1
|
El-Hakim Y, Mani KK, Pickle KA, Akbari Z, Samiya N, Pham C, Salas G, Pilla R, Sohrabji F. Peripheral, but not central, IGF-1 treatment attenuates stroke-induced cognitive impairment in middle-aged female Sprague Dawley rats: The gut as a therapeutic target. Brain Behav Immun 2024; 122:150-166. [PMID: 39142422 DOI: 10.1016/j.bbi.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Stroke results in immediate sensory or motor disability and increases the risk for long term cognitive-affective impairments. Thus, therapies are urgently needed to improve quality of life for stroke survivors, especially women who are at a greater risk for severe stroke after menopause. Most current research on stroke therapies target the central nervous system; however, stroke also impacts peripheral organ systems. Our studies using acyclic (estrogen-deficient) middle aged female Sprague Dawley rats show that this group not only displays worse outcomes after stroke as compared to adult females, but also has lower levels of the neuroprotective peptide Insulin-like Growth Factor (IGF1) in circulation. Intracerebroventricular (ICV) administration of IGF1 to this group decreases infarct volume and improves sensory motor performance in the acute phase. In this study, we show that, despite this neuroprotection, ICV-IGF1 did not reduce peripheral inflammation or improve post stroke cognitive impairment in the chronic phase. In view of the evidence that stroke induces rapid gut dysfunction, we tested whether systemic delivery of IGF1 (intraperitoneal, IP) would promote gut health and consequently improve long-term behavioral outcomes. Surprisingly, while IP-IGF1, delivered 4 h and 24 h after ischemic stroke, did not reduce infarct volume or acute sensory motor impairment, it significantly attenuated circulating levels of pro-inflammatory cytokines, and attenuated stroke-induced cognitive impairment. In addition, IP-IGF1 treatment reduced gut dysmorphology and gut dysbiosis. Our data support the conclusion that therapeutics targeting peripheral targets are critical for long-term stroke recovery, and that gut repair is a novel therapeutic target to improve brain health in aging females.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Kaylin A Pickle
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Zara Akbari
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Chloe Pham
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Gianna Salas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine Texas A&M University, College Station, TX Brazos
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan TX-77807 USA.
| |
Collapse
|
2
|
Lapierre C, Erlandson LW, Stoneroad II R, Rhiner A, Gosnell R, Barber J, Pham L. Substances of health concern in home-distilled and commercial alcohols from Texas. Heliyon 2024; 10:e32317. [PMID: 38912503 PMCID: PMC11190660 DOI: 10.1016/j.heliyon.2024.e32317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Objective Poor distillation practices in the production of spirits have historically resulted in many instances of adverse health outcomes including death. Concern has focused on lead and copper contamination as well as unhealthy levels of methanol and glyphosate. This study assesses home-distilled and commercially distilled alcohols from Texas for these substances of concern, highlighting their potential risks to public health. Methods Atomic absorption spectroscopy, gas chromatography, and enzyme-linked immunosorbent assay were employed to determine lead and copper, methanol, and glyphosate levels in 12 commercial and 36 home-distilled alcohol samples. Results Our findings showed that 11 % of the home-distilled alcohols exceeded the U.S. Alcohol and Tobacco Tax and Trade Bureau's copper safety limits of 0.5 mg/L for wine. Additionally, 36 % of these samples surpassed the European Commission (EC)'s lead legal threshold of 0.15 mg/L set for wine products. Results from commercial alcohols indicated that no samples exceeded the same safety limits for copper, and 33 % exceeded the same legal threshold for lead. Both commercial and home-distilled alcohols exhibited methanol concentrations remarkably below the 0.35 % limit for brandy set by the U.S. Food and Drug Administration. Only two home-distilled samples contained detectable glyphosate concentrations well below 100 μg/L, the maximum residue level in beer and wine established by the EC. Conclusions Our findings suggested that consumption of alcohol in Texas may pose potential health risks associated with the elevated content of lead and copper. There is a need for increased focus on alcohol as a potential source of exposure to heavy metals.
Collapse
Affiliation(s)
- Coady Lapierre
- Department of Counseling and Psychology, Texas A&M University-Central Texas, Texas, USA
| | | | - Randy Stoneroad II
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Andrew Rhiner
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Renae Gosnell
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - John Barber
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Linh Pham
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| |
Collapse
|
3
|
Rouzer SK, Sreeram A, Miranda RC. Reduced fetal cerebral blood flow predicts perinatal mortality in a mouse model of prenatal alcohol and cannabinoid exposure. BMC Pregnancy Childbirth 2024; 24:263. [PMID: 38605299 PMCID: PMC11007973 DOI: 10.1186/s12884-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Children exposed prenatally to alcohol or cannabinoids individually can exhibit growth deficits and increased risk for adverse birth outcomes. However, these drugs are often co-consumed and their combined effects on early brain development are virtually unknown. The blood vessels of the fetal brain emerge and mature during the neurogenic period to support nutritional needs of the rapidly growing brain, and teratogenic exposure during this gestational window may therefore impair fetal cerebrovascular development. STUDY DESIGN To determine whether prenatal polysubstance exposure confers additional risk for impaired fetal-directed blood flow, we performed high resolution in vivo ultrasound imaging in C57Bl/6J pregnant mice. After pregnancy confirmation, dams were randomly assigned to one of four groups: drug-free control, alcohol-exposed, cannabinoid-exposed or alcohol-and-cannabinoid-exposed. Drug exposure occurred daily between Gestational Days 12-15, equivalent to the transition between the first and second trimesters in humans. Dams first received an intraperitoneal injection of either cannabinoid agonist CP-55,940 (750 µg/kg) or volume-equivalent vehicle. Then, dams were placed in vapor chambers for 30 min of inhalation of either ethanol or room air. Dams underwent ultrasound imaging on three days of pregnancy: Gestational Day 11 (pre-exposure), Gestational Day 13.5 (peri-exposure) and Gestational Day 16 (post-exposure). RESULTS All drug exposures decreased fetal cranial blood flow 24-hours after the final exposure episode, though combined alcohol and cannabinoid co-exposure reduced internal carotid artery blood flow relative to all other exposures. Umbilical artery metrics were not affected by drug exposure, indicating a specific vulnerability of fetal cranial circulation. Cannabinoid exposure significantly reduced cerebroplacental ratios, mirroring prior findings in cannabis-exposed human fetuses. Post-exposure cerebroplacental ratios significantly predicted subsequent perinatal mortality (p = 0.019, area under the curve, 0.772; sensitivity, 81%; specificity, 85.70%) and retroactively diagnosed prior drug exposure (p = 0.005; AUC, 0.861; sensitivity, 86.40%; specificity, 66.7%). CONCLUSIONS Fetal cerebrovasculature is significantly impaired by exposure to alcohol or cannabinoids, and co-exposure confers additional risk for adverse birth outcomes. Considering the rising potency and global availability of cannabis products, there is an imperative for research to explore translational models of prenatal drug exposure, including polysubstance models, to inform appropriate strategies for treatment and care in pregnancies affected by drug exposure.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Anirudh Sreeram
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, 8447 Riverside Parkway, Bryan, TX, 77807, USA.
