1
|
Martin JC, Reeves KC, Carter KA, Davis M, Schneider A, Meade E, Lebonville CL, Nimitvilai S, Hoffman M, Woodward JJ, Mulholland PJ, Rinker JA. Genetic and functional adaptations and alcohol-biased signaling in the mediodorsal thalamus of alcohol dependent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620696. [PMID: 39553931 PMCID: PMC11565778 DOI: 10.1101/2024.10.28.620696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alcohol Use Disorder (AUD) is a significant health concern characterized by an individual's inability to control alcohol intake. With alcohol misuse increasing and abstinence rates declining, leading to severe social and health consequences, it is crucial to uncover effective treatment strategies for AUD by focusing on understanding neuroadaptations and cellular mechanisms. The mediodorsal thalamus (MD) is a brain region essential for cognitive functioning and reward-guided choices. However, the effects of alcohol (ethanol) dependence on MD neuroadaptations and how dependence alters MD activity during choice behaviors for alcohol and a natural reward (sucrose) are not well understood. Adult C57BL/6J mice treated with chronic intermittent ethanol (CIE) exposure were used to assess genetic and functional adaptations in the MD. Fiber photometry-based recordings of GCaMP6f expressed in the MD of C57BL/6J mice were acquired to investigate in vivo neural adaptations during choice drinking sessions for alcohol (15%) and either water or sucrose (3%). There were time-dependent changes in cFos and transcript expression during acute withdrawal and early abstinence. Differentially expressed genes were identified in control mice across different circadian time points and when comparing control and alcohol dependent mice. Gene Ontology enrichment analysis of the alcohol-sensitive genes revealed disruption of genes that control glial function, axonal myelination, and protein binding. CIE exposure also increased evoked firing in MD cells at 72 hours of withdrawal. In alcohol-dependent male and female mice that show increased alcohol drinking and preference for alcohol over water, we observed an increase in alcohol intake and preference for alcohol when mice were given a choice between alcohol and sucrose. Fiber photometry recordings demonstrated that MD activity is elevated during and after licking bouts for alcohol, water, and sucrose, and the signal for alcohol is significantly higher than that for water or sucrose during drinking. The elevated signal during alcohol bouts persisted in alcohol dependent mice. These findings demonstrate that CIE causes genetic and functional neuroadaptations in the MD and that alcohol dependence enhances alcohol-biased behaviors, with the MD uniquely responsive to alcohol, even in dependent mice.
Collapse
|
2
|
Abstract
PURPOSE Alcohol-related myopathy is one of the earliest alcohol-associated pathological tissue changes that is progressively exacerbated by cumulative long-term alcohol misuse. Acute and chronic alcohol use leads to changes in skeletal muscle mass and function. As discussed in this evidence-based review, alcohol-mediated mechanisms are multifactorial with effects on anabolic and catabolic signaling, mitochondrial bioenergetics, extracellular matrix remodeling, and epigenomic alterations. However, systematic studies are limited, especially regarding the acute effects of alcohol on skeletal muscle. SEARCH METHODS This review focuses on peer-reviewed manuscripts published between January 2012 and November 2022 using the search terms "alcohol" or "ethanol" and "skeletal muscle" in MEDLINE, PubMed, and Web of Science using EndNote reference management software. SEARCH RESULTS Eligible manuscripts included full-length research papers that discussed acute and chronic effects of alcohol on skeletal muscle mass and function in both clinical and preclinical studies. The review also includes alcohol-mediated skeletal muscle effects in the context of comorbidities. The three databases together yielded 708 manuscripts. Of these, the authors excluded from this review 548 papers that did not have "alcohol" or "muscle" in the title and 64 papers that were duplicates or did not discuss skeletal muscle. Thus, of all the manuscripts considered for this review, 96 are included and 612 are excluded. Additionally, relevant