1
|
Farias Cardozo SJ, Lawrence AJ, Anversa RG. Sex- and age-dependent impacts of nicotine and ethanol binge drinking on the brain: Insights from preclinical research. J Neurochem 2025; 169:e16249. [PMID: 39449196 DOI: 10.1111/jnc.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Electronic cigarette use among adolescents is a growing concern, not only due to the high incidence of co-use with other substances, such as alcohol, but also due to the fact brain is still maturing during this period. Combined exposure to alcohol and nicotine leads to plastic adaptation of crucial circuits in the brain, which can contribute to the development of addiction. It is well established that nicotine exposure can facilitate alcohol binge drinking, and vice-versa, in a sex-, age- and exposure-dependent manner. Nonetheless, the central mechanisms underlying the synergistic relationship between these two substances and the emergence of differential behavioural traits dependent on these factors remain underexplored. Preclinical studies continue to provide valuable insights into such mechanisms. Here, we discuss recent preclinical findings that report behavioural changes characteristic of addiction following nicotine consumption, primarily in models of vaping and alcohol use; and insights into the neural mechanisms impacted by intake of these two substances, with a focus on the adolescent brain.
Collapse
Affiliation(s)
- Stella J Farias Cardozo
- Centre for Technology Development (CDTec), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Seemiller LR, Garcia-Trevizo P, Novoa C, Goldberg LR, Murray S, Gould TJ. Adolescent intermittent alcohol exposure produces strain-specific cross-sensitization to nicotine and other behavioral adaptations in adulthood in C57BL/6J and DBA/2J mice. Pharmacol Biochem Behav 2023; 232:173655. [PMID: 37802393 PMCID: PMC10995114 DOI: 10.1016/j.pbb.2023.173655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Adolescent alcohol exposure is associated with lasting behavioral changes in humans and in mice. Prior work from our laboratory and others have demonstrated that C57BL/6J and DBA/2J mice differ in sensitivity to some effects of acute alcohol exposure during adolescence and adulthood. However, it is unknown if these strains differ in cognitive, anxiety-related, and addiction-related long-term consequences of adolescent intermittent alcohol exposure. This study examined the impact of a previously validated adolescent alcohol exposure paradigm (2-3 g/kg, i.p., every other day PND 30-44) in C57BL/6J and DBA/2J male and female mice on adult fear conditioning, anxiety-related behavior (elevated plus maze), and addiction-related phenotypes including nicotine sensitivity (hypothermia and locomotor depression) and alcohol sensitivity (loss of righting reflex; LORR). Both shared and strain-specific long-term consequences of adolescent alcohol exposure were found. Most notably, we found a strain-specific alcohol-induced increase in sensitivity to nicotine's hypothermic effects during adulthood in the DBA/2J strain but not in the C57BL/6J strain. Conversely, both strains demonstrated a robust increased latency to LORR during adulthood after adolescent alcohol exposure. Thus, we observed strain-dependent cross-sensitization to nicotine and strain-independent tolerance to alcohol due to adolescent alcohol exposure. Several strain and sex differences independent of adolescent alcohol treatment were also observed. These include increased sensitivity to nicotine-induced hypothermia in the C57BL/6J strain relative to the DBA/2J strain, in addition to DBA/2J mice showing more anxiety-like behaviors in the elevated plus maze relative to the C57BL/6J strain. Overall, these results suggest that adolescent alcohol exposure results in altered adult sensitivity to nicotine and alcohol with some phenotypes mediated by genetic background.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | | | - Carlos Novoa
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Samantha Murray
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
3
|