| |
Collapse
|
4
|
Mysiewicz S, Hibl B, Dopico A, Bukiya A. Commonly used anesthetics modify alcohol and (-)-trans-delta9-tetrahydrocannabinol in vivo effects on rat cerebral arterioles. BMC Anesthesiol 2023; 23:411. [PMID: 38087263 PMCID: PMC10714523 DOI: 10.1186/s12871-023-02320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ethyl alcohol and cannabis are widely used recreational substances with distinct effects on the brain. These drugs increase accidental injuries requiring treatment under anesthesia. Moreover, alcohol and cannabis are often used in anesthetized rodents for biomedical research. Here, we compared the influence of commonly used forms of anesthesia, injectable ketamine/xylazine (KX) versus inhalant isoflurane, on alcohol- and (-)-trans-delta9-tetrahydrocannabinol (THC) effects on cerebral arteriole diameter evaluated in vivo. METHODS Studies were performed on male and female Sprague-Dawley rats subjected to intracarotid catheter placement for drug infusion, and cranial window surgery for monitoring pial arteriole diameter. Depth of anesthesia was monitored every 10-15 min by toe-pinch. Under KX, the number of toe-pinch responders was maximal after the first dose of anesthesia and diminished over time in both males and females. In contrast, the number of toe-pinch responders under isoflurane slowly raised over time, leading to increase in isoflurane percentage until deep anesthesia was re-established. Rectal temperature under KX remained stable in males while dropping in females. As expected for gaseous anesthesia, both males and females exhibited rectal temperature drops under isoflurane. RESULTS Infusion of 50 mM alcohol (ethanol, EtOH) into the cerebral circulation rendered robust constriction in males under KX anesthesia, this alcohol action being significantly smaller, but still present under isoflurane anesthesia. In females, EtOH did not cause measurable changes in pial arteriole diameter regardless of the anesthetic. These findings indicate a strong sex bias with regards to EtOH induced vasoconstriction. Infusion of 42 nM THC in males and females under isoflurane tended to constrict cerebral arterioles in both males and females when compared to isovolumic infusion of THC vehicle (dimethyl sulfoxide in saline). Moreover, THC-driven changes in arteriole diameter significantly differed in magnitude depending on the anesthetic used. Simultaneous administration of 50 mM alcohol and 42 nM THC to males constricted cerebral arterioles regardless of the anesthetic used. In females, constriction by the combined drugs was also observed, with limited influence by anesthetic presence. CONCLUSIONS We demonstrate that two commonly used anesthetic formulations differentially influence the level of vasoconstriction caused by alcohol and THC actions in cerebral arterioles.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| | - Brianne Hibl
- Laboratory Animal Care Unit, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA.
| |
Collapse
|
5
|
Pinson MR, Tseng AM, Lehman TE, Chung K, Gutierrez J, Larin KV, Chambers CD, Miranda RC. Maternal circulating miRNAs contribute to negative pregnancy outcomes by altering placental transcriptome and fetal vascular dynamics. PLoS One 2023; 18:e0290720. [PMID: 37930978 PMCID: PMC10627460 DOI: 10.1371/journal.pone.0290720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 11/08/2023] Open
Abstract
Circulating miRNAs the in blood are promising biomarkers for predicting pregnancy complications and adverse birth outcomes. Previous work identified 11 gestationally elevated maternal circulating miRNAs (HEamiRNAs) that predicted infant growth deficits following prenatal alcohol exposure and regulated epithelial-mesenchymal transition in the placenta. Here we show that a single intravascular administration of pooled murine-conserved HEamiRNAs to pregnant mice on gestational day 10 (GD10) attenuates umbilical cord blood flow during gestation, explaining the observed intrauterine growth restriction (IUGR), specifically decreased fetal weight, and morphometric indices of cranial growth. Moreover, RNAseq of the fetal portion of the placenta demonstrated that this single exposure has lasting transcriptomic changes, including upregulation of members of the Notch pathway (Dll4, Rfng, Hey1), which is a pathway important for trophoblast migration and differentiation. Weighted gene co-expression network analysis also identified chemokine signaling, which is responsible for regulating immune cell-mediated angiogenesis in the placenta, as an important predictor of fetal growth and head size. Our data suggest that HEamiRNAs perturb the expression of placental genes relevant for angiogenesis, resulting in impaired umbilical cord blood flow and subsequently, IUGR.
