1
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
Acoustilytix™: A Web-Based Automated Ultrasonic Vocalization Scoring Platform. Brain Sci 2021; 11:brainsci11070864. [PMID: 34209754 PMCID: PMC8301917 DOI: 10.3390/brainsci11070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neurochemistry, and brain function. Collecting and processing USV data is manual, time-intensive, and costly, creating a significant bottleneck by limiting researchers’ ability to employ fully effective and nuanced experimental designs and serving as a barrier to entry for other researchers. In this report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV detection and classification process and is recording-environment-agnostic. We summarize the user features identified as desirable by USV researchers and how these were implemented. These include the ability to easily upload USV files, output a list of detected USVs with associated parameters in csv format, and the ability to manually verify or modify an automatically detected call. With no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in call detection across four unique recording environments and was superior to the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include integration and implementation of machine-learning-based call type classification prediction that will recommend a call type to the user for each detected call. Call classification accuracy is currently in the 71–79% accuracy range, which will continue to improve as more USV files are scored by expert scorers, providing more training data for the classification model. We also describe a recently developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using automated learning principles without the need for an expert hand-scorer to be present and is built upon a foundation of learning science. The key is that trainees are given practice classifying hundreds of calls with immediate corrective feedback based on an expert’s USV classification. We showed that this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and the expert ranging from 0.30–0.75 (average = 0.55) after only 1000–2000 calls of training. We conclude with a brief discussion of future improvements to the Acoustilytix platform.
Collapse
|
3
|
Spontaneous Ultrasonic Vocalization Transmission in Adult, Male Long-Evans Rats Is Age-Dependent and Sensitive to EtOH Modulation. Brain Sci 2020; 10:brainsci10110890. [PMID: 33266373 PMCID: PMC7700419 DOI: 10.3390/brainsci10110890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Ultrasonic vocalizations (USVs) are well-established markers of motivational and emotional status. Recent work from our lab has provided novel evidence for a role of USVs in models of ethanol (EtOH) use. For instance, USV acoustic characteristics can be used to accurately discriminate between rats selectively bred for high EtOH intake (e.g., alcohol-preferring (P) and high-alcohol-drinking (HAD)) versus EtOH-avoiding (e.g., alcohol-non-preferring (NP) and low-alcohol-drinking (LAD)) strains, as well as differentiate between male and female rats. In the present study we sought to explore the effect of age and alcohol availability on spontaneously emitted 50–55 kHz frequency modulated (FM) and 22–28 kHz USVs in adult, male Long–Evans rats. With the hypothesis that age and alcohol experience influence spontaneous USV emissions, we examined USV data collected across a 24-week intermittent EtOH access experiment in male Long–Evans rats. USV counts and acoustic characteristic (i.e., mean frequency, duration, bandwidth and power) data revealed distinct age-dependent phenotypes in both 50–55 kHz FM and 22–28 kHz USV transmission patterns that were modulated by EtOH exposure. These results highlight the influence of age and EtOH experience on the unique emotional phenotypes of male Long–Evans rats.
Collapse
|
4
|
Rodent ultrasonic vocalizations as biomarkers of future alcohol use: A predictive analytic approach. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:88-98. [PMID: 29209998 DOI: 10.3758/s13415-017-0554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption has a vast, negative impact on society. Rodent models have been successful in furthering our understanding of the biological underpinnings that drive alcohol consumption. Rodents emit ultrasonic vocalizations (USVs) that are each composed of several acoustic characteristics (e.g., frequency, duration, bandwidth, power). USVs reflect neurotransmitter activity in the ascending limb of the mesolimbic dopaminergic and cholinergic neurotransmitter systems and serve as noninvasive, real-time biomarkers of dopaminergic and cholinergic neurotransmission in the limbic system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve Long-Evans (LE) rats and then measured their alcohol intake. We compared the USV acoustic characteristics and alcohol consumption data from these LE rats with previously published data from selectively bred high-alcohol (P and HAD-1) and low-alcohol (NP and LAD-1) drinking lines from studies with the same experimental method. Predictive analytic techniques were applied simultaneously to this combined data set and revealed that (a) USVs emitted by alcohol-naïve rats accurately discriminated among high-alcohol consuming, LE, and low-alcohol consuming rat lines, and (b) future alcohol consumption in these same rat lines was reliably predicted from the USV data collected in an alcohol-naïve state. To our knowledge, this is the first study to show that alcohol consumption is predicted directly from USV profiles of alcohol-naïve rats. Because USV acoustic characteristics are sensitive to underlying neural activity, these findings suggest that baseline differences in mesolimbic cholinergic and dopaminergic tone could determine the propensity for future alcohol consumption in rodents.