Seemiller LR, Logue SF, Gould TJ. Inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes from adolescence to adulthood. Pharmacol Biochem Behav 2022; 218:173429. [PMID: 35820468 PMCID: PMC11524176 DOI: 10.1016/j.pbb.2022.173429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Understanding the genetic basis of a predisposition for nicotine and alcohol use across the lifespan is important for public health efforts because genetic contributions may change with age. However, parsing apart subtle genetic contributions to complex human behaviors is a challenge. Animal models provide the opportunity to study the effects of genetic background and age on drug-related phenotypes, while controlling important experimental variables such as amount and timing of drug exposure. Addiction research in inbred, or isogenic, mouse lines has demonstrated genetic contributions to nicotine and alcohol abuse- and addiction-related behaviors. This review summarizes inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes including voluntary consumption/self-administration, initial sensitivity to the drug as measured by sedative, hypothermic, and ataxic effects, locomotor effects, conditioned place preference or place aversion, drug metabolism, and severity of withdrawal symptoms. This review also discusses how these alcohol and nicotine addiction-related phenotypes change from adolescence to adulthood.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Sheree F Logue
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
4
|
Maccioni R, Cottiglia F, Maccioni E, Talani G, Sanna E, Bassareo V, Kasture SB, Acquas E. The biologically active compound of Withania somnifera (L.) Dunal, docosanyl ferulate, is endowed with potent anxiolytic properties but devoid of typical benzodiazepine-like side effects. J Psychopharmacol 2021; 35:1277-1284. [PMID: 33934670 DOI: 10.1177/02698811211008588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinical and experimental studies support the therapeutic potential of Withania somnifera (WS) (L.) Dunal on anxiety disorders. This potential is attributable to components present in different plant extracts; however, the individual compound(s) endowed with specific anxiolytic effects and potential modulatory activity of the GABAA receptor complex (GABAAR) have remained unidentified until the recent isolation from a WS methanolic root extract of some GABAAR-active compounds, including the long alkyl-chain ferulic acid ester, docosanyl ferulate (DF). AIMS This study was designed to assess whether DF (0.05, 0.25 and 2 mg/kg), similarly to diazepam (2 mg/kg), may exert anxiolytic effects, whether these effects may be significantly blocked by the benzodiazepine antagonist flumazenil (10 mg/kg) and whether DF may lack some of the benzodiazepines' typical motor, cognitive and motivational side effects. METHODS The behavioural paradigms Elevated Plus Maze, Static Rods, Novel Object Recognition, Place Conditioning and potentiation of ethanol-induced Loss of Righting Reflex were applied on male CD-1 mice. RESULTS Similarly to diazepam, DF exerts anxiolytic effects that are blocked by flumazenil. Moreover, at the full anxiolytic dose of 2 mg/kg, DF lacks typical benzodiazepine-like side effects on motor and cognitive performances and on place conditioning. Moreover, DF fails to potentiate ethanol's (3 g/kg) depressant activity at the ethanol-induced Loss of Righting Reflex paradigm. CONCLUSIONS These data point to DF as an effective benzodiazepine-like anxiolytic compound that, in light of its lack of motor, mnemonic and motivational side effects, could be a suitable candidate for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council (C.N.R.), University Campus, Cagliari, Italy
| | - Enrico Sanna
- Institute of Neuroscience, National Research Council (C.N.R.), University Campus, Cagliari, Italy
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| | - Valentina Bassareo