Collapse
Affiliation(s)
- Marisa R. Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Alexander M. Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Tenley E. Lehman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Karen Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Jessica Gutierrez
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States of America
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States of America
| | - Christina D. Chambers
- Clinical and Translational Research Institute, University of California San Diego, San Diego, CA, United States of America
- Department of Pediatrics, University of California San Diego, San Diego, CA, United States of America
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States of America
- Women’s Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | | |
Collapse
|
6
|
Pinson MR, Bake S, Hurst DA, Samiya NT, Sohrabji F, Miranda RC. Prenatal alcohol alters inflammatory signatures in enteric portal tissues following adult-onset cerebrovascular ischemic stroke. iScience 2023; 26:107920. [PMID: 37810225 PMCID: PMC10550726 DOI: 10.1016/j.isci.2023.107920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Prenatal alcohol exposure (PAE) impairs recovery from cerebrovascular ischemic stroke in adult rodents. Since the gut becomes dysbiotic following stroke, we assessed links between PAE and enteric portal inflammation. Adult control and PAE rat offspring received a unilateral endothelin-1-induced occlusion of the middle cerebral artery. Post-stroke behavioral disabilities and brain cytokines were assessed. Mesenteric adipose and liver transcriptomes were assessed from stroke-exposed and stroke-naive offspring. We identified, in the liver of stroke-naive animals, a moderate correlation between PAE and a gene network for inflammatory necroptosis. PAE inhibited the acute-phase brain inflammatory cytokine response to stroke. Post-stroke neurological function was correlated with an adipose gene network associated with B-lymphocyte differentiation and nuclear factor κB (NF-κB) signaling and with a liver pro-inflammatory gene network. Collectively, PAE inhibits brain inflammation but results in an inflammatory signature in enteric portal tissues after stroke, suggesting that PAE persistently and adversely impacts the gut-brain axis following adult-onset disease.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - David A Hurst
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Nadia T Samiya
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University School of Medicine, Bryan, TX, USA
| |
Collapse
|
7
|
Bake S, Rouzer SK, Mavuri S, Miranda RC, Mahnke AH. The interaction of genetic sex and prenatal alcohol exposure on health across the lifespan. Front Neuroendocrinol 2023; 71:101103. [PMID: 37802472 PMCID: PMC10922031 DOI: 10.1016/j.yfrne.2023.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Prenatal alcohol exposure (PAE) can reprogram the development of cells and tissues, resulting in a spectrum of physical and neurobehavioral teratology. PAE immediately impacts fetal growth, but its effects carry forward post-parturition, into adolescence and adulthood, and can result in a cluster of disabilities, collectively termed Fetal Alcohol Spectrum Disorders. Emerging preclinical and clinical research investigating neurological and behavioral outcomes in exposed offspring point to genetic sex as an important modifier of the effects of PAE. In this review, we discuss the literature on sex differences following PAE, with studies spanning the fetal period through adulthood, and highlight gaps in research where sex differences are likely, but currently under-investigated. Understanding how sex and PAE interact to affect offspring health outcomes across the lifespan is critical for identifying the full complement of PAE-associated secondary conditions, and for refining targeted interventions to improve the quality of life for individuals with PAE.
Collapse
Affiliation(s)
- Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Siara K Rouzer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Shruti Mavuri
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States.
| |
Collapse
|
8
|
Branyan TE, Aleksa J, Lepe E, Kosel K, Sohrabji F. The aging ovary impairs acute stroke outcomes. J Neuroinflammation 2023; 20:159. [PMID: 37408003 DOI: 10.1186/s12974-023-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
In experimental stroke, ovariectomized (OVX) adult rats have larger infarct volumes and greater sensory-motor impairment as compared to ovary-intact females and is usually interpreted to indicate that ovarian hormones are neuroprotective for stroke. Previous work from our lab shows that middle-aged, acyclic reproductively senescent (RS) females have worse stroke outcomes as compared to adult (normally cycling) females. We hypothesized that if loss of ovarian estrogen is the critical determinant of stroke outcomes, then ovary-intact middle-aged acyclic females, who have reduced levels of estradiol, should have similar stroke outcomes as age-matched OVX. Instead, the data demonstrated that OVX RS animals showed better sensory-motor function after stroke and reduced infarct volume as compared to ovary-intact females. Inflammatory cytokines were decreased in the aging ovary after stroke as compared to non-stroke shams, which led to the hypothesis that immune cells may be extravasated from the ovaries post-stroke. Flow cytometry indicated reduced overall T cell populations in the aging ovary after middle cerebral artery occlusion (MCAo), with a paradoxical increase in regulatory T cells (Tregs) and M2-like macrophages. Moreover, in the brain, OVX RS animals showed increased Tregs, increased M2-like macrophages, and increased MHC II + cells as compared to intact RS animals, which have all been shown to be correlated with better prognosis after stroke. Depletion of ovary-resident immune cells after stroke suggests that there may be an exaggerated response to ischemia and possible increased burden of the inflammatory response via extravasation of these cells into circulation. Increased anti-inflammatory cells in the brain of OVX RS animals further supports this hypothesis. These data suggest that stroke severity in aging females may be exacerbated by the aging ovary and underscore the need to assess immunological changes in this organ after stroke.
Collapse
Affiliation(s)
- Taylor E Branyan
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Jocelyn Aleksa
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Esteban Lepe
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Kelby Kosel
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
| |
Collapse
|
9
|
Rouzer SK, Gutierrez J, Larin KV, Miranda RC. Alcohol & cannabinoid co-use: Implications for impaired fetal brain development following gestational exposure. Exp Neurol 2023; 361:114318. [PMID: 36627039 PMCID: PMC9892278 DOI: 10.1016/j.expneurol.2023.114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Alcohol and marijuana are two of the most consumed psychoactive substances by pregnant people, and independently, both substances have been associated with lifelong impacts on fetal neurodevelopment. Importantly, individuals of child-bearing age are increasingly engaging in simultaneous alcohol and cannabinoid (SAC) use, which amplifies each drug's pharmacodynamic effects and increases craving for both substances. However, to date, investigations of prenatal polysubstance use are notably limited in both human and non-human populations. In this review paper, we will address what is currently known about combined exposure to these substances, both directly and prenatally, and identify shared prenatal targets from single-exposure paradigms that may highlight susceptible neurobiological mechanisms for future investigation and therapeutic intervention. Finally, we conclude this manuscript by discussing factors that we feel are essential in the consideration and experimental design of future preclinical SAC studies.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States.