papers published earlier than 2012 are included to provide context to the review. DISCUSSION AND CONCLUSIONS Both acute and chronic alcohol use decrease protein synthesis and increase protein degradation. Alcohol also impairs mitochondrial function and extracellular matrix remodeling. However, there is a gap in the literature on the known alcohol-mediated mechanisms, including senescence, role of immune activation, and interorgan communication, on the development of alcohol-related myopathy. With increased life expectancy, changing alcohol use patterns, and increasing frequency of alcohol use among females, current observational studies are needed on the prevalence of alcohol-related myopathy. Additionally, the compounding effects of acute and chronic alcohol use on skeletal muscle with aging or exercise, in response to injury or disuse, and in the context of comorbidities including diabetes and human immunodeficiency virus (HIV), call for further investigation. Though evidence suggests that abstinence or reducing alcohol use can improve muscle mass and function, they are not restored to normal levels. Hence, understanding the pathophysiological mechanisms can help in the design of therapeutic strategies to improve skeletal muscle health.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
3
|
Rice RC, Baratta AM, Farris SP. Home-Cage Sipper Devices Reveal Age and Sex Differences in Ethanol Consumption Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533844. [PMID: 36993453 PMCID: PMC10055331 DOI: 10.1101/2023.03.22.533844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Free-choice paradigms such as two-bottle choice (2BC) are commonly used to characterize ethanol consumption and preference of rodent models used to study alcohol use disorder (AUD). However, these assays are limited by low temporal resolution that misses finer patterns of drinking behavior, including circadian drinking patterns that are known to vary with age and sex and are affected in AUD pathogenesis. Modern, cost-effective tools are becoming widely available that could elucidate these patterns, including open-source, Arduino-based home-cage sipper devices. We hypothesized that adaptation of these home-cage sipper devices would uncover distinct age- and sex-related differences in temporal drinking patterns. To test this hypothesis, we used the sipper devices in a continuous 2BC paradigm using water and ethanol (10%; v/v) for 14 days to measure drinking patterns of male and female adolescent (3-week), young adult (6-week), and mature adult (18-week) C57BL/6J mice. Daily grams of fluid consumption were manually recorded at the beginning of the dark cycle, while home-cage sipper devices continuously recorded the number of sips. Consistent with prior studies, females consumed more ethanol than males, and adolescent mice consumed the most out of any age group. Correlation analyses of manually recorded fluid consumption versus home-cage sipper activity revealed a statistically significant prediction of fluid consumption across all experimental groups. Sipper activity was able to capture subtle circadian differences between experimental groups, as well as distinct individual variation in drinking behavior among animals. Blood ethanol concentrations were significantly correlated with sipper data, suggesting that home-cage sipper devices can accurately determine individual timing of ethanol consumption. Overall, our studies show that augmenting the 2BC drinking paradigm with automated home-cage sipper devices can accurately measure ethanol consumption across sexes and age groups, revealing individual differences and temporal patterns of ethanol drinking behavior. Future studies utilizing these home-cage sipper devices will further dissect circadian patterns for age and sex relevant to the pathogenesis of AUD, as well as underlying molecular mechanisms for patterns in ethanol consumption. Highlights Female mice consume more ethanol than males in a continuous access paradigmAdolescent male and female mice consume more ethanol than young or mature adult miceAutomated home-cage sipper devices accurately measure ethanol consumptionDevices reveal sex- and age-dependent differences in circadian drinking patternsDevices reveal distinct individual variation in circadian drinking patterns.
