1
|
Gholami-Zanjanbar M, Soleimanian F, Reyhani N, Hajizamani S, Sajadi AE, Ghofrani-Jahromi Z, Vaseghi S. Synaptophysin and GSK-3beta activity in the prefrontal cortex may underlie the effects of REM sleep deprivation and lithium on behavioral functions and memory performance in male rats. Pharmacol Biochem Behav 2024; 245:173894. [PMID: 39413852 DOI: 10.1016/j.pbb.2024.173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Rapid-eye movement (REM) stage of sleep serves a critical role in processing cognitive and behavioral functions. Evidence shows that REM sleep deprivation (REM SD) strongly affects the mood state and cognitive abilities. However, there are many inconsistent reports. Although the exact molecular mechanisms underlying REM SD effects have not well been discovered, however, molecular factors including those affected synaptic plasticity and mood state may be involved. There are two important molecular factors that have not been well studied: synaptophysin and glycogen synthase kinase-3 beta (GSK-3beta). The present study aimed to investigate the role of synaptophysin and GSK-3beta in the modulation of memory and behavioral changes induced by REM SD and lithium (as a potent GSK-3beta inhibitor and mood stabilizer). Multiple platform apparatus was used to induce REM SD for 48 h. Lithium was injected at the dose of 50 mg/kg, intraperitoneal (i.p.). Locomotor activity, anxiety-like behavior, pain threshold, novel object recognition memory, and synaptophysin and GSK-3beta level in the prefrontal cortex were evaluated. Results showed REM SD increased locomotor activity, decreased pain threshold, impaired novel object recognition memory, decreased synaptophysin and increased GSK-3beta levels. Lithium reversed these effects. Anxiety-like behavior was unaffected. For the first time, the present study showed that GSK-3beta and synaptophysin may be involved in the modulation of behavior and cognition induced by REM SD and lithium. In conclusion, we suggested that GSK-3beta upregulation and synaptophysin downregulation may underlie the deleterious effects of REM SD, while lithium may counteract REM SD effects via restoring the level of both.
Collapse
Affiliation(s)
| | | | - Niloufar Reyhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ghofrani-Jahromi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Abbasi N, Mirabzadeh Y, Khesali G, Ebrahimkhani Z, Karimi H, Vaseghi S. Chronic REM sleep deprivation leads to manic- and OCD-related behaviors, and decreases hippocampal BDNF expression in female rats. Psychopharmacology (Berl) 2024; 241:1345-1363. [PMID: 38430395 DOI: 10.1007/s00213-024-06566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors in rodents. On the other hand, lithium, as one of the oldest drugs used in neuropsychiatric disorders, is still one of the best drugs for the treatment and control of bipolar disorder. In this study, we aimed to investigate the role of chronic short-term REM SD in the induction of manic-like behaviors in female rats. METHODS The rats were exposed to REM SD for 14 days (6 hours/day). Lithium was intraperitoneally injected at the doses of 10, 50, and 100 mg/kg. RESULTS REM SD induced hyperactivity and OCD-like behavior, and decreased anxiety, depressive-like behavior, and pain subthreshold. REM SD also impaired passive avoidance memory and decreased hippocampal brain-derived neurotrophic factor (BDNF) expression level. Lithium at the doses of 50 and 100 mg/kg partly and completely abolished these effects, respectively. However, lithium (100 mg/kg) increased BDNF expression level in control and sham REM SD rats with no significant changes in behavior. CONCLUSIONS Chronic short-term REM SD may induce a mania-like model and lead to OCD-like behavior and irritability. In the present study, we demonstrated a putative rodent model of mania induced by chronic REM SD in female rats. We suggest that future studies should examine behavioral and mood changes following chronic REM SD in both sexes. Furthermore, the relationship between manic-like behaviors and chronic REM SD should be investigated.
Collapse
Affiliation(s)
- Nahal Abbasi
- Department of Health Psychology, Faculty of Medical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Golnaz Khesali
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ebrahimkhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
3
|
Matar D, Serhan A, El Bilani S, Faraj RA, Hadi BA, Fakhoury M. Psychopharmacological Approaches for Neural Plasticity and Neurogenesis in Major Depressive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:27-48. [PMID: 39261422 DOI: 10.1007/978-981-97-4402-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Major depressive disorder (MDD) is a mental health disorder associated with cognitive impairment, dysregulated appetite, fatigue, insomnia or hypersomnia, and severe mood changes that significantly impact the ability of the affected individual to perform day-to-day tasks, leading to suicide in the worst-case scenario. As MDD is becoming more prevalent, affecting roughly 300 million individuals worldwide, its treatment has become a major point of interest. Antidepressants acting as selective serotonin reuptake inhibitors (SSRIs) are currently used as the first line of treatment for MDD. Other antidepressants currently used for the treatment of MDD include the serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs). However, although effective in alleviating symptoms of MDD, most antidepressants require weeks or even months of regular administration prior to eliciting a rational clinical effect. Owing to the strong evidence showing a relationship between neural plasticity, neurogenesis, and MDD, researchers have also looked at the possibility of using treatment modalities that target these processes in an attempt to improve clinical outcome. The overarching aim of this chapter is to highlight the role of neural plasticity and neurogenesis in the pathophysiology of MDD and discuss the most recently studied treatment strategies that target these processes by presenting supporting evidence from both animal and human studies.
