1
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
3
|
Nouri K, Pietrancosta N, Le Corre L, Dansette PM, Mansuy D, Boucher JL. Human Orphan Cytochrome P450 2U1 Catalyzes the ω-Hydroxylation of Leukotriene B 4. Int J Mol Sci 2022; 23:ijms232314615. [PMID: 36498943 PMCID: PMC9739833 DOI: 10.3390/ijms232314615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cytochrome P450 2U1 (CYP2U1) identified from the human genome remains poorly known since few data are presently available on its physiological function(s) and substrate(s) specificity. CYP2U1 mutations are associated with complicated forms of hereditary spastic paraplegia, alterations of mitochondrial architecture and bioenergetics. In order to better know the biological roles of CYP2U1, we used a bioinformatics approach. The analysis of the data invited us to focus on leukotriene B4 (LTB4), an important inflammatory mediator. Here, we show that CYP2U1 efficiently catalyzes the hydroxylation of LTB4 predominantly on its ω-position. We also report docking experiments of LTB4 in a 3D model of truncated CYP2U1 that are in agreement with this hydroxylation regioselectivity. The involvement of CYP2U1 in the metabolism of LTB4 could have strong physiological consequences in cerebral pathologies including ischemic stroke because CYP2U1 is predominantly expressed in the brain.
Collapse
Affiliation(s)
- Khawla Nouri
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire Neuroscience Paris Seine, CNRS UMR 8246/INSERM UMCR 18, Laboratoire des Biomolécules, CNRS UMR7203, Faculté des Sciences, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Le Corre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Patrick M. Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
- Correspondence:
| |
Collapse
|
4
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
5
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Upregulation of CYP2E1 expression causes oxidative damage induced by 2-chloroethanol in primary cultured rat astrocytes. Neurotoxicology 2019; 75:233-244. [PMID: 31585129 DOI: 10.1016/j.neuro.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Brain edema caused by subacute poisoning with 1,2-dichloroethane (1,2-DCE) has gained much attention during recent years, but its underlying mechanism is poorly understood. As an intermediate metabolite of 1,2-DCE in vivo, 2-chloroethanol (2-CE) can be transformed into chloroacetaldehyde and reactive oxygen species (ROS) through cytochrome P450 2E1 (CYP2E1) mediated metabolism. In previous studies, it was found that CYP2E1 expression is enhanced in the brain of mice treated with 1,2-DCE. This study was designed to verify the roles of CYP2E1 overexpression in 2-CE induced cytotoxicity in rat astrocytes, and the contribution of specific signaling molecules to the upregulation of CYP2E1 expression caused by 2-CE. The results of this study demonstrate that treatment with 2-CE can enhance CYP2E1 protein and mRNA levels, cause an increase in ROS and MDA levels, and higher percentages of apoptotic cells in rat astrocytes. Pretreatment with either diallyl sulfide or vitamin C, the inhibitor of CYP2E1 or scavenger of ROS, respectively, can suppress the levels of CYP2E1 expression, ROS and MDA, ameliorate cell apoptosis, and attenuate phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in these cells. Additionally, pretreatment with the inhibitor of either ERK1/2 or transcriptional factor specificity protein 1 (SP1) can suppress the CYP2E1 expression, and alleviate the oxidative damage caused to these cells. In conclusion, our findings demonstrate that CYP2E1 overexpression plays a crucial role in 2-CE induced oxidative damage of rat astrocytes, and that CYP2E1 expression is upregulated partially through the activation of the ERK1/2 and SP1 signaling pathways by ROS generated during CYP2E1-mediated 2-CE metabolism. This study provides novel information that can be used in elucidating the mechanism by which 1,2-DCE induces brain edema.
Collapse
|
8
|
Huang Y, Liu C, Liu S, Liu Z, Li S, Wang Y. In vitro metabolism of magnolol and honokiol in rat liver microsomes and their interactions with seven cytochrome P substrates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:229-238. [PMID: 30343517 DOI: 10.1002/rcm.8314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Magnolol and honokiol are the main active components of Magnolia officinalis Rehd. et Wils. The study of their interactions with liver microsomes is very important for the clinical safety of M. officinalis Rehd. et Wils. METHODS The main metabolites of magnolol and honokiol in rat liver microsomes were investigated using ultrahigh-performance liquid chromatography/mass spectrometry and their possible structures were identified. In addition, cytochrome P450 (CYP450) isoenzymes of the major rat metabolites of magnolol and honokiol were identified using a specific inhibitor. RESULTS This study suggests that the CYP2E1 subtype is responsible for the oxidation of magnolol and honokiol terminal double bonds to epoxy metabolites. CYP3A4 appears to be the major subtype responsible for further hydrolytic metabolism, while CYP1A2 may promote decarboxylation of the metabolites. CYP2A6 may be the main subtype responsible for the hydrogenation of magnolol (p < 0.05). CONCLUSIONS This study demonstrated that different CYP450 enzyme isoforms showed different activities in the in vitro metabolism of magnolol and honokiol in rat liver microsomes. It has certain practical applications in that we should pay attention to drug-drug interactions in clinical medications and also to drug-enzyme interactions.