Collapse
|
4
|
Miller MB, Boness CL, DiBello AM, Froeliger B. Insomnia as a moderator of alcohol use and blackout: Potential role in acute physiological consequences. Addict Behav 2022; 134:107395. [PMID: 35696822 PMCID: PMC10018985 DOI: 10.1016/j.addbeh.2022.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Alcohol-induced blackout is associated concurrently and prospectively with alcohol-related harm, including emergency room visits and sexual coercion. Although sleep has not been linked empirically to blackout, symptoms of insomnia have also been linked to memory impairment, in which case insomnia symptoms may compound alcohol's negative effects on memory. This study tested insomnia symptoms as a moderator of the association between heavy drinking and alcohol-induced blackout. METHODS Heavy-drinking young adults in college (N = 461, 69% female) completed assessments online from remote locations. Hierarchical linear regression was used to test a moderation model predicting blackout frequency. Logistic regression was used to test post hoc hypotheses. RESULTS In contrast to our main hypothesis, heavy drinking was more weakly (not more strongly) associated with blackout in the context of more severe insomnia. Post hoc analyses tested insomnia symptoms as a unique moderator of the association between heavy drinking and likelihood of acute physiological consequences of alcohol use (blackout, passing out, nausea/throwing up, and hangover). Insomnia severity at least marginally moderated the association between heavy drinking and 4 out of 5 physiological consequences of alcohol use, and only moderated the association between drinking and 1 of 19 remaining consequences. CONCLUSIONS Symptoms of insomnia are associated with alcohol-related harm, but may buffer associations between drinking and acute physiological consequences of alcohol. Additional research is needed to determine if alcohol heightens sensitivity to the acute physiological effects of alcohol, in which case less alcohol may be required for young adults with insomnia to experience these effects.
Collapse
Affiliation(s)
- Mary Beth Miller
- Department of Psychiatry, University of Missouri School of Medicine, United States.
| | - Cassandra L Boness
- Department of Psychological Sciences, University of Missouri College of Arts & Sciences, United States; Center on Alcohol, Substance Use, and Addictions, University of New Mexico, United States
| | - Angelo M DiBello
- Center of Alcohol & Substance Use Studies & Graduate School of Applied and Professional Psychology, Rutgers University, United States
| | - Brett Froeliger
- Department of Psychiatry, University of Missouri School of Medicine, United States; Department of Psychological Sciences, University of Missouri College of Arts & Sciences, United States
| |
Collapse
|
5
|
Morphofunctional State and Circadian Rhythms of the Liver of Female Rats under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2022; 23:ijms231810744. [PMID: 36142658 PMCID: PMC9502101 DOI: 10.3390/ijms231810744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
A separate and combined effect of constant illumination and chronic alcohol intoxication (CAI) on diurnal dynamics of micromorphometric parameters of hepatocytes in female Wistar rats and p53, Ki-67, PER2, BMAL1, and ADH5 expression in these cells were studied. The increase in apoptotic activity and proliferation in all animals under the action of chronodestructors is shown. All experimental animals showed a decrease in BMAL1 expression and increase in PER2 expression; ADH5 is overexpressed under the influence of ethanol. Circadian rhythms (CRs) of BMAL1, PER2, p53, and Ki-67 expression persist in all groups, except combined action of chronodestructors, and ADH5 CRs persist in all groups—thus, these rhythms in females are quite stable. CRs of the hepatocyte nuclei area are preserved in all the studied groups, although they undergo a significant shift. At the same time, the CRs of the hepatocyte area are destroyed under the action of light, both independently and in combination with CAI, and the CR of the nuclear-cytoplasmic ratio (NCR) is destroyed by exposure to CAI. It can be assumed that CRs of the hepatocyte area are significantly affected by dark deprivation and NCR rhythm is sensitive to ethanol consumption, while the stability of studied genes’ expression rhythms at separate influences of studied chronodestructors is maintained by yet unknown adaptation mechanisms. It is necessary to note that, according to our previous studies of male rats, rat females show significantly greater stability of the studied CRs.