Collapse
Affiliation(s)
- Dina Matar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Aya Serhan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sabah El Bilani
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Rashel Abi Faraj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Bayan Ali Hadi
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
4
|
Su D, Jiang W, Yuan Q, Guo L, Liu Q, Zhang M, Kang C, Xiao C, Yang C, Li L, Xu C, Zhou T, Zhang J. Chronic exposure to aflatoxin B1 increases hippocampal microglial pyroptosis and vulnerability to stress in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114991. [PMID: 37172405 DOI: 10.1016/j.ecoenv.2023.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Chronic aflatoxin B1 (AFB1) exposure may increase the risk of multiple neuropsychiatric disorders. Stress is considered one of the main contributors to major depressive disorder. Whether and how chronic AFB1 exposure affects vulnerability to stress is unclear. METHODS Mice were exposed for three weeks to AFB1 (100 µg/kg/d) and/or chronic mild stress (CMS). The vulnerability behaviors in response to stress were assessed in the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST). Microglial pyroptosis was investigated using immunofluorescence, enzyme-linked immunosorbent assays, and western blot assay in the hippocampus of mice. Hippocampal neurogenesis and the effects of AFB1-treated microglia on proliferation and differentiation of neural stem/precursor cells (NSPCs) were assessed via immunofluorescence in the hippocampus of mice. RESULTS Mice exposed to CMS in the presence of AFB1 exhibited markedly greater vulnerability to stress than mice treated with CMS or AFB1 alone, as indicated by reduced sucrose preference and longer immobility time in the forced swimming test. Chronic aflatoxin B1 exposure resulted in changes in the microglial morphology and increase in TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. When mice were exposed to both CMS and AFB1, pyroptosis-related molecules (such as NLRP3, caspase-1, GSDMD-N, and interleukin-1β) were significantly upregulated in the hippocampus. These molecules were also significantly enhanced by AFB1 in primary microglial cultures. AFB1-treated mice showed decrease in the numbers of BrdU+, BrdU-DCX+, and BrdU-NeuN+ cells in the hippocampal dentate gyrus, as well as the percentages of BrdU+ cells that were NeuN+ in the presence or absence of CMS when compared with vehicle-treated mice. The combination of AFB1 and CMS exacerbated these effects to an even greater extent. The number of DCX+ cells correlated negatively with the percentage of ameboid microglia, TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. AFB1-treated microglia suppressed the proliferation and neuronal differentiation of NSPCs in vitro. CONCLUSION Chronic AFB1 exposure induces microglial pyroptosis, promoting an adverse neurogenic microenvironment that impairs hippocampal neurogenesis, which may render mice more vulnerable to stress.
Collapse
Affiliation(s)
- Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qingsong Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mengmeng Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chuangzhi Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chunyun Xu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
5
|
Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology 2023; 48:113-120. [PMID: 35810199 PMCID: PMC9700665 DOI: 10.1038/s41386-022-01370-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Activity-dependent synaptic plasticity is a ubiquitous property of the nervous system that allows neurons to communicate and change their connections as a function of past experiences. Through reweighting of synaptic strengths, the nervous system can remodel itself, giving rise to durable memories that create the biological basis for mental function. In healthy individuals, synaptic plasticity undergoes characteristic developmental and aging trajectories. Dysfunctional plasticity, in turn, underlies a wide spectrum of neuropsychiatric disorders including depression, schizophrenia, addiction, and posttraumatic stress disorder. From a mechanistic standpoint, synaptic plasticity spans the gamut of spatial and temporal scales, from microseconds to the lifespan, from microns to the entire nervous system. With the numbers and strengths of synapses changing on such wide scales, there is an important need to develop measurement techniques with complimentary sensitivities and a growing number of approaches are now being harnessed for this purpose. Through hemodynamic measures, structural and tracer imaging, and noninvasive neuromodulation, it is possible to image structural and functional changes that underlie synaptic plasticity and associated behavioral learning. Here we review the mechanisms of neural plasticity and the historical and future trends in techniques that allow imaging of synaptic changes that accompany psychiatric disorders, highlighting emerging therapeutics and the challenges and opportunities accompanying this burgeoning area of study.
Collapse
|
6
|
Chatterjee D, Beaulieu JM. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 2022; 15:1028963. [PMID: 36504683 PMCID: PMC9731798 DOI: 10.3389/fnmol.2022.1028963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3β, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.
Collapse
Affiliation(s)
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Oral administration of Lithium Chloride Ameliorate Spinal Cord Injury-Induced Hyperalgesia in Male Rats. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Tan X, Martin D, Lee J, Tor PC. The Impact of Electroconvulsive Therapy on Negative Symptoms in Schizophrenia and Their Association with Clinical Outcomes. Brain Sci 2022; 12:545. [PMID: 35624932 PMCID: PMC9139352 DOI: 10.3390/brainsci12050545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The treatment efficacy of electroconvulsive therapy (ECT) for negative symptoms amongst patients with schizophrenia remains unclear. In this study, we aim to examine the effects of ECT on negative symptoms in schizophrenia and their association with other clinical outcomes, including cognition and function. METHODS This is a retrospective data analysis of patients with schizophrenia/schizoaffective disorder treated with ECT at the Institute of Mental Health (IMH), Singapore, between January 2016 and December 2019. Clinical outcomes were assessed by the Brief Psychiatric Rating Scale (BPRS), the Montreal Cognitive Assessment (MoCA), and Global Assessment of Function (GAF). Changes in scores were compared with repeated measures analysis of variance. Sequential structural modelling was utilized to examine the pathway relationships between changes in negative symptoms, global functioning, and cognition functioning after ECT. RESULTS A total of 340 patients were analysed. Hence, 196 (57.6%), 53 (15.5%), and 91 (26.7%) showed improvements, no change, and deterioration in negative symptoms, respectively. ECT-induced improvement of negative symptoms was significantly associated with improvement of global functioning (direct effect correlation coefficient (r): -0.496; se: 0.152; p = 0.001) and cognition function (indirect effect r: -0.077; se: 0.037; p = 0.035). Moreover, having capacity to consent, more severe baseline negative symptoms, lithium prescription, and an indirect effect of voluntary admission status via consent capacity predicted ECT associated negative symptoms improvement. CONCLUSION ECT is generally associated with improvements of negative symptoms in people with schizophrenia, which correlate with improvements of overall function. Possible novel clinical predictors of negative symptom improvement have been identified and will require further research and validation.