| | - Jessica Gutierrez
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Rajesh C Miranda
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States
| |
Collapse
|
10
|
Saha PS, Knecht TM, Arrick DM, Watt MJ, Scholl JL, Mayhan WG. Prenatal exposure to alcohol impairs responses of cerebral arterioles to activation of potassium channels: Role of oxidative stress. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:87-94. [PMID: 36446735 PMCID: PMC9974881 DOI: 10.1111/acer.14980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Potassium channels play an important role in the basal tone and dilation of cerebral resistance arterioles in response to many stimuli. However, the effect of prenatal alcohol exposure (PAE) on specific potassium channel function remains unknown. The first goal of this study was to determine the influence of PAE on the reactivity of cerebral arterioles to activation of ATP-sensitive potassium (KATP ) and BK channels. Our second goal was to determine whether oxidative stress contributed to potassium channel dysfunction of cerebral arterioles following PAE. METHODS We fed Sprague-Dawley dams a liquid diet with or without alcohol (3% EtOH) for the duration of their pregnancy (21 to 23 days). We examined in vivo responses of cerebral arterioles in control and PAE male and female offspring (14 to 16 weeks after birth) to activators of potassium channels (Iloprost [BK channels] and pinacidil [KATP channels]), before and following inhibition of oxidative stress with apocynin. RESULTS We found that PAE impaired dilation of cerebral arterioles in response to activation of potassium channels with iloprost and pinacidil, and this impairment was similar in male and female rats. In addition, treatment with apocynin reversed the impaired vasodilation to iloprost and pinacidil in PAE rats to levels observed in control rats. This effect of apocynin also was similar in male and female rats. CONCLUSIONS PAE induces dysfunction in the ability of specific potassium channels to dilate cerebral arterioles which appears to be mediated by an increase in oxidative stress. We suggest that these alterations in potassium channel function may contribute to the pathogenesis of cerebral vascular abnormalities and/or behavioral/cognitive deficits observed in fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Partha S. Saha
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Tiffany M. Knecht
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Denise M. Arrick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Michael J. Watt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - William G. Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
11
|
Momin SZ, Le JT, Miranda RC. Vascular Contributions to the Neurobiological Effects of Prenatal Alcohol Exposure. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10924. [PMID: 37205306 PMCID: PMC10191416 DOI: 10.3389/adar.2023.10924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are often characterized as a cluster of brain-based disabilities. Though cardiovascular effects of prenatal alcohol exposure (PAE) have been documented, the vascular deficits due to PAE are less understood, but may contribute substantially to the severity of neurobehavioral presentation and health outcomes in persons with FASD. Methods We conducted a systematic review of research articles curated in PubMed to assess the strength of the research on vascular effects of PAE. 40 pertinent papers were selected, covering studies in both human populations and animal models. Results Studies in human populations identified cardiac defects, and defects in vasculature, including increased tortuosity, defects in basement membranes, capillary basal hyperplasia, endarteritis, and disorganized and diminished cerebral vasculature due to PAE. Preclinical studies showed that PAE rapidly and persistently results in vasodilation of large afferent cerebral arteries, but to vasoconstriction of smaller cerebral arteries and microvasculature. Moreover, PAE continues to affect cerebral blood flow into middle-age. Human and animal studies also indicate that ocular vascular parameters may have diagnostic and predictive value. A number of intervening mechanisms were identified, including increased autophagy, inflammation and deficits in mitochondria. Studies in animals identified persistent changes in blood flow and vascular density associated with endocannabinoid, prostacyclin and nitric oxide signaling, as well as calcium mobilization. Conclusion Although the brain has been a particular focus of studies on PAE, the cardiovascular system is equally affected. Studies in human populations, though constrained by small sample sizes, did link pathology in major blood vessels and tissue vasculature, including brain vasculature, to PAE. Animal studies highlighted molecular mechanisms that may be useful therapeutic targets. Collectively, these studies suggest that vascular pathology is a possible contributing factor to neurobehavioral and health problems across a lifespan in persons with a diagnosis of FASD. Furthermore, ocular vasculature may serve as a biomarker for neurovascular health in FASD.
Collapse
Affiliation(s)
| | | | - Rajesh C. Miranda
- Corresponding author to whom correspondence should be addressed: Rajesh C. Miranda, PhD, , Texas A&M University Health Science Center, School of Medicine, Department of Neuroscience & Experimental Therapeutics, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, Phone: 979-436-0332, Fax: 979-436-0086
| |
Collapse
|
12
|
Bake S, Hurst DA, Miranda RC, Sohrabji F. Prenatal alcohol exposure exacerbates acute sensorimotor deficits and impedes long-term behavioral recovery from the effects of an adult-onset cerebrovascular ischemic stroke. Alcohol Clin Exp Res 2022; 46:2267-2279. [PMID: 36203340 PMCID: PMC10100487 DOI: 10.1111/acer.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is a significant risk factor for developmental disability, although its health consequences across the lifespan are poorly understood. Here, we hypothesized that latent brain and systemic consequences of PAE influence resiliency to adult-onset neurological disease, specifically, cerebrovascular ischemic stroke. METHODS Pregnant Sprague-Dawley rats were exposed episodically to ethanol during the fetal neurogenic period. Adult (5 months) male and female PAE and control offspring were subjected to endothelin-1-induced unilateral middle cerebral artery occlusion. In the acute injury phase outcomes including stroke volume and neurological, endocrine, and gut permeability markers were assessed. Because the effects of stroke in human populations evolve over months to years, we also assessed hippocampal- and amygdala-dependent memory function and social interaction preference up to 6 months following a stroke, in middle-aged offspring. RESULTS Prenatal alcohol exposure did not alter infarct volume, but significantly increased neurological deficits in both sexes, and impaired interhemispheric sensorimotor integration in PAE females. The IGF-1/IGFBP3 ratio, a measure of bioavailable IGF-1, was significantly reduced, while circulating levels of bacterial lipopolysaccharide, an inflammagen, were significantly increased in PAE males. In PAE females, the circulating IGF-1/IGFBP3 ratio was significantly increased and estradiol-17b levels were significantly reduced. The intestinal fatty acid binding protein, a surrogate marker of gut permeability was also significantly increased in PAE females. Longer-term deficits in hippocampal-associated memory and social interactions were observed in PAE males, while deficits in amygdala-dependent memory were observed in PAE females. CONCLUSIONS PAE contributes to adverse effects on brain health and decreased resiliency in response to a common adult-onset neurovascular disease, cerebrovascular ischemic stroke.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - David A Hurst