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Jin S, Cinar R, Hu X, Lin Y, Luo G, Lovinger DM, Zhang Y, Zhang L. Spinal astrocyte aldehyde dehydrogenase-2 mediates ethanol metabolism and analgesia in mice. Br J Anaesth 2021; 127:296-309. [PMID: 33934892 PMCID: PMC8362281 DOI: 10.1016/j.bja.2021.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Little is known about the targets in the CNS that mediate ethanol analgesia. This study explores the role of spinal astrocyte aldehyde dehydrogenase-2 (ALDH2), a key ethanol-metabolising enzyme, in the analgesic effects of ethanol in mice. METHODS Astrocyte and hepatocyte ALHD2-deficient mice were generated and tested in acute and chronic pain models. Cell-type-specific distribution of ALDH2 was analysed by RNA in situ hybridisation in spinal slices from astrocytic ALDH2-deficient mice and their wild-type littermates. Spinal ethanol metabolites and γ-aminobutyric acid (GABA) content were measured using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. RESULTS ALDH2 mRNA was expressed in both astrocytes and neurones in spinal cord slices. Astrocyte ALDH2-deficient mice had decreased expression of ALDH2 mRNA in astrocytes, but not in neurones. Astrocyte ALDH2 deficiency inhibited ethanol-derived acetate, but not acetaldehyde content in spinal cord tissues. Depletion of spinal astrocyte ALDH2 selectively inhibited ethanol-induced anti-nociceptive effect, but not the effect of ethanol, on motor function. Astrocyte ALDH2 deficiency abolished ethanol-induced GABA elevation. The ethanol metabolite acetate produced anti-nociception and increased GABA synthesis in a manner similar to ethanol. I.T. delivery of either GABAA or GABAB receptor antagonists prevented ethanol and acetate-induced analgesia. CONCLUSIONS These findings provide evidence that ALDH2 in spinal astrocytes mediates spinal ethanol metabolism and ethanol-induced analgesic effects by promoting GABA synthesis and GABAergic transmission in spinal cord.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory for Metabolic Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Xudong Hu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuhong Lin
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Guoxiang Luo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
DeCristofano L, Decker S, Schulte MK, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α 4β 2 nicotinic receptor modulates the hypnotic response to ethanol. Alcohol 2021; 93:35-44. [PMID: 33652092 DOI: 10.1016/j.alcohol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Binge drinking can increase an individual's risk of developing alcohol use disorder (AUD). Ethanol targets multiple neurotransmitter systems; however, not much is known about its effects on the cholinergic system. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the heteromeric α4β2 nAChR being a commonly expressed subtype. Desformylflustrabromine (dFBr), a positive allosteric modulator (PAM), increases the efficacy of α4β2 nAChR in vitro and has previously been shown to have translational potential. In this study, we investigated whether dFBr modulates the hypnotic response to ethanol. METHODS Ethanol-induced loss of righting reflex (LORR) duration was measured in the presence and absence of dFBr. The β2 nAChR selective antagonist dihydro-β-erythroidine (DHβE) was used to study the involvement of the β2 subunit. Additionally, we used a crosslinking-based western blot assay to estimate changes in total versus intracellular α4 nAChR protein in thalamic tissue of rats treated with vehicle, dFBr, ethanol, or ethanol and dFBr. Lastly, using Xenopus oocyte two-electrode voltage clamp (TEVC) studies, we determined the effects of ethanol and dFBr on α4β2 nAChR. RESULTS Pretreatment with 6 mg/kg dFBr reduced ethanol-induced LORR duration as compared to rats treated with ethanol alone. LORR studies with DHβE suggest that dFBr reduced ethanol-induced LORR duration via the β2 nAChR subunit. Crosslinking-based western analyses revealed that ethanol caused early increases in total and presumably surface thalamic α4 nAChR subunit protein levels. This ethanol-induced α4 nAChR upregulation was significantly reduced in rats pretreated with 6 mg/kg dFBr. In TEVC studies, ethanol potentiated ACh-induced currents in α4β2 nAChR, while it slightly reduced dFBr potentiation of maximal ACh currents. CONCLUSIONS Our results suggest that thalamic nAChRs containing the α4 subunit are rapidly upregulated by a single intoxicating dose of ethanol. Furthermore, dFBr, an α4β2 nAChR-selective PAM, significantly attenuates the hypnotic response to ethanol via actions on β2 nAChR. Overall, these results indicate that dFBr represents an option to reverse ethanol intoxication.