Collapse
Affiliation(s)
- Xiaowei Tan
- Department of Mood Disorder and Anxiety, Institute of Mental Health, Singapore 539747, Singapore;
| | - Donel Martin
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031, Australia;
- Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore 539747, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Phern Chern Tor
- Department of Mood Disorder and Anxiety, Institute of Mental Health, Singapore 539747, Singapore;
- Neurostimulation Service, Institute of Mental Health, Singapore 539747, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
9
|
Tai SH, Huang SY, Chao LC, Lin YW, Huang CC, Wu TS, Shan YS, Lee AH, Lee EJ. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol Res 2022; 44:870-878. [PMID: 35348035 DOI: 10.1080/01616412.2022.2056817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity. METHODS Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting. RESULTS Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD. CONCLUSION Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain.Abbreviations: BDNF: brain-derived neurotrophic factor; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; GAP-43: growth-associated protein-43; GSK-3β: glycogen synthase kinase-3β; HBSS: Hank's balanced salt solution; LCBF: local cortical blood perfusion; LDF: laser-Doppler flowmetry; MCAO: middle cerebral artery occlusion; MMP: matrix metalloproteinase; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; OCT: optimal cutting temperature compound; OGD: oxygen-glucose deprivation; PSD-95: postsynaptic density-95; SDS: sodium dodecyl sulfate; SNAP-25: synaptosomal-associated protein-25; SSEP: somatosensory evoked potential.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chih Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Managing mood-related symptoms utilizing diet, targeted nutrient supplementation, and lifestyle changes: A case series. Explore (NY) 2021; 18:591-600. [PMID: 34654656 DOI: 10.1016/j.explore.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Office of Disease Prevention and Health Promotion reports that mental health disorders are one of the most "common causes of disability," affecting 18.1% of adults in the United States. This case series examines the use of diet, targeted nutrient supplementation with a focus on amino acids, and lifestyle interventions for the management of mood-related symptoms as a treatment option. CASE PRESENTATIONS The three cases included a personalized amino acid therapy protocol, nutrient cofactor supplementation, and diet and lifestyle recommendations. Clinical assessment questionnaires completed by the clients at intervals during care were used to determine proper amino acid dosing. The first client is a 65-year-old Caucasian male presenting with increased stress, anxiety, depression, and sleep disturbances. A marked decrease in symptoms was experienced three months. The second client is a 24-year-old Caucasian male presenting with concentration and memory impairment, anxiety and depression, food cravings leading to binge eating of carbohydrates, low sleep quality, and unsustainable energy. A substantial decrease in symptoms was achieved in under four months. The third client is a 23-year-old Caucasian male presenting with depression, easy agitation while ruminating on negative thoughts, difficulty focusing and making decisions, poor memory, concentration, and sleep quality, gaming addiction, and low energy and motivation. The client experienced considerable relief from all symptoms in under six months. CONCLUSION The case series demonstrated marked improvement in mood-related symptoms in as little as 3-6 months for three individuals utilizing amino acid therapy along with dietary, targeted nutrient supplementation, and lifestyle choices.
Collapse
|
11
|
Dalhuisen I, Ackermans E, Martens L, Mulders P, Bartholomeus J, de Bruijn A, Spijker J, van Eijndhoven P, Tendolkar I. Longitudinal effects of rTMS on neuroplasticity in chronic treatment-resistant depression. Eur Arch Psychiatry Clin Neurosci 2021; 271:39-47. [PMID: 32385741 PMCID: PMC7867550 DOI: 10.1007/s00406-020-01135-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is amongst the most prevalent of psychiatric disorders. Unfortunately, a third of patients will not respond to conventional treatments and suffer from treatment-resistant depression (TRD). Repetitive transcranial magnetic stimulation (rTMS) has been proven effective in treating TRD. The research suggests that rTMS acts via neuroplastic effects on the brain, which can be measured by changes in hippocampal and amygdala volume as well as cortical thickness. This sham-controlled study investigates longitudinal effects of rTMS on the volumes of the hippocampus and amygdala and cortical thickness in patients with chronic TRD. 31 patients received 20 sessions of high-frequency rTMS (N = 15) or sham treatment (N = 16) over the left dorsolateral prefrontal cortex during 4 consecutive weeks. Using structural magnetic resonance imaging, we investigated longitudinal treatment effects on hippocampus and amygdala volume as well as thickness of the paralimbic cortex. We found no clinical differences between the active and sham rTMS group. Longitudinal changes in hippocampal and amygdala volume did not differ significantly, although males showed a significant decrease in left amygdala volume, irrespective of treatment group. Changes in cortical thickness of the paralimbic cortex differed significantly between the active and sham groups. Most notably, the increase in cortical thickness of the isthmus of the left cingulate gyrus was greater in the active as compared to the sham rTMS group. Our data suggest that rTMS can induce neuroplastic changes, particularly in cortical thickness, independent of treatment response. We also found longitudinal changes in amygdala volume in males. For clinical effects to follow these neuroplastic effects, more intensive rTMS treatment might be needed in chronically depressed patients.Trial registration number: ISRCTN 15535800, registered on 29-06-2017.