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
13
|
Bake S, Pinson MR, Pandey S, Chambers JP, Mota R, Fairchild AE, Miranda RC, Sohrabji F. Prenatal alcohol-induced sex differences in immune, metabolic and neurobehavioral outcomes in adult rats. Brain Behav Immun 2021; 98:86-100. [PMID: 34390803 PMCID: PMC8591773 DOI: 10.1016/j.bbi.2021.08.207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can result in neurobehavioral anomalies, that may be exacerbated by co-occurring metabolic and immune system deficits. To test the hypothesis that the peripheral inflammation in adult PAE offspring is linked to poor glucose metabolism and neurocognitive deficits, pregnant Sprague-Dawley rats were exposed to ethanol vapor or ambient air during the latter half of gestation. We assessed, in adult offspring of both sexes, performance on a battery of neurocognitive behaviors, glucose tolerance, circulating and splenic immune cells by flow-cytometry, and circulating and tissue (liver, mesenteric adipose, and spleen) cytokines by multiplexed assays. PAE reduced both the ratio of spleen to body weight and splenic regulatory T-cell (Treg) numbers. PAE males, but not females exhibited an increase in circulating monocytes. Overall, PAE males exhibited a suppression of cytokine levels, while PAE females exhibited elevated cytokines in mesenteric adipose tissue (IL-6 and IL1α) and liver (IFN-γ, IL-1β, IL-13, IL-18, IL-12p70, and MCP-1), along with increased glucose intolerance. Behavioral analysis also showed sex-dependent PAE effects. PAE-males exhibited increased anxiety-like behavior while PAE-females showed decreased social interaction. PAE offspring of both sexes exhibited impaired recognition of novel objects. Multilinear regression modeling to predict the association between peripheral immune status, glucose intolerance and behavioral outcomes, showed that in PAE offspring, higher levels of adipose leptin and liver TNF- α predicted higher circulating glucose levels. Lower liver IL-1 α and higher plasma fractalkine predicted more time spent in the center of an open-field with sex being an additional predictor. Higher circulating and splenic Tregs predicted better social interaction in the PAE-offspring. Collectively, our data show that peripheral immune status is a persistent, sex-dependent predictor of glucose intolerance and neurobehavioral function in adult PAE offspring.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Marisa R Pinson
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Sivani Pandey
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joanna P Chambers
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Roxanna Mota
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Ashlyn E Fairchild
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| |
Collapse
|
14
|
Chung DD, Pinson MR, Bhenderu LS, Lai MS, Patel RA, Miranda RC. Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. Int J Mol Sci 2021; 22:ijms22168785. [PMID: 34445488 PMCID: PMC8395909 DOI: 10.3390/ijms22168785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can have immediate and long-lasting toxic and teratogenic effects on an individual’s development and health. As a toxicant, alcohol can lead to a variety of physical and neurological anomalies in the fetus that can lead to behavioral and other impairments which may last a lifetime. Recent studies have focused on identifying mechanisms that mediate the immediate teratogenic effects of alcohol on fetal development and mechanisms that facilitate the persistent toxic effects of alcohol on health and predisposition to disease later in life. This review focuses on the contribution of epigenetic modifications and intercellular transporters like extracellular vesicles to the toxicity of PAE and to immediate and long-term consequences on an individual’s health and risk of disease.
Collapse
|
15
|
Saha PS, Kim Sawtelle KR, Bamberg BN, Arrick DM, Watt MJ, Scholl JL, Zheng H, Mayhan WG. Rosiglitazone restores nitric oxide synthase-dependent reactivity of cerebral arterioles in rats exposed to prenatal alcohol. Alcohol Clin Exp Res 2021; 45:1359-1369. [PMID: 34120346 DOI: 10.1111/acer.14634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Prenatal exposure to alcohol leads to a greater incidence of many cardiovascular-related diseases, presumably via a mechanism that may involve increased oxidative stress. An agonist of peroxisome proliferator-activated receptor gamma (PPARγ; rosiglitazone) has been shown to suppress alcohol-induced neuroinflammation and oxidative stress. The goal of this study was to determine whether acute and chronic treatment with rosiglitazone could restore or prevent impaired nitric oxide synthase (NOS)-dependent responses of cerebral arterioles in male and female adult (14-16 weeks old) rats exposed to alcohol in utero. METHODS We fed Sprague-Dawley dams a liquid diet with or without 3% ethanol for the duration of their pregnancy (21-23 days). In the first series of studies, we examined the reactivity of cerebral arterioles to eNOS- (ADP), nNOS-dependent (NMDA), and NOS-independent agonists in male and female adult rats before and during acute (1 hour) topical application of rosiglitazone (1 µM). In a second series of studies, we examined the influence of chronic treatment with rosiglitazone (3 mg/kg/day in drinking water for 2-3 weeks) on the responses of cerebral arterioles in male and female adult rats exposed to alcohol in utero. RESULTS We found that in utero exposure to alcohol similarly reduced responses of cerebral arterioles to ADP and NMDA, but not to nitroglycerin in male and female adult rats. In addition, acute treatment of the male and female adult rats with rosiglitazone similarly restored this impairment in cerebral vascular function to that observed in controls. We also found that chronic treatment with rosiglitazone prevented impaired vascular function in male and female adult rats that were exposed to alcohol in utero. CONCLUSIONS PPARγ activation may be an effective and relevant treatment to reverse or prevent cerebral vascular abnormalities associated with prenatal exposure to alcohol.