Collapse
|
6
|
Hühne A, Echtler L, Kling C, Stephan M, Schmidt MV, Rossner MJ, Landgraf D. Circadian gene × environment perturbations influence alcohol drinking in Cryptochrome-deficient mice. Addict Biol 2022; 27:e13105. [PMID: 34672045 DOI: 10.1111/adb.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Alcohol use disorder (AUD) is a widespread addiction disorder with severe consequences for health. AUD patients often suffer from sleep disturbances and irregular daily patterns. Conversely, disruptions of circadian rhythms are considered a risk factor for AUD and alcohol relapses. In this study, we investigated the extent to which circadian genetic and environmental disruptions and their interaction alter alcohol drinking behaviour in mice. As a model of genetic circadian disruption, we used Cryptochrome1/2-deficient (Cry1/2-/- ) mice with strongly suppressed circadian rhythms and found that they exhibit significantly reduced preference for alcohol but increased incentive motivation to obtain it. Similarly, we found that low circadian SCN amplitude correlates with reduced alcohol preference in WT mice. Moreover, we show that the low alcohol preference of Cry1/2-/- mice concurs with high corticosterone and low levels of the orexin precursor prepro-orexin and that WT and Cry1/2-/- mice respond differently to alcohol withdrawal. As a model of environmentally induced disruption of circadian rhythms, we exposed mice to a "shift work" light/dark regimen, which also leads to a reduction in their alcohol preference. Interestingly, this effect is even more pronounced when genetic and environmental circadian perturbations interact in Cry1/2-/- mice under "shift work" conditions. In conclusion, our study demonstrates that in mice, disturbances in circadian rhythms have pronounced effects on alcohol consumption as well as on physiological factors and other behaviours associated with AUD and that the interaction between circadian genetic and environmental disturbances further alters alcohol consumption behaviour.
Collapse
Affiliation(s)
- Anisja Hühne
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- Munich Medical Research School Ludwig Maximilian University Munich Germany
| | - Lisa Echtler
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- Munich Medical Research School Ludwig Maximilian University Munich Germany
| | - Charlotte Kling
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS‐ TP) Munich Germany
| | - Marius Stephan
- International Max Planck Research School for Translational Psychiatry (IMPRS‐ TP) Munich Germany
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy Ludwig Maximilian University Munich Germany
| | - Mathias V. Schmidt
- Research Group Neurobiology of Stress Resilience Max Planck Institute of Psychiatry Munich Germany
| | - Moritz J. Rossner
- Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy Ludwig Maximilian University Munich Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy University Hospital, Ludwig Maximilian University Munich Germany
| |
Collapse
|
7
|
MORPHOLOGY AND FUNCTIONAL STATE OF THE RAT PINEAL GLAND IN CHRONIC ETHANOL INTOXICATION. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-223-227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Kozlova MA, Kirillov YA, Makartseva LA, Chernov I, Areshidze DA. Morphofunctional State and Circadian Rhythms of the Liver under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2021; 22:ijms222313007. [PMID: 34884810 PMCID: PMC8657715 DOI: 10.3390/ijms222313007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
A study of the influence of chronic alcohol intoxication, constant illumination and their combined effects on the morphofunctional state of the rat liver and the circadian rhythms (CR) of the studied parameters of the organism was carried out. It was found that both alcohol and constant illumination caused significant changes in the structure of the liver, as well as in the circadian rhythmicity of micromorphometric parameters of hepatocytes, ALT, and total and direct bilirubin rhythms; however, the combined effects of ethanol and constant illumination had the most significant effect on the studied parameters of the organism. These two factors caused disturbances in the circadian rhythms of the micromorphometric parameters of hepatocytes, disruption of the circadian rhythms of total protein, albumin, AST, ALT, and direct and total bilirubin, as well as disturbances in the expression and rhythmicity of the studied clock genes against a background of the development of an inflammatory process in the liver.