Collapse
Affiliation(s)
- Iris Dalhuisen
- Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Donders Institute of Brain Cognition and Behavior, Centre for Neuroscience, PO Box 9104, 6500 HE, Nijmegen, The Netherlands.
| | - Eveline Ackermans
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB Nijmegen, The Netherlands ,grid.491369.00000 0004 0466 1666Pro Persona Mental Health Care, PO Box 7049, 6503 GM Nijmegen, The Netherlands
| | - Lieke Martens
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Mulders
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Joey Bartholomeus
- grid.415930.aDepartment of Psychiatry, Rijnstate Hospital, PO Box 9555, 6800 TA Arnhem, The Netherlands
| | - Alex de Bruijn
- grid.491369.00000 0004 0466 1666Pro Persona Mental Health Care, PO Box 7049, 6503 GM Nijmegen, The Netherlands ,Fundacion Salud Mental Respaldo, Caya Punta Brabo 17, Oranjestad, Aruba
| | - Jan Spijker
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB Nijmegen, The Netherlands ,grid.491369.00000 0004 0466 1666Pro Persona Mental Health Care, PO Box 7049, 6503 GM Nijmegen, The Netherlands ,grid.5590.90000000122931605Radboud University Behavioural Science Institute, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Philip van Eijndhoven
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute of Brain Cognition and Behavior, Centre for Neuroscience, PO Box 9104, 6500 HE Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Indira Tendolkar
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Huispost 961, PO Box 9101, 6500 HB Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute of Brain Cognition and Behavior, Centre for Neuroscience, PO Box 9104, 6500 HE Nijmegen, The Netherlands ,grid.410718.b0000 0001 0262 7331Department of Psychiatry and Psychotherapy, University Hospital Essen, Virchowstraße 174, 45147 Essen, Germany
| |
Collapse
|
12
|
Biological Targets Underlying the Antisuicidal Effects of Lithium. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Ciftci E, Karacay R, Caglayan A, Altunay S, Ates N, Altintas MO, Doeppner TR, Yulug B, Kilic E. Neuroprotective effect of lithium in cold- induced traumatic brain injury in mice. Behav Brain Res 2020; 392:112719. [PMID: 32479849 DOI: 10.1016/j.bbr.2020.112719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022]
Abstract
Apart from its well-established therapeutic activity on bipolar disorder and depression, lithium exerts neuroprotective activity upon neurodegenerative disorders, such as traumatic brain injury (TBI). However, the cellular signaling mechanisms mediating lithium's neuroprotective activity and long-term dose- and time-dependent effects on close and remote proximity are largely unknown. Herein, we tested prophylactic and acute effects of lithium (2 mmol/kg) after cold- induced TBI. In both conditions, treatments with lithium resulted in reduced infarct volume and apoptosis. Its acute treatment resulted in the increase of Akt, ERK-1/2 and GSK-3 α/β phosphoylations. Interestingly, its prophylactic treatment instead resulted in decreased phosphorylations of Akt, ERK-1/2, p38, JNK-1 moderately and GSK-3 α/β significantly. Then, we tested subacute (35-day follow-up) role of low (0.2 mmol/kg) and high dose (2 mmol/kg) lithium and revealed that high dose lithium group was the most mobile so the least depressed in the tail suspension test. Anxiety level was assessed by light-dark test, all groups' anxiety levels were decreased with time, but lithium had no effect on anxiety like behavior. When subacute effects of injury and drug treatment were evaluated on the defined brain regions, infarct volume was decreased in the high dose lithium group significantly. In contrast to other brain regions, hippocampal atrophies were observed in both lithium treatment groups, which were significant in the low dose lithium group in both hemispheres, which was associated with the reduced cell proliferation and neurogenesis. Our data demonstrate that lithium treatment protects neurons from TBI. However, long term particularly low-dose lithium causes hippocampal atrophy and decreased neurogenesis.
Collapse
Affiliation(s)
- Elvan Ciftci
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Reyda Karacay
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Aysun Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Serdar Altunay
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Nilay Ates
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Pharmacology, Istanbul, Turkey
| | - Mehmet O Altintas
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Thorsten R Doeppner
- University of Göttingen Medical School, Dept. of Neurology, Göttingen, Germany
| | - Burak Yulug
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Dept. of Neurology, Antalya, Turkey
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Faculty of Medicine, Dept. of Physiology, Istanbul, Turkey.