Collapse
Affiliation(s)
- Yu Huang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Shu Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Chaoyang District, Changchun, 130022, China
| | - Zhiqiang Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Chaoyang District, Changchun, 130022, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| | - Yueqi Wang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, China
| |
Collapse
|
9
|
Jin X, Liao Y, Tan X, Wang G, Zhao F, Jin Y. Involvement of CYP2E1 in the Course of Brain Edema Induced by Subacute Poisoning With 1,2-Dichloroethane in Mice. Front Pharmacol 2018; 9:1317. [PMID: 30524279 PMCID: PMC6262393 DOI: 10.3389/fphar.2018.01317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
This study was designed to explore the role of cytochrome P4502E1 (CYP2E1) expression in the course of brain edema induced by subacute poisoning with 1,2-dichloroethane (1,2-DCE). Mice were randomly divided into five groups: the control group, the 1,2-DCE poisoned group, and the low-, medium- and high-dose diallyl sulfide (DAS) intervention groups. The present study found that CYP2E1 expression levels in the brains of the 1,2-DCE-poisoned group were upregulated transcriptionally; in contrast, the levels were suppressed by DAS pretreatment in the intervention groups. In addition, the expression levels of both Nrf2 and HO-1 were also upregulated transcriptionally in the brains of the 1,2-DCE-poisoned group, while they were suppressed dose-dependently in the intervention groups. Moreover, compared with the control group, MDA levels and water contents in the brains of the 1,2-DCE-poisoned group increased, whereas NPSH levels and tight junction (TJ) protein levels decreased significantly. Conversely, compared with the 1,2-DCE- poisoned group, MDA levels and water contents in the brains of the intervention groups decreased, and NPSH levels and TJ protein levels increased significantly. Furthermore, pathological changes of brain edema observed in the 1,2-DCE-poisoned group were markedly improved in the intervention groups. Collectively, our results suggested that CYP2E1 expression could be transcriptionally upregulated in 1,2-DCE-poisoned mice, which might enhance 1,2-DCE metabolism in vivo, and induce oxidative damage and TJ disruption in the brain, ultimately leading to brain edema.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Yingjun Liao
- Department of Physiology, China Medical University, Shenyang, China
| | - Xiaoqiong Tan
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Gaoyang Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Fenghong Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Yaping Jin
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Effect of Low-Dose Alcohol Consumption on Inflammation Following Transient Focal Cerebral Ischemia in Rats. Sci Rep 2017; 7:12547. [PMID: 28970514 PMCID: PMC5624984 DOI: 10.1038/s41598-017-12720-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence suggest that low-dose alcohol consumption (LAC) reduces the incidence and improves the functional outcome of ischemic stroke. We determined the influence of LAC on post-ischemic inflammation. Male Sprague-Dawley rats were divided into 3 groups, an ethanol (13.5% alcohol) group, a red wine (Castle Rock Pinot Noir, 13.5% alcohol) group, and a control group. The amount of alcohol given to red wine and ethanol groups was 1.4 g/kg/day. After 8 weeks, the animals were subjected to a 2-hour middle cerebral artery occlusion (MCAO) and sacrificed at 24 hours of reperfusion. Cerebral ischemia/reperfusion (I/R) injury, expression of adhesion molecules and pro- and anti-inflammatory cytokines/chemokines, microglial activation and neutrophil infiltration were evaluated. The total infarct volume and neurological deficits were significantly reduced in red wine- and ethanol-fed rats compared to control rats. Both red wine and ethanol suppressed post-ischemic expression of adhesion molecules and microglial activation. In addition, both red wine and ethanol upregulated expression of tissue inhibitor of metalloproteinases 1 (TIMP-1), downregulated expression of proinflammatory cytokines/chemokines, and significantly alleviated post-ischemic expression of inflammatory mediators. Furthermore, red wine significantly reduced post-ischemic neutrophil infiltration. Our findings suggest that LAC may protect the brain against its I/R injury by suppressing post-ischemic inflammation.