Collapse
|
7
|
Wang J, Blasio A, Chapman HL, Doebelin C, Liaw V, Kuryatov A, Giovanetti SM, Lindstrom J, Lin L, Cameron MD, Kamenecka TM, Pomrenze MB, Messing RO. Promoting activity of (α4) 3(β2) 2 nicotinic cholinergic receptors reduces ethanol consumption. Neuropsychopharmacology 2020; 45:301-308. [PMID: 31394567 PMCID: PMC6901472 DOI: 10.1038/s41386-019-0475-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
There is increasing interest in developing drugs that act at α4β2 nicotinic acetylcholine receptors (nAChRs) to treat alcohol use disorder. The smoking cessation agent varenicline, a partial agonist of α4β2 nAChRs, reduces alcohol intake, but its use can be limited by side effects at high therapeutic doses. There are two stoichiometric forms of α4β2 nAChRs, (α4)3(β2)2 and (α4)2(β2)3. Here we investigated the hypothesis that NS9283, a positive allosteric modulator selective for the (α4)3(β2)2 form, reduces ethanol consumption. NS9283 increased the potency of varenicline to activate and desensitize (α4)3(β2)2 nAChRs in vitro without affecting other known targets of varenicline. In male and female C57BL/6J mice, NS9283 (10 mg/kg) reduced ethanol intake in a two-bottle choice, intermittent drinking procedure without affecting saccharin intake, ethanol-induced incoordination or ethanol-induced loss of the righting reflex. Subthreshold doses of NS9283 (2.5 mg/kg) plus varenicline (0.1 mg/kg) synergistically reduced ethanol intake in both sexes. Finally, despite having no aversive valence of its own, NS9283 enhanced ethanol-conditioned place aversion. We conclude that compounds targeting the (α4)3(β2)2 subtype of nAChRs can reduce alcohol consumption, and when administered in combination with varenicline, may allow use of lower varenicline doses to decrease varenicline side effects.
Collapse
Affiliation(s)
- Jingyi Wang
- Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX, USA.
| | - Angelo Blasio
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Holly L. Chapman
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Christelle Doebelin
- 0000000122199231grid.214007.0Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Victor Liaw
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Alexander Kuryatov
- 0000 0004 1936 8972grid.25879.31Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Simone M. Giovanetti
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Jon Lindstrom
- 0000 0004 1936 8972grid.25879.31Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Li Lin
- 0000000122199231grid.214007.0DMPK core, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Michael D. Cameron
- 0000000122199231grid.214007.0DMPK core, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Theodore M. Kamenecka
- 0000000122199231grid.214007.0Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Matthew B. Pomrenze
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Robert O. Messing
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
8
|
Dawson A, Wolstenholme JT, Roni MA, Campbell VC, Jackson A, Slater C, Bagdas D, Perez EE, Bettinger JC, De Biasi M, Miles MF, Damaj MI. Knockout of alpha 5 nicotinic acetylcholine receptors subunit alters ethanol-mediated behavioral effects and reward in mice. Neuropharmacology 2018; 138:341-348. [PMID: 29944862 DOI: 10.1016/j.neuropharm.2018.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023]
Abstract
Evidence suggests that there is an association between polymorphisms in the α5 nicotinic acetylcholine receptor (nAChR) subunit and risk of developing alcohol dependence in humans. The α5 nAChR subunit has also recently been shown to modulate some of the acute response to ethanol in mice. The aim of the current study was to further characterize the role of α5-containing (α5*) nAChRs in acute ethanol responsive behaviors, ethanol consumption and ethanol preference in mice. We conducted a battery of tests in male α5 knockout (KO) mice for a range of ethanol-induced behaviors including hypothermia, hypnosis, and anxiolysis. We also investigated the effects of α5* nAChR on ethanol reward using the Conditioned Place Preference (CPP) assay. Further, we tested the effects of gene deletion on drinking behaviors using the voluntary ethanol consumption in a two-bottle choice assay and Drinking in the Dark (DID, with or without stress) paradigm. We found that deletion of the α5 nAChR subunit enhanced ethanol-induced hypothermia, hypnosis, and an anxiolytic-like response in comparison to wild-type controls. The α5 KO mice showed reduced CPP for ethanol, suggesting that the rewarding properties of ethanol are decreased in mutant mice. Interestingly, Chrna5 gene deletion had no effect on basal ethanol drinking behavior, or ethanol metabolism, but did decrease ethanol intake in the DID paradigm following restraint stress. Taken together, we provide new evidence that α5 nAChRs are involved in some but not all of the behavioral effects of ethanol. Our results highlight the importance of nAChRs as a possible target for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Anton Dawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Monzurul A Roni
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Vera C Campbell
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Cassandra Slater
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Erika E Perez
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA.
| |
Collapse
|