| |
Collapse
|
14
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
15
|
Vecchio D, Piras F, Piras F, Banaj N, Janiri D, Simonetti A, Sani G, Spalletta G. Lithium treatment impacts nucleus accumbens shape in bipolar disorder. Neuroimage Clin 2020; 25:102167. [PMID: 31972398 PMCID: PMC6974785 DOI: 10.1016/j.nicl.2020.102167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
The effects of lithium treatment duration on deep grey matter structures in bipolar disorder are not well known. In this cross-sectional neuroimaging case-control study, we tested the hypothesis that shape characteristics of deep grey matter structures in bipolar disorder are associated with the duration of lithium treatment and with clinical phenomenology. In a setting of neuropsychiatry outpatient clinic, we included 74 patients with bipolar disorder (BD) and 74 matched healthy control subjects (HC). Both groups underwent a Magnetic Resonance Imaging acquisition and an exhaustive assessment of clinical and psychiatrics dimensions. Shape measures of seven deep grey matter structures (hippocampus, amygdala, caudate, nucleus accumbens, putamen, globus pallidus and thalamus) were obtained from T1 weighted images in both groups, using FSL FIRST segmentation tool. The segmented structures were then analysed vertex-by-vertex with FSL Randomise tool. First, we investigated the presence of significant associations between the duration of lithium treatment and shape measures in BD sample. Then, for structures that resulted significantly associated with the duration of lithium treatment, comparisons between BD and HC were performed either considering the BD group as a whole or dividing it in three groups based on the duration of treatment (lithium drug-naïve, short and long treated). Any deformation uncovered by group comparisons was subsequently associated with depressive and hypomanic/manic symptoms. The relationship between structures shape and the duration of lithium treatment in BD sample was significant for bilateral nucleus accumbens. Specifically, significant bilateral extroflection effects, related to longer duration of lithium treatment, were found bilaterally over the surface shape of core accumbens nuclei (r2R-Accu-Core = 0.12, p = 0.016, r2L-Accu-Core = 0.1, p = 0.031). Moreover, introflection effect related to longer duration of treatment resulted over the shell of right accumbens (r2R-Accu-Shell = 0.17, p = 0.002). Nucleus accumbens shape did not differ between BD and HC considering BD group as a whole. By contrast, categorizing BD in subgroups as a function of the duration of lithium treatment revealed significant inward deformation on the core of left accumbens nucleus and outward deformation on the shell of the right accumbens nucleus in lithium-naive patients, compared to both patients with long duration of lithium treatment (pL-Accu-Core = 0.016, pR-Accu-Shell = 0.005) and HC (pL-Accu-Core = 0.002; pR-Accu-Shell = 0.005). Moreover, compared to HC, inward deformation on the core of the left accumbens surface was found for patients with short duration of treatment (pLAccu-Core = 0.027). Finally, measures of surface deformation on the core of left accumbens observed in the group comparison showed significant positive correlations with depressive symptoms severity, as assessed by the Hamilton Depression Rating Scale (total score: r2L-AccuCore = 0.07, p = 0.02, somatic score: r2L-Accu-Core = 0.1, p = 0.005) and Beck Hopelessness Scale (r2LAccu-Core = 0.05, p = 0.03). Findings demonstrate that lithium untreated BD patients are characterised by localized shape abnormalities in the nucleus accumbens. Lithium treatment could act modulating these morphometric features as part of its mechanism of action in mood stabilizing.
Collapse
Affiliation(s)
- Daniela Vecchio
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, Via Ardeatina 306, 00179 Rome, Italy
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, Via Ardeatina 306, 00179 Rome, Italy.
| | - Federica Piras
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, Via Ardeatina 306, 00179 Rome, Italy
| | - Nerisa Banaj
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, Via Ardeatina 306, 00179 Rome, Italy
| | - Delfina Janiri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Lucio Bini Mood Disorder Center, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Gabriele Sani
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Psychiatry, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy; Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, Via Ardeatina 306, 00179 Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Axonal iron transport in the brain modulates anxiety-related behaviors. Nat Chem Biol 2019; 15:1214-1222. [PMID: 31591566 DOI: 10.1038/s41589-019-0371-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/27/2019] [Indexed: 01/04/2023]
Abstract
Iron is essential for a broad range of biochemical processes in the brain, but the mechanisms of iron metabolism in the brain remain elusive. Here we show that iron functionally translocates among brain regions along specific axonal projections. We identified two pathways for iron transport in the brain: a pathway from ventral hippocampus (vHip) to medial prefrontal cortex (mPFC) to substantia nigra; and a pathway from thalamus (Tha) to amygdala (AMG) to mPFC. While vHip-mPFC transport modulates anxiety-related behaviors, impairment of Tha-AMG-mPFC transport did not. Moreover, vHip-mPFC iron transport is necessary for the behavioral effects of diazepam, a well-known anxiolytic drug. By contrast, genetic or pharmacological promotion of vHip-mPFC transport produced anxiolytic-like effects and restored anxiety-like behaviors induced by repeated restraint stress. Taken together, these findings provide key insights into iron metabolism in the brain and identify the mechanisms underlying iron transport in the brain as a potential target for development of novel anxiety treatments.
Collapse
|
17
|
Lithium, Stress, and Resilience in Bipolar Disorder: Deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord 2018; 233:92-99. [PMID: 29310970 DOI: 10.1016/j.jad.2017.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lithium is the lightest metal and the only mood stabilizer that has been used for over half a century for the treatment of bipolar disorder (BD). As a small ion, lithium is omnipresent, and consequently, its molecular mechanisms and targets are widespread. Currently, lithium is a crucial pharmacotherapy for the treatment of acute mood episodes, prophylactic therapy, and suicide prevention in BD. Besides, lithium blood level is the most widely used biomarker in clinical psychiatry. The concept of stress in BD characterizes short- and long-term deleterious effects at multiple levels (from genes to behaviors) and the ability to establish homeostatic regulatory mechanisms to either prevent or reverse these effects. Within this concept, lithium has consistently shown anti-stress effects, by normalizing components across several levels associated with BD-induced impairments in cellular resilience and plasticity. METHODS A literature search for biomarkers associated with lithium effects at multiple targets, with a particular focus on those related to clinical outcomes was performed. An extensive search of the published literature using PubMed, Medline and Google Scholar was performed. Example search terms included lithium, plasticity, stress, efficacy, and neuroimaging. Articles determined by the author to focus on lithium's impact on neural plasticity markers (central and periphery) and clinical outcomes were examined in greater depth. Relevant papers were evaluated, selected and included in this review. RESULTS Lithium induces neurotrophic and neuroprotective effects in a wide range of preclinical and translational models. Lithium's neurotrophic effects are related to the enhancement of cellular proliferation, differentiation, growth, and regeneration, whereas its neuroprotective effects limit the progression of neuronal atrophy or cell death following the onset of BD. Lithium's neurotrophic and neuroprotective effects seem most pronounced in the presence of pathology, which again supports its pivotal role as an active homeostatic regulator. LIMITATIONS Few studies associated with clinical outcomes. Due to space limitations, the author was unable to detail all findings, in special those originated from preclinical studies. CONCLUSIONS These results support a potential role for biomarkers involved in neuroprotection and activation of plasticity pathways in lithium's clinical response. Evidence supporting this model comes from results evaluating macroscopic and microscopic brain structure as well neurochemical findings in vivo from cellular to sub-synaptic (molecules and intracellular signaling) compartments using central and peripheral biomarkers. Challenges to precisely decipher lithium's biological mechanisms involved in its therapeutic profile include the complex nature of the illness and clinical subtypes, family history and comorbid conditions. In the context of personalized medicine, it is necessary to validate predictive biomarkers of response to lithium by designing longitudinal clinical studies during mood episodes and associated clinical dimensions in BD.