Collapse
Affiliation(s)
- Partha S Saha
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Kirsten R Kim Sawtelle
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Brittany N Bamberg
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Denise M Arrick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
16
|
El-Hakim Y, Mani KK, Eldouh A, Pandey S, Grimaldo MT, Dabney A, Pilla R, Sohrabji F. Sex differences in stroke outcome correspond to rapid and severe changes in gut permeability in adult Sprague-Dawley rats. Biol Sex Differ 2021; 12:14. [PMID: 33451354 PMCID: PMC7811247 DOI: 10.1186/s13293-020-00352-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sex differences in experimental stroke outcomes are well documented, such that adult males have a greater infarct volume, increased stroke-induced mortality, and more severe sensory-motor impairment. Based on recent evidence that the gut is an early responder to stroke, the present study tested the hypothesis that sex differences in stroke severity will be accompanied by rapid and greater permeability of the gut-blood barrier and gut dysbiosis in males as compared to females. METHOD Male and female Sprague-Dawley rats (5-7 months of age) were subject to endothelin (ET)-1-induced middle cerebral artery occlusion (MCAo). Sensory-motor tests were conducted pre- and 2 days after MCAo. Gut permeability was assessed in serum samples using biomarkers of gut permeability as well as functional assays using size-graded dextrans. Histological analysis of the gut was performed with H&E staining, periodic acid-Schiff for mucus, and immunohistochemistry for the tight junction protein, ZO-1. Fecal samples obtained pre- and post-stroke were analyzed for bacterial taxa and short-chain fatty acids (SCFAs). RESULTS After stroke, males displayed greater mortality, worse sensory-motor deficit, and higher serum levels of proinflammatory cytokines IL-17A, MCP-1, and IL-5 as compared to females. MCAo-induced gut permeability was rapid and severe in males as indicated by dextran extravasation from the gut to the blood in the hyperacute (< 2 h) and early acute (2 days) phase of stroke. This was accompanied by dysmorphology of the gut villi and dysregulation of the tight junction protein ZO-1 in the acute phase. Fecal 16s sequencing showed no differences in bacterial diversity in the acute phase of stroke. Predictive modeling indicated that markers of gut permeability were associated with acute sensory-motor impairment and infarct volume. CONCLUSIONS These data show that extensive leakiness of the gut barrier is associated with severe post-stroke disability and suggest that reinforcing this barrier may improve stroke outcomes.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Amir Eldouh
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Alan Dabney
- Department of Statistics, College of Science, College Station, USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
17
|
Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res 2020; 99:1973-1985. [PMID: 32959429 DOI: 10.1002/jnr.24735] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
Ethanol exposure to the fetus during pregnancy can result in fetal alcohol spectrum disorders (FASD). These disorders vary in severity, can affect multiple organ systems, and can lead to lifelong disabilities. Damage to the central nervous system (CNS) is common in FASD, and can result in altered behavior and cognition. The incidence of FASD is alarmingly high, resulting in significant personal and societal costs. There are no cures for FASD. Alcohol can directly alter the function of neurons in the developing CNS. In addition, ethanol can alter the function of CNS glial cells including microglia and astrocytes which normally maintain homeostasis in the CNS. These glial cells can function as resident immune cells in the CNS to protect against pathogens and other insults. However, activation of glia can also damage CNS cells and lead to aberrant CNS function. Ethanol exposure to the developing brain can result in the activation of glia and neuroinflammation, which may contribute to the pathology associated with FASD. This suggests that anti-inflammatory agents may be effective in the treatment of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
18
|
Nguyen VT, Bhalla R, Cowin G, Stimson DHR, Song X, Chong S, Jackson A, Trigg WJ, Tieng QM, Mardon K, Galloway GJ, Kurniawan ND. GABA a receptor density alterations revealed in a mouse model of early moderate prenatal ethanol exposure using [ 18F]AH114726. Nucl Med Biol 2020; 88-89:44-51. [PMID: 32777548 DOI: 10.1016/j.nucmedbio.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Prenatal ethanol exposure (PEE) has been shown to alter the level and function of receptors in the brain, one of which is GABAa receptors (GABAaR), the major inhibitory ligand gated ion channels that mediate neuronal inhibition. High dose PEE in animals resulted in the upregulation of GABAaR, but the effects of low and moderate dose PEE at early gestation have not been investigated. This study aimed at examining GABAaR density in the adult mouse brain following PEE during a period equivalent to the first 3 to 4 weeks in human gestation. It was hypothesized that early moderate PEE would cause alterations in brain GABAaR levels in the adult offspring. METHODS C57BL/6J mice were given 10% v/v ethanol during the first 8 gestational days. Male offspring were studied using in-vivo Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI), biodistribution, in-vitro autoradiography using [18F]AH114726, a novel flumazenil analogue with a high affinity for the benzodiazepine-binding site, and validated using immunohistochemistry. RESULTS In vivo PET and biodistribution did not detect alteration in brain tracer uptake. In vitro radiotracer studies detected significantly reduced GABAaR in the olfactory bulbs. Immunohistochemistry detected reduced GABAaR in the cerebral cortex, cerebellum and hippocampus, while Nissl staining showed that cell density was significantly higher in the striatum following PEE. CONCLUSION Early moderate PEE may induce long-term alterations in the GABAaR system that persisted into adulthood.
Collapse
Affiliation(s)
- Van T Nguyen
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Rajiv Bhalla
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Gary Cowin
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Damion H R Stimson
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Xin Song
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Suyinn Chong
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Alexander Jackson
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Buckinghamshire, UK
| | - William J Trigg
- Core Imaging R&D, Life Sciences, GE Healthcare, Chalfont St Giles, Buckinghamshire, UK
| | - Quang M Tieng
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; National Imaging Facility, University of Queensland, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia; National Imaging Facility, University of Queensland, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Shan T, Zhao Y, Jiang S, Jiang H. In-vivo hemodynamic imaging of acute prenatal ethanol exposure in fetal brain by photoacoustic tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960161. [PMID: 31994834 DOI: 10.1002/jbio.201960161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 05/25/2023]
Abstract
Prenatal ethanol exposure (PEE) can lead to structural and functional abnormalities in fetal brain. Although neural developmental deficits due to PEE have been recognized, the immediate effects of PEE on fetal brain vasculature and hemodynamics remain poorly understood. One of the major obstacles that preclude the rapid advancement of studies on fetal vascular dynamics is the limitation of the imaging techniques. Thus, a technique for noninvasive in-vivo imaging of fetal vasculature and hemodynamics is desirable. In this study, we explored the dynamic changes of the vessel dimeter, density and oxygen saturation in fetal brain after acute maternal ethanol exposure in the second-trimester equivalent murine model using a real-time photoacoustic tomography system we developed for imaging embryo of small animals. The results indicate a significant decrease in fetal brain vessel diameter, perfusion and oxygen saturation. This work demonstrated that PAT can provide high-resolution noninvasive imaging ability to monitor fetal vascular dynamics.
