcy3) in female mice leads to POF and a shortened reproductive lifespan. We found that Adcy3 is abundantly expressed in mouse oocytes. Adcy3 knockout mice exhibited the excessive activation of primordial follicles, progressive follicle loss, follicular atresia, and ultimately POF. Mechanistically, we found that mitochondrial oxidative stress in oocytes significantly increased with age in Adcy3-deficient mice and was accompanied by oocyte apoptosis and defective folliculogenesis. In contrast, compared with wild-type female mice, humanized ADCY3 knock-in female mice exhibited improved fertility with age. Collectively, these results reveal that the previously unrecognized Adcy3 signaling pathway is tightly linked to female ovarian aging, providing potential pharmaceutical targets for preventing and treating POF.
Collapse
Affiliation(s)
- Baofang Zheng
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Xiaoyu Hu
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuanhui Hu
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Sheng Dong
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Xin Xiao
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Haoming Qi
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Yongdi Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Weina Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Zhenshan Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
7
|
Chen W, Wang M, Wang H, Jiang Y, Zhu J, Zeng X, Xie H, Yang Q, Sun Y. Sestrin2 and Sestrin3 protect spermatogenesis against heat-induced meiotic defects†. Biol Reprod 2024; 111:197-211. [PMID: 38519102 DOI: 10.1093/biolre/ioae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Heat stress induces testicular oxidative stress, impairs spermatogenesis, and increases the risk of male infertility. Recent studies have highlighted the antioxidative properties of the Sestrins family in reducing cellular oxidative damage. However, the role of Sestrins (Sestrin1, 2, and 3) in the testicular response to heat stress remains unclear. Here, we found that Sestrin2 and 3 were highly expressed in the testis relative to Sestrin1. Then, the Sestrin2-/- and Sestrin3-/- mice were generated by CRISPR/Cas9 to investigate the role of them on spermatogenesis after heat stress. Our data showed that Sestrin2-/- and Sestrin3-/- mice testes exhibited more severe damage manifested by exacerbated loss of germ cells and higher levels of oxidative stress as compared to wild-type counterparts after heat stress. Notably, Sestrin2-/- and Sestrin3-/- mice underwent a remarkable increase in heat-induced spermatocyte apoptosis than that of controls. Furthermore, the transcriptome landscape of spermatocytes and chromosome spreading showed that loss of Sestrin2 and Sestrin3 exacerbated meiotic failure by compromising DNA double-strand breaks repair after heat stress. Taken together, our work demonstrated a critical protective function of Sestrin2 and Sestrin3 in mitigating the impairments of spermatogenesis against heat stress.
Collapse
Affiliation(s)
- Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Xie
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Wang ZH, Wang ZJ, Liu HC, Wang CY, Wang YQ, Yue Y, Zhao C, Wang G, Wan JP. Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1417007. [PMID: 38952389 PMCID: PMC11215021 DOI: 10.3389/fendo.2024.1417007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen-Jing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Huai-Chao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen-Yu Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Qi Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Yue
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Yan J, Zhang X, Zhu K, Yu M, Liu Q, De Felici M, Zhang T, Wang J, Shen W. Sleep deprivation causes gut dysbiosis impacting on systemic metabolomics leading to premature ovarian insufficiency in adolescent mice. Theranostics 2024; 14:3760-3776. [PMID: 38948060 PMCID: PMC11209713 DOI: 10.7150/thno.95197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Methods: Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. Results: We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Conclusion: Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.
Collapse
Affiliation(s)
- Jiamao Yan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Kexin Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingchun Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
11
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Ma Y, Zhang W, Gao M, Li J, Wang Q, Chen M, Gu L. Combined analysis of temporal metabolomics and transcriptomics reveals the metabolic patterns in goat oocytes during maturation. Theriogenology 2024; 218:69-78. [PMID: 38301509 DOI: 10.1016/j.theriogenology.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Well-balanced and orderly metabolism is a crucial prerequisite for promoting oogenesis. Involvement of single metabolites in oocyte development has been widely reported; however, the comprehensive metabolic framework controlling oocyte maturation is still lacking. In the present study, we employed an integrated temporal metabolomic and transcriptomic method to analyze metabolism in goat oocytes at GV, GVBD, and MII stages (GV, fully-grown immature oocyte; GVBD, stage of meiotic resumption; MII, mature oocyte) during in vitro maturation, revealing the global picture of the metabolic patterns during maturation. In particular, several significantly altered metabolic pathways during goat oocyte meiosis have been identified, including active serine metabolism, increased utilization of tryptophan, and marked accumulation of purine nucleotide. In summary, the current study provides transcriptomic and metabolomic datasets for goat oocyte development that can be applied in cross-species comparative studies.
Collapse
Affiliation(s)
- Yixin Ma
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
13
|
Pollard CL. Can Nicotinamide Adenine Dinucleotide (NAD +) and Sirtuins Be Harnessed to Improve Mare Fertility? Animals (Basel) 2024; 14:193. [PMID: 38254361 PMCID: PMC10812544 DOI: 10.3390/ani14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Years of sire and dam selection based on their pedigree and athletic performance has resulted in a reduction in the reproductive capability of horses. Mare age is considered a major barrier to equine reproduction largely due to an increase in the age at which mares are typically bred following the end of their racing career. Nicotinamide adenine dinucleotide (NAD+) and its involvement in the activation of Sirtuins in fertility are an emerging field of study, with the role of NAD+ in oocyte maturation and embryo development becoming increasingly apparent. While assisted reproductive technologies in equine breeding programs are in their infancy compared to other livestock species such as cattle, there is much more to be learnt, from oocyte maturation to early embryo development and beyond in the mare, which are difficult to study given the complexities associated with mare fertility research. This review examines what is already known about the role of NAD+ and Sirtuins in fertility and discusses how NAD+-elevating agents may be used to activate Sirtuin proteins to improve equine breeding and embryo production programs both in vivo and in vitro.
Collapse
Affiliation(s)
- Charley-Lea Pollard
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|