Collapse
|
18
|
Sani G, Simonetti A, Janiri D, Banaj N, Ambrosi E, De Rossi P, Ciullo V, Arciniegas DB, Piras F, Spalletta G. Association between duration of lithium exposure and hippocampus/amygdala volumes in type I bipolar disorder. J Affect Disord 2018; 232:341-348. [PMID: 29510351 DOI: 10.1016/j.jad.2018.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prior studies on the effects of lithium on limbic and subcortical gray matter volumes are mixed. It is possible that discrepant findings may be explained by the duration of lithium exposure. We investigated this issue in individuals with type I bipolar disorder (BP-I). METHODS Limbic and subcortical gray matter volume was measured using FreeSurfer in 60 subjects: 15 with BP-I without prior lithium exposure [no-exposure group (NE)]; 15 with BP-I and lithium exposure < 24 months [short-exposure group (SE)]; 15 with BP-I and lithium exposure > 24 months [long-exposure group (LE)]; and 15 healthy controls (HC). RESULTS No differences in limbic and subcortical gray matter volumes were found between LE and HC. Hippocampal and amygdalar volumes were larger bilaterally in both LE and HC when compared to NE. Amygdalar volumes were larger bilaterally in SE when compared to NE but did not differ from LE. Hippocampal volumes were smaller bilaterally in SE when compared to LE and HC but did not differ from NE. No between-group differences on subcortical gray matter or other limbic structure volumes were observed. LIMITATIONS Cross-sectional design and concurrent treatment with other medications limit attribution of between-group differences to lithium exposure alone. CONCLUSIONS The effect of lithium exposure on limbic and subcortical gray matter volumes appears to be time-dependent and relatively specific to the hippocampus and the amygdala, with short-term effects on the amygdala and long-term effects on both structures. These results support the clinical importance of long-term lithium treatment in BP-I.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Centro Lucio Bini, Rome, Italy; School of Medicine, Mood Disorder Program, Tufts University, Boston, MA, USA
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy; Centro Lucio Bini, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Delfina Janiri
- Psychiatry Residency Training Program, Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Nerisa Banaj
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Elisa Ambrosi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Pietro De Rossi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Valentina Ciullo
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy; Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Italy
| | - David B Arciniegas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gianfranco Spalletta
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy.
| |
Collapse
|
19
|
Joshi H, Sharma R, Prashar S, Ho J, Thomson S, Mishra R. Differential Expression of Synapsin I and II upon Treatment by Lithium and Valproic Acid in Various Brain Regions. Int J Neuropsychopharmacol 2018; 21:616-622. [PMID: 29618019 PMCID: PMC6007270 DOI: 10.1093/ijnp/pyy023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Due to the heterogeneity of psychiatric illnesses and overlapping mechanisms, patients with psychosis are differentially responsive to pharmaceutical drugs. In addition to having therapeutic effects for schizophrenia and bipolar disorder, antipsychotics and mood stabilizers have many clinical applications and are used unconventionally due to their direct and indirect effects on neurotransmitters. Synapsins, a family of neuronal phosphoproteins, play a key regulatory role in neurotransmitter release at synapses. In this study, we investigated the effects of mood stabilizers, lithium, and valproic acid on synapsin gene expression in the rat brain. METHODS Intraperitoneal injections of saline, lithium, and valproic acid were administered to male Sprague Dawley rats twice daily for 14 d, corresponding to their treatment group. Following decapitation and brain tissue isolation, mRNA was extracted from various brain regions including the hippocampus, striatum, prefrontal cortex, and frontal cortex. RESULTS Biochemical analysis revealed that lithium significantly increased gene expression of synapsin I in the striatum, synapsin IIa in the hippocampus and prefrontal cortex, and synapsin IIb in the hippocampus and striatum. Valproic acid significantly increased synapsin IIa in the hippocampus and prefrontal cortex, as well as synapsin IIb in the hippocampus and striatum. CONCLUSION These significant changes in synapsin I and II expression may implicate a common transcription factor, early growth response 1, in its mechanistic pathway. Overall, these results elucidate mechanisms through which lithium and valproic acid act on downstream targets compared with antipsychotics and provide deeper insight on the involvement of synaptic proteins in treating neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Hetshree Joshi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Roohie Sharma
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Shreya Prashar
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Joella Ho
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sharon Thomson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Ram Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada,Correspondence: Ram K. Mishra, PhD, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main St W. Hamilton, ON L8S 4L8 Canada ()
| |
Collapse
|
20
|