Collapse
Affiliation(s)
- Tianqi Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Yuan Zhao
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, Florida
| |
Collapse
|
20
|
Bukiya AN. Fetal Cerebral Artery Mitochondrion as Target of Prenatal Alcohol Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091586. [PMID: 31067632 PMCID: PMC6539770 DOI: 10.3390/ijerph16091586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure results in an array of developmental abnormalities known as fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, therapeutic interventions against accidental or intended exposure of developing fetuses to alcohol are limited. This review outlines current knowledge about mitochondria in cerebral blood vessels as a potential target for anti-FASDs intervention. First, it describes the multifaceted role of mitochondria in maintaining the cerebral artery diameter as shown in adult tissue. Second, current literature on alcohol-driven damage of mitochondrial morphology and function in several fetal tissues, including liver, heart, and brain is summarized. The functional consequences of alcohol exposure in these organs include morphological enlargement of mitochondria, increased oxidative stress, and alteration of cellular respiration. These studies point to a tissue-specific effect of alcohol on mitochondrial function and a particular vulnerability of fetal mitochondria to alcohol exposure when compared to adult counterparts. Third, recent work from our group describing persistent changes in fetal baboon cerebral artery proteome following three episodes of prenatal alcohol exposure is reviewed. In conclusion, the consequences of prenatal alcohol exposure on cerebral artery mitochondria constitute an open field of investigation and, eventually, a point of therapeutic intervention against FASDs.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
21
|
Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun 2019; 78:31-40. [PMID: 30639697 PMCID: PMC6488367 DOI: 10.1016/j.bbi.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/09/2023] Open
Abstract
Women are more likely to develop Post Stroke Depression (PSD) than men and generally do not respond well to anti-depressants with age. This study investigated the effect of microRNA mir363-3p treatment on PSD using a physiologically-relevant animal model. Our previous work showed that mir363-3p treatment, delivered post-stroke, effectively reduces infarct volume in the acute phase of stroke in middle-aged females but not males. Middle-aged female Sprague Dawley rats were tested for baseline sensory motor function and depressive-like behaviors, and then subjected to ischemic stroke via middle cerebral artery occlusion (MCAo) or sham surgery. Animals received either control oligos (MCAo+scrambled, Sham+scrambled) or mir363-3p (MCAo+mir363-3p, Sham+mir363-3p) treatment 4 h later. Sensory motor function and depressive-like behaviors were reassessed up to 100 d after stroke, and circulating levels of IL-6, TNF-alpha and Brain-Derived Neurotrophic Factor (BDNF) were quantified at regular intervals. Prior to termination, Fluorogold was injected into the striatum to assess meso-striatal projections. MCAo+scrambled animals had impaired sensorimotor performance in the acute phase (5 days) of stroke and developed anhedonia, decreased sociability and increased helplessness in the chronic phase. MCAo+mir363-3p animals showed significantly less sensory motor impairment and fewer depressive-like behaviors. IL-6 and TNF-alpha were elevated transiently at 4 weeks after MCAo in both groups. BDNF levels decreased progressively after stroke in the MCAo+scrambled group, and this was attenuated in the mir363-3p group. The number of retrogradely-labeled SNc and VTA cells was reduced in the ischemic hemisphere of the MCAo+scrambled group. In contrast, there was no interhemispheric difference in the number of retrogradely-labeled SNc and VTA cells of MCAo+mir363-3p treated animals. Our results support a therapeutic role for mir363-3p for long-term stroke disability.
Collapse
|
22
|
Cananzi SG, Mayhan WG. In Utero Exposure to Alcohol Impairs Reactivity of Cerebral Arterioles and Increases Susceptibility of the Brain to Damage Following Ischemia/Reperfusion in Adulthood. Alcohol Clin Exp Res 2019; 43:607-616. [PMID: 30748017 DOI: 10.1111/acer.13979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/01/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Maternal consumption of alcohol produces abnormalities in the developing fetus and can contribute to an increased incidence of many cardiovascular-related diseases. The first goal of this study was to determine whether in utero exposure to alcohol influences reactivity of cerebral arterioles in adult (12 to 15 weeks old) rats. The second goal of this study was to examine whether in utero exposure to alcohol increased the susceptibility of the brain to damage following an ischemic event in adult rats. METHODS We fed Sprague Dawley dams a liquid diet with or without alcohol (3% ethanol) for the duration of their pregnancy (21 to 23 days). In the first series of studies, we examined reactivity of cerebral arterioles to endothelial nitric oxide synthase (eNOS)- (adenosine diphosphate [ADP]) and neuronal nitric oxide synthase (nNOS)-dependent N-methyl-D-aspartate (NMDA, and NOS-independent agonists in adult rats before and during application of l-NMMA. In another series of studies, we examined infarct volume following middle cerebral artery occlusion in adult offspring exposed to alcohol in utero. In both series of studies, we also determined the role for an increase in oxidative stress by feeding dams apocynin for the duration of their pregnancy. RESULTS We found that in utero exposure to alcohol reduced responses of cerebral arterioles to ADP and NMDA, but not to nitroglycerin in adult rats. In addition, treatment of the dams with apocynin prevented this impairment in cerebral vascular function. We also found that in utero exposure to alcohol worsened brain damage following ischemia/reperfusion in adult rats and that treatment of dams with apocynin prevented this increase in brain damage following ischemia/reperfusion. CONCLUSIONS We suggest that our findings may have important implications for the pathogenesis of brain abnormalities associated with fetal alcohol exposure.
Collapse
Affiliation(s)
- Sergio G Cananzi
- Department of Molecular Biology , University of Texas-Southwestern, Dallas, Texas
| | - William G Mayhan
- Division of Basic Biomedical Sciences , Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
23
|
Bisen S, Kakhniashvili D, Johnson DL, Bukiya AN. Proteomic Analysis of Baboon Cerebral Artery Reveals Potential Pathways of Damage by Prenatal Alcohol Exposure. Mol Cell Proteomics 2019; 18:294-307. [PMID: 30413562 PMCID: PMC6356072 DOI: 10.1074/mcp.ra118.001047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Alcohol is one of the most widely misused substances in the world. Alcohol consumption by pregnant women often results in an array of fetal developmental abnormalities, but the damage to the fetus by alcohol remains poorly understood. The limited knowledge regarding the molecular targets of alcohol in the developing fetus constitutes one of the major obstacles in developing effective pharmacological interventions that could prevent fetal damage after alcohol consumption by pregnant women. The fetal cerebral artery is emerging as an important mediator of fetal cerebral damage by maternal alcohol drinking. In the present work, we conduct proteomics analysis of cerebral (basilar) artery lysates of near-term fetal baboons to search for protein targets of fetal alcohol exposure. Our study demonstrates that 3 episodes of binge alcohol exposure during the second trimester-equivalent of human pregnancy are sufficient to render profound changes in fetal cerebral artery proteome. These changes persisted, as they were detected in near-term fetuses. In particular, the relative abundance of 238 proteins differed significantly between control and alcohol-exposed fetuses. Enrichment analysis pointed at the group of metabolic activity proteins as a major class targeted by alcohol. Western blotting confirmed upregulation of the aldehyde dehydrogenase 6 family member A1 (ALDH6A1) in cerebral artery lysates from alcohol-exposed fetuses. This upregulation translated to greater ALDH activity of cerebral artery lysate of near-term fetuses following prenatal alcohol exposure when compared with controls.