Collapse
Affiliation(s)
- Maria A. Kozlova
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Yuri A. Kirillov
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Lyudmila A. Makartseva
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Igor Chernov
- Department of Pathological Anatomy, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - David A. Areshidze
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
- Experimental Tumor Chemotherapy Group, Center for Screening and Preclinical Testing, Institute of Problems of Chemical Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia
- Correspondence: ; Tel.: +7-909-643-37-56
| |
Collapse
|
9
|
Katary M, Abdel-Rahman AA. Alcohol suppresses cardiovascular diurnal variations in male normotensive rats: Role of reduced PER2 expression and CYP2E1 hyperactivity in the heart. Alcohol 2020; 89:27-36. [PMID: 32777474 DOI: 10.1016/j.alcohol.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The molecular mechanism of the adverse effects of ethanol on diurnal cardiovascular regulation remains unknown. In separate studies, the cardiac circadian rhythm protein period-2 (PER2) confers cardioprotection and, in other organs, PER2 interaction with the ethanol-metabolizing enzyme CYP2E1 underlies, via heme oxygenase-1 (HO-1) upregulation, tissue injury/dysfunction. Here, we hypothesized that suppressed PER2 expression and elevated CYP2E1/HO-1 levels in the heart underlie the disrupted diurnal cardiovascular rhythm/function in alcohol-fed normotensive rats. METHODS In ethanol-fed (5%, w/v; 8 weeks) or isocaloric liquid diet-fed male rats, diurnal changes in blood pressure (BP), heart rate (HR), HR vagal variability index, root mean square of successive beat-to-beat differences in beat-interval duration (rMSSD), and cardiac function were measured by radiotelemetry and echocardiography followed by ex vivo molecular studies. RESULTS Radiotelemetry findings showed ethanol-evoked reductions in BP (during the dark cycle), rMSSD (during both cycles), and in diurnal differences in BP and rMSSD. Echocardiography findings revealed significant (p < 0.05) reductions in ejection fraction and fractional shortening (weeks 4-6) in the absence of cardiac remodeling (collagen content). Hearts of ethanol-fed rats exhibited higher (p < 0.05) CYP2E1 activity (50%) and HO-1 expression (63%), along with reduction (p < 0.05) in PER2 levels (29%), compared with the hearts of isocaloric diet-fed control rats. CONCLUSIONS Our novel findings implicate upregulations of CYP2E1/HO-1 and downregulation of the circadian rhythm cardioprotective protein PER2, in the heart, in the chronic deleterious diurnal cardiovascular effects of alcohol in male rats.
Collapse
Affiliation(s)
- Mohamed Katary
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
10
|
Abstract
This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body's circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO∙-, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| |
Collapse
|
11
|
Hühne A, Hoch E, Landgraf D. DAILY-A Personalized Circadian Zeitgeber Therapy as an Adjunctive Treatment for Alcohol Use Disorder Patients: Study Protocol for a Randomized Controlled Trial. Front Psychiatry 2020; 11:569864. [PMID: 33519541 PMCID: PMC7840704 DOI: 10.3389/fpsyt.2020.569864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/09/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Hallmarks of alcohol use disorder (AUD) are disturbances of circadian rhythms and everyday structures. While circadian rhythms dictate the timing of daily recurring activities such as sleep, activity, and meals, conversely, these activities represent time cues, so called Zeitgebers, that the circadian system uses to synchronize with the environment. Here we present a study protocol for our newly developed therapy approach for AUD patients, in which we take advantage of this mutual influence and stabilize and strengthen their circadian system by creating strict daily schedules for daily Zeitgeber activities. Since every person has a circadian system with its own characteristics and is subject to social obligations, the daily plans are personalized for each test person. Our hypothesis is that a regular exposure to Zeitgebers stabilizes behavioral and physiological circadian rhythms and thereby reduces the risk of alcohol relapses and depressive symptoms and facilitates physical recovery in AUD patients during the 1st weeks of their addiction therapy. Methods/design: The study is a 6-weeks single site trial with a controlled, randomized, single-blinded, parallel-group design including patients with a diagnosis of AUD. The study runs parallel to the standard addiction therapy of the clinic. Patients are randomly assigned to either an intervention group (DAILY) or a sham control group (placebo treatment). Questionnaires and physiological assessments of both groups are conducted before and immediately after the intervention or control treatment. According to our hypothesis, the primary outcomes of this study are improvements of regularity, alcohol consumption, and relapse rate in AUD patients compared to AUD patients receiving control treatment. Secondary outcomes are reduced depressive symptoms and increased physical recovery. Discussion: This study is a randomized controlled trial to investigate the efficacy of a personalized circadian Zeitgeber therapy as an adjunctive treatment for alcohol use disorder patients. The overall goal of this and more extended future studies is the development of an adjunctive therapy for AUD patients that is uncomplicated in its use and easy to implement in the clinical and everyday routine. Trial registration: This study is registered at the German Clinical Trial Register with the trial number DRKS00019093 on November 28, 2019.