Kim YK, Na KS. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28648568 DOI: 10.1016/j.pnpbp.2017.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mood disorders are a highly prevalent group of mental disorders causing substantial socioeconomic burden. There are various methodological approaches for identifying the underlying mechanisms of the etiology, symptomatology, and therapeutics of mood disorders; however, neuroimaging studies have provided the most direct evidence for mood disorder neural substrates by visualizing the brains of living individuals. The prefrontal cortex, hippocampus, amygdala, thalamus, ventral striatum, and corpus callosum are associated with depression and bipolar disorder. Identifying the distinct and common contributions of these anatomical regions to depression and bipolar disorder have broadened and deepened our understanding of mood disorders. However, the extent to which neuroimaging research findings contribute to clinical practice in the real-world setting is unclear. As traditional or non-machine learning MRI studies have analyzed group-level differences, it is not possible to directly translate findings from research to clinical practice; the knowledge gained pertains to the disorder, but not to individuals. On the other hand, a machine learning approach makes it possible to provide individual-level classifications. For the past two decades, many studies have reported on the classification accuracy of machine learning-based neuroimaging studies from the perspective of diagnosis and treatment response. However, for the application of a machine learning-based brain MRI approach in real world clinical settings, several major issues should be considered. Secondary changes due to illness duration and medication, clinical subtypes and heterogeneity, comorbidities, and cost-effectiveness restrict the generalization of the current machine learning findings. Sophisticated classification of clinical and diagnostic subtypes is needed. Additionally, as the approach is inevitably limited by sample size, multi-site participation and data-sharing are needed in the future.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
21
|
Saito S, Fujii K, Ozeki Y, Ohmori K, Honda G, Mori H, Kato K, Kuroda J, Aoki A, Asahi H, Sato H, Shimoda K, Akiyama K. Cognitive function, treatment response to lithium, and social functioning in Japanese patients with bipolar disorder. Bipolar Disord 2017; 19:552-562. [PMID: 28691278 DOI: 10.1111/bdi.12521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Patients with bipolar disorder often suffer from cognitive impairment that significantly influences their functional outcome. However, it remains unknown whether lithium has a central role in cognition and functional outcome. We examined whether cognition and functional outcome were predicted by demographic and clinical variables, including the response to lithium, in lithium-treated patients with bipolar disorder. METHODS We evaluated 96 lithium-treated euthymic patients with bipolar disorder and 196 age- and-gender-matched healthy controls, using the Brief Assessment of Cognition in Schizophrenia (BACS). The patients were also assessed using the Social Functioning Scale (SFS) and "The Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" (Alda) scale, which was evaluated as either a continuous measure of the total scale or a dichotomous criterion. RESULTS Multiple regression analysis revealed two key findings: first, that the premorbid intelligence quotient, age, and number of mood episodes were predictors of the BACS composite score; and, second, that the BACS composite score, negative symptoms, and continuous measure on the total Alda scale (but not its dichotomy) predicted the total SFS score. Structural equation modeling (SEM) was used to confirm these findings, and additionally revealed that the Alda scale was significantly associated with negative symptoms and also the number of mood episodes, regardless of how it was evaluated. CONCLUSIONS SEM delineated how demographic and clinical variables, cognitive performance, and response to lithium treatment were causally associated with, and converged on, social function. The putative role of the Alda scale for social function warrants further study.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan.,Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Kumiko Fujii
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Yuji Ozeki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Kenichi Ohmori
- Shiseikai, Takizawa Hospital, Utsunomiya, Tochigi, Japan
| | - Gyo Honda
- Seiseido Kohseikai, Mori Hospital, Utsunomiya, Tochigi, Japan
| | - Harunobu Mori
- Seiseido Kohseikai, Mori Hospital, Utsunomiya, Tochigi, Japan
| | - Kazuko Kato
- Sakura La Mental Clinic, Utsunomiya, Tochigi, Japan
| | | | - Akiko Aoki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | | | | | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
22
|
Characterization of plasma metal profiles in Alzheimer's disease using multivariate statistical analysis. PLoS One 2017; 12:e0178271. [PMID: 28719622 PMCID: PMC5515399 DOI: 10.1371/journal.pone.0178271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/10/2017] [Indexed: 12/04/2022] Open
Abstract
The exact cause of Alzheimer’s disease (AD) and the role of metals in its etiology remain unclear. We have used an analytical approach, based on inductively coupled plasma mass spectrometry coupled with multivariate statistical analysis, to study the profiles of a wide range of metals in AD patients and healthy controls. AD cannot be cured and the lack of sensitive biomarkers that can be used in the early stages of the disease may contribute to this treatment failure. In the present study, we measured plasma levels of amyloid-β1–42(0.142±0.029μg/L)and furin(2.292±1.54μg/L), together with those of the metalloproteinases, insulin-degrading enzyme(1.459±1.14μg/L) and neprilysin(0.073±0.015μg/L), in order to develop biomarkers for AD. Partial least squares discriminant analysis models were used to refine intergroup differences and we discovered that four metals(Mn, Al, Li, Cu) in peripheral blood were strongly associated with AD. Aberration in homeostasis of these metals may alter levels of proteinases, such as furin, which are associated with neurodegeneration in AD and can be a used as plasma-based biomarkers.