Collapse
Affiliation(s)
- Shivantika Bisen
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 71 S. Manassas St., #205, Memphis, TN, 38103
| | - David Kakhniashvili
- Proteomics Core, University of Tennessee Health Science Center, 71 S. Manassas St., #110, Memphis, TN, 38103
| | - Daniel L Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, 71 S. Manassas St., #110, Memphis, TN, 38103
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 71 S. Manassas St., #205, Memphis, TN, 38103;.
| |
Collapse
|
24
|
Simakova M, Tobiasz A, Sullivan RD, Bisen S, Duncan J, Sullivan JP, Davison S, Tate DL, Barnett S, Mari G, Dopico AM, Bukiya AN. Gestational Age-Dependent Interplay between Endocannabinoid Receptors and Alcohol in Fetal Cerebral Arteries. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2019; 8:236068. [PMID: 31057979 PMCID: PMC6497414 DOI: 10.4303/jdar/236068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol (ethanol) is one of the most widely consumed drugs. Alcohol consumption by pregnant women may result in a range of fetal abnormalities termed fetal alcohol spectrum disorders (FASDs). The cerebrovascular system is emerging as a critical target of alcohol in the developing brain. We recently showed that three episodes of prenatal alcohol exposure resulting in 80 mg/dL alcohol in maternal blood during mid-pregnancy up-regulated anandamide-induced dilation of fetal cerebral arteries. Moreover, ethanol dilated fetal cerebral arteries via cannabinoid (CB) receptors. Whether a critical role of fetal cerebral artery CB system in responses to alcohol was maintained throughout the gestation, remains unknow. MAIN METHODS Pregnant baboons (second trimester equivalent) were subjected to three episodes of either alcohol or control drink infusion via gavage. Cerebral arteries from mothers and near-term female fetuses were in vitro pressurized for diameter monitoring. KEY FINDINGS Near-term fetal and maternal arteries exhibited similar ability to develop myogenic tone, to constrict in presence of 60 mM KCl, and to respond to 10 µM anandamide. Fetal and maternal arteries largely failed to dilate in presence of 63 mM ethanol. No differences were detected between arteries from control and alcohol-exposed baboon donors. Therefore, previously observed ethanol-induced dilation of fetal cerebral arteries and up-regulation of CB components in response to fetal alcohol exposure during mid-pregnancy was transient and disappeared by near-term.
Collapse
Affiliation(s)
- Maria Simakova
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana Tobiasz
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ryan D Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shivantika Bisen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose Duncan
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - J Pierce Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Davison
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Danielle L Tate
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Barnett
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giancarlo Mari
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Spataru A, Le Duc D, Zagrean L, Zagrean AM. Ethanol exposed maturing rat cerebellar granule cells show impaired energy metabolism and increased cell death after oxygen-glucose deprivation. Neural Regen Res 2019; 14:485-490. [PMID: 30539817 PMCID: PMC6334607 DOI: 10.4103/1673-5374.245474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alcohol, a widely abused drug, has deleterious effects on the immature nervous system. This study investigates the effect of chronic in vitro ethanol exposure on the metabolism of immature rat cerebellar granular cells (CGCs) and on their response to oxygen-glucose deprivation (OGD). Primary CGC cultures were exposed to ethanol (100 mM in culture medium) or to control ethanol-free medium starting day one in vitro (DIV1). At DIV8, the expression of ATP synthase gene ATP5g3 was quantified using real-time PCR, then cultures were exposed to 3 hours of OGD or normoxic conditions. Subsequently, cellular metabolism was assessed by a resazurin assay and by ATP level measurement. ATP5g3 expression was reduced by 12-fold (P = 0.03) and resazurin metabolism and ATP level were decreased to 74.4 ± 4.6% and 55.5 ± 6.9%, respectively after chronic ethanol treatment compared to control values (P < 0.01). Additionally, after OGD exposure of ethanol-treated cultures, resazurin metabolism and ATP level were decreased to 12.7 ± 1.0% and 9.0 ± 2.0% from control values (P < 0.01). These results suggest that chronic ethanol exposure reduces the cellular ATP level, possibly through a gene expression down-regulation mechanism, and increases the vulnerability to oxygen-glucose deprivation. Thus, interventions which improve metabolic function and sustain ATP-levels could attenuate ethanol-induced neuronal dysfunction and should be addressed in future studies.
Collapse
Affiliation(s)
- Ana Spataru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; King's College Hospital, London, UK
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
26
|
Bukiya AN, Dopico AM. Fetal Cerebral Circulation as Target of Maternal Alcohol Consumption. Alcohol Clin Exp Res 2018; 42:1006-1018. [PMID: 29672868 PMCID: PMC5984173 DOI: 10.1111/acer.13755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
Alcohol (ethanol [EtOH]) is one of the most widely used psychoactive substances worldwide. Alcohol consumption during pregnancy may result in a wide range of morphological and neurodevelopmental abnormalities termed fetal alcohol spectrum disorders (FASD), with the most severe cases diagnosed as fetal alcohol syndrome (FAS). FAS and FASD are not readily curable and currently represent the leading preventable causes of birth defect and neurodevelopmental delay in the United States. The etiology of FAS/FASD remains poorly understood. This review focuses on the effects of prenatal alcohol exposure (PAE) on fetal cerebrovascular function. A brief introduction to the epidemiology of alcohol consumption and the developmental characteristics of fetal cerebral circulation is followed by several sections that discuss current evidence documenting alcohol-driven alterations of fetal cerebral blood flow, artery function, and microvessel networks. The material offers mechanistic insights at the vascular level itself into the pathophysiology of PAE.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|