Collapse
Affiliation(s)
- Anisja Hühne
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany.,Munich Medical Research School, Ludwig Maximilian University, Munich, Germany
| | - Eva Hoch
- Cannabinoid Research and Treatment Group, Division of Clinical Psychology and Psychological Treatment, Department of Psychology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
12
|
Bi-directional Acceleration of Alcohol Use and Opioid Use Disorder. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2019; 2019:236084. [PMID: 32440365 PMCID: PMC7241514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alcohol is the most widely used addictive substance. Severe alcohol abuse is diagnosed as "alcohol use disorder" (AUD). A common and harmful drinking pattern is binge drinking that elevates a person's blood alcohol concentration to ≥ 0.08%. Such drinking may be an early indicator of AUD. Opioid misuse and dependence have become worldwide crises. Patterned consumption of various opioids can develop into opioid use disorder (OUD). An intertwined epidemic exists between opioid abuse, alcohol addiction, and binge drinking. Currently, studies on the interaction of AUD and OUD are limited and the underlying mechanisms linking these disorders remains unclear. We reviewed studies on AUD and OUD and utilized Ingenuity Pathway Analysis (IPA) to identify mechanisms of AUD and OUD interaction and potential gene targets for therapeutic agents. According to IPA Canonical Pathways Analysis, Gamma-aminobutyric Acid (GABA) Receptor Signaling, Neuroinflammation Signaling Pathway, Opioid Signaling Pathway and Dopamine-DARPP32 Feedback in cAMP Signaling are potential contributors to the interaction of AUD and OUD.
Collapse
|
13
|
Zhao Y, Ge Y, Zheng ZL. Brain Imaging-Guided Analysis Reveals DNA Methylation Profiles Correlated with Insular Surface Area and Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:628-639. [PMID: 30830696 PMCID: PMC6443499 DOI: 10.1111/acer.13971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/26/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a wide-spread, heritable brain disease, but few studies have linked genetic variants or epigenetic factors to brain structures related to AUD in humans, due to many factors including the high-dimensional nature of imaging and genomic data. METHODS To provide potential insights into the links among epigenetic regulation, brain structure, and AUD, we have performed an integrative analysis of brain structural imaging and blood DNA methylome data from 52 AUD and 58 healthy control (HC) subjects collected in the Nathan Kline Institute-Rockland Sample. RESULTS We first found that AUD subjects had significantly larger insular surface area than HC in both left and right hemispheres. We then found that 7,827 DNA methylation probes on the HumanMethylation450K BeadChip had significant correlations with the right insular surface area (false discovery rate [FDR] < 0.05). Furthermore, we showed that 44 of the insular surface area-correlated methylation probes were also strongly correlated with AUD status (FDR < 0.05). These AUD-correlated probes are annotated to 36 protein-coding genes, with 16 genes (44%) having been reported by others to be related to AUD or alcohol response, including TAS2R16 and PER2. The remaining 20 genes, in particular ARHGAP22, might represent novel genes involved in AUD or responsive to alcohol. CONCLUSIONS We have identified 36 insular surface area- and AUD-correlated protein-coding genes that are either known to be AUD- or alcohol-related or not yet reported by prior studies. Therefore, our study suggests that the brain imaging-guided epigenetic analysis has a potential of identifying possible epigenetic mechanisms involved in AUD.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
- Center for Behavioral Science Research, Department of Health Policy & Health Services Research, Boston University, Boston, MA 02118, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| |
Collapse
|