Collapse
|
11
|
Dhers L, Ducassou L, Boucher JL, Mansuy D. Cytochrome P450 2U1, a very peculiar member of the human P450s family. Cell Mol Life Sci 2017; 74:1859-1869. [PMID: 28083596 PMCID: PMC11107762 DOI: 10.1007/s00018-016-2443-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 2U1 (CYP2U1) exhibits several distinctive characteristics among the 57 human CYPs, such as its presence in almost all living organisms with a highly conserved sequence, its particular gene organization with only five exons, its major location in thymus and brain, and its protein sequence involving an unusually long N-terminal region containing 8 proline residues and an insert of about 20 amino acids containing 5 arginine residues after the transmembrane helix. Few substrates, including fatty acids, N-arachidonoylserotonin (AS), and some drugs, have been reported so far. However, its biological roles remain largely unknown, even though CYP2U1 mutations have been involved in some pathological situations, such as complicated forms of hereditary spastic paraplegia. These data together with its ability to hydroxylate some fatty acids and AS suggest its possible role in lipid metabolism.
Collapse
Affiliation(s)
- L Dhers
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - L Ducassou
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| | - J-L Boucher
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France.
| | - D Mansuy
- UMR 8601 CNRS, Université Paris Descartes, Paris Sorbonne Cité, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
12
|
The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4680732. [PMID: 28163821 PMCID: PMC5259652 DOI: 10.1155/2017/4680732] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
Abstract
Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.
Collapse
|
13
|
Dhers L, Pietrancosta N, Ducassou L, Ramassamy B, Dairou J, Jaouen M, André F, Mansuy D, Boucher JL. Spectral and 3D model studies of the interaction of orphan human cytochrome P450 2U1 with substrates and ligands. Biochim Biophys Acta Gen Subj 2017; 1861:3144-3153. [DOI: 10.1016/j.bbagen.2016.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/06/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
|
14
|
Bu L, Yu D, Su S, Ma Y, von Deneen KM, Luo L, Zhai J, Liu B, Cheng J, Guan Y, Li Y, Bi Y, Xue T, Lu X, Yuan K. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers. Front Hum Neurosci 2016; 10:494. [PMID: 27757078 PMCID: PMC5047919 DOI: 10.3389/fnhum.2016.00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking.
Collapse
Affiliation(s)
- Limei Bu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Shaoping Su
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Yao Ma
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Karen M von Deneen
- School of Life Science and Technology, Xidian UniversityXian, People's Republic of China; Engineering Research Center of Molecular and NeuroImaging, Ministry of EducationPeople's Republic of China
| | - Lin Luo
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Jinquan Zhai
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Bo Liu
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Jiadong Cheng
- School of Life Science and Technology, Xidian UniversityXian, People's Republic of China; Engineering Research Center of Molecular and NeuroImaging, Ministry of EducationPeople's Republic of China
| | - Yanyan Guan
- School of Life Science and Technology, Xidian UniversityXian, People's Republic of China; Engineering Research Center of Molecular and NeuroImaging, Ministry of EducationPeople's Republic of China
| | - Yangding Li
- School of Life Science and Technology, Xidian UniversityXian, People's Republic of China; Engineering Research Center of Molecular and NeuroImaging, Ministry of EducationPeople's Republic of China
| | - Yanzhi Bi
- School of Life Science and Technology, Xidian UniversityXian, People's Republic of China; Engineering Research Center of Molecular and NeuroImaging, Ministry of EducationPeople's Republic of China
| | - Ting Xue
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Xiaoqi Lu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology Baotou, People's Republic of China
| | - Kai Yuan
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and TechnologyBaotou, People's Republic of China; School of Life Science and Technology, Xidian UniversityXian, People's Republic of China; Engineering Research Center of Molecular and NeuroImaging, Ministry of EducationPeople's Republic of China
| |
Collapse
|
15
|
Toselli F, Dodd PR, Gillam EMJ. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev 2016; 48:379-404. [DOI: 10.1080/03602532.2016.1221960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 2016; 21:1609-1619. [PMID: 27312874 DOI: 10.1016/j.drudis.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | - Mohammed Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Aaron Dadas
- The Ohio State University, Columbus, OH, USA
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (CNRS/INSERM), Montpellier, France
| | - Damir Janigro
- Flocel Inc. and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|