Collapse
|
5
|
Brudzynski SM. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav Brain Res 2019; 363:1-12. [PMID: 30677449 DOI: 10.1016/j.bbr.2019.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
There is no clear relationship between crying and depression based on human neuropsychiatric observations. This situation originates from lack of suitable animal models of human crying. In the present article, an attempt will be made to answer the question whether emission of rat aversive vocalizations (22 kHz calls) may be regarded as an evolutionary equivalent of adult human crying. Using this comparison, the symptom of crying in depressed human patients will be reanalyzed. Numerous features and characteristics of rat 22 kHz aversive vocalizations and human crying vocalizations are equivalent. Comparing evolutionary, biological, physiological, neurophysiological, social, pharmacological, and pathological aspects have shown vast majority of common features. It is concluded that emission of rat 22 kHz vocalizations may be treated as an evolutionary vocal homolog of human crying, although emission of 22 kHz calls is not exactly the same phenomenon because of significant differences in cognitive processes between these species. It is further concluded that rat 22 kHz vocalizations and human crying vocalizations are both expressing anxiety and not depression. Analysis of the relationship between anxiety and depression reported in clinical studies supports this conclusion regardless of the nature and extent of comorbidity between these pathological states.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
6
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|
7
|
Mittal N, Thakore N, Reno JM, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Alcohol-naïve USVs distinguish male HAD-1 from LAD-1 rat strains. Alcohol 2018; 68:9-17. [PMID: 29427829 PMCID: PMC5851795 DOI: 10.1016/j.alcohol.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Ultrasonic vocalizations (USVs) are mediated through specific dopaminergic and cholinergic neural pathways and serve as real-time measures of positive and negative emotional status in rodents. Although most USV studies focus primarily on USV counts, each USV possesses a number of characteristics shown to reflect activity in the associated neurotransmitter system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve high alcohol drinking (HAD-1) and low alcohol drinking (LAD-1) rats. Using our recently developed WAAVES algorithm, we quantified four acoustic characteristics (mean frequency, duration, power, and bandwidth) from each 22-28 kHz and 50-55 kHz frequency-modulated (FM) USV. This rich USV representation allowed us to apply advanced statistical techniques to identify the USV acoustic characteristics that distinguished HAD-1 from LAD-1 rats. Linear mixed models (LMM) examined the predictability of each USV characteristic in isolation and linear discriminant analysis (LDA), and binomial logistic regression examined the predictability of linear combinations of the USV characteristics as a group. Results revealed significant differences in acoustic characteristics between HAD-1 and LAD-1 rats in both 22-28 kHz and 50-55 kHz FM USVs. In other words, these rats selectively bred for high- and low-alcohol consumption can be identified as HAD-1 or LAD-1 rats with high classification accuracy (approximately 92-100%) exclusively based on their emitted 22-28 kHz and 50-55 kHz FM USV acoustic characteristics. In addition, acoustic characteristics of 22-28 kHz and 50-55 kHz FM USVs emitted by alcohol-naïve HAD-1 and LAD-1 rats significantly correlate with their future alcohol consumption. Our current findings provide novel evidence that USV acoustic characteristics can be used to discriminate between alcohol-naïve HAD-1 and LAD-1 rats, and may serve as biomarkers in rodents with a predisposition for, or against, excessive alcohol intake.
Collapse
Affiliation(s)
- Nitish Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - Neha Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - James M Reno
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - W Todd Maddox
- Cognitive Design and Statistical Consulting, Austin, TX 78746, United States
| | - Timothy Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Christine L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States.
| |
Collapse
|
8
|
Mittal N, Thakore N, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Sex-specific ultrasonic vocalization patterns and alcohol consumption in high alcohol-drinking (HAD-1) rats. Physiol Behav 2017; 203:81-90. [PMID: 29146494 DOI: 10.1016/j.physbeh.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/03/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022]
Abstract
Ultrasonic vocalizations (USVs) have been established as an animal model of emotional status and are often utilized in drug abuse studies as motivational and emotional indices. Further USV functionality has been demonstrated in our recent work showing accurate identification of selectively-bred high versus low alcohol-consuming male rats ascertained exclusively from 22 to 28kHz and 50-55kHz FM USV acoustic parameters. With the hypothesis that alcohol-sensitive sex differences could be revealed through USV acoustic parameters, the present study examined USVs and alcohol consumption in male and female selectively bred high-alcohol drinking (HAD-1) rats. For the current study, we examined USV data collected during a 12-week experiment in male and female HAD-1 rats. Experimental phases included Baseline (2weeks), 4-h EtOH Access (4weeks), 24-h EtOH Access (4weeks) and Abstinence (2weeks). Findings showed that both male and female HAD-1 rats spontaneously emitted a large number of 22-28kHz and 50-55kHz FM USVs and that females drank significantly more alcohol compared to males over the entire course of the experiment. Analyses of USV acoustic characteristics (i.e. mean frequency, duration, bandwidth and power) revealed distinct sex-specific phenotypes in both 50-55kHz FM and 22-28kHz USV transmission that were modulated by ethanol exposure. Moreover, by using a linear combination of these acoustic characteristics, we were able to develop binomial logistic regression models able to discriminate between male and female HAD-1 rats with high accuracy. Together these results highlight unique emotional phenotypes in male and female HAD-1 rats that are differentially modulated by alcohol experience.
Collapse
Affiliation(s)
- N Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - N Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - R L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W T Maddox
- Cognitive Design and Statistical Consulting, LLC, Austin, TX 78746, USA
| | - T Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA; The University of Texas at Austin, College of Liberal Arts, Behavioral Neuroscience, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, USA
| | - C L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA.
| |
Collapse
|