Collapse
|
23
|
Amiri S, Haj-Mirzaian A, Amini-Khoei H, Shirzadian A, Rahimi-Balaei M, Razmi A, Bergen H, Rastegar M, Kordjazy N, Haj-Mirzaian A, Ejtemai-Mehr S, Dehpour AR. Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system. Epilepsy Behav 2016; 61:6-13. [PMID: 27232376 DOI: 10.1016/j.yebeh.2016.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
In this study, we tested whether acute administration of lithium mitigates the deleterious effect of adolescent social isolation stress (SIS) on seizure susceptibility. In comparison with socially conditioned (SC) mice, isolated conditioned (IC) mice exhibited an increase in seizure susceptibility to pentylenetetrazole. Acute administration of lithium (10mg/kg) reversed the proconvulsant effect of SIS in IC mice, but this effect was not observed in SC mice. Coadministration of subthreshold doses of lithium (3mg/kg) with nitric oxide synthase (NOS) inhibitors reversed the effect of SIS on seizure susceptibility and decreased hippocampal nitrite levels in IC animals. In addition, a subthreshold dose of a nitric oxide precursor reduced the protective effect of lithium on seizure susceptibility and increased nitrite levels in the hippocampus of IC mice. These results suggest that lithium exerts a protective influence against the proconvulsant effect of adolescent SIS via a nitrergic system that includes activation of neuronal NOS in the hippocampus.
Collapse
Affiliation(s)
- Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemai-Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Lithium ions in nanomolar concentration modulate glycine-activated chloride current in rat hippocampal neurons. Neurochem Int 2016; 94:67-73. [DOI: 10.1016/j.neuint.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
|
25
|
Haj-Mirzaian A, Amiri S, Kordjazy N, Momeny M, Razmi A, Rahimi-Balaei M, Amini-Khoei H, Haj-Mirzaian A, Marzban H, Mehr S, Ghaffari S, Dehpour A. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic–pituitary–adrenal axis function. Neuroscience 2016; 315:271-85. [DOI: 10.1016/j.neuroscience.2015.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
26
|
Dell'Osso L, Del Grande C, Gesi C, Carmassi C, Musetti L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr Dis Treat 2016; 12:1687-703. [PMID: 27468233 PMCID: PMC4946830 DOI: 10.2147/ndt.s106479] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules. Furthermore, positive effects of lithium on neurogenesis, brain remodeling, angiogenesis, mesenchymal stem cells functioning, and inflammation have been revealed, with a key role played through the inhibition of the glycogen synthase kinase-3, a serine/threonine kinase implicated in the pathogenesis of many neuropsychiatric disorders. These recent evidences suggest the potential utility of lithium in the treatment of neurodegenerative diseases, neurodevelopmental disorders, and hypoxic-ischemic/traumatic brain injury, with positive results at even lower lithium doses than those traditionally considered to be antimanic. The aim of this review is to briefly summarize the potential benefits of lithium salts on neuroprotection and neuroregeneration, emphasizing preclinical and clinical evidence suggesting new therapeutic potentials of this drug beyond its mood stabilizing properties.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Grande
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camilla Gesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Musetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Kessing LV. Treatment Options in Bipolar Disorder: Lessons from Population-Based Registers with Focus on Lithium. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40501-015-0047-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 2015; 20:661-70. [PMID: 25687772 PMCID: PMC5125816 DOI: 10.1038/mp.2015.4] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 01/09/2023]
Abstract
After decades of research, the mechanism of action of lithium in preventing recurrences of bipolar disorder remains only partially understood. Lithium research is complicated by the absence of suitable animal models of bipolar disorder and by having to rely on in vitro studies of peripheral tissues. A number of distinct hypotheses emerged over the years, but none has been conclusively supported or rejected. The common theme emerging from pharmacological and genetic studies is that lithium affects multiple steps in cellular signaling, usually enhancing basal and inhibiting stimulated activities. Some of the key nodes of these regulatory networks include GSK3 (glycogen synthase kinase 3), CREB (cAMP response element-binding protein) and Na(+)-K(+) ATPase. Genetic and pharmacogenetic studies are starting to generate promising findings, but remain limited by small sample sizes. As full responders to lithium seem to represent a unique clinical population, there is inherent value and need for studies of lithium responders. Such studies will be an opportunity to uncover specific effects of lithium in those individuals who clearly benefit from the treatment.
Collapse
|
29
|
Lijffijt M, Rourke ED, Swann AC, Zunta-Soares GB, Soares JC. Illness-course modulates suicidality-related prefrontal gray matter reduction in women with bipolar disorder. Acta Psychiatr Scand 2014; 130:374-87. [PMID: 25039251 DOI: 10.1111/acps.12314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Explore interrelationships between suicide attempt history (Objective 1) or suicide attempt severity (Objective 2) with prefrontal cortex gray matter (PFCGM ) volume and illness-course in patients with bipolar disorder (BD). METHOD Ninety-three women with BD-I or -II diagnosis (51 with and 42 without suicide attempt history) underwent structural MRI and filled out questionnaires. Measured were GM volumes of 11 PFC regions, BD illness-course, and attempt history and severity. Effects were examined with repeated measures GLM or logit analyses. RESULTS Objective 1: Attempt history was associated with increased trait impulsivity and aggression, and higher prevalence of BD-I, past drug use disorder, and past psychiatric hospitalization. PFCGM volume was lower in patients with than without attempt history in those with past psychiatric hospitalization. PFCGM volume was higher in patients with than without attempt history in those without hospitalization. Higher trait aggression predicted attempt history. Objective 2: Increased frontal pole volume and younger age at first hospitalization predicted many suicide attempts. CONCLUSION Attempt history in patients with BD related to PFCGM volume reduction or increase. Volume modulation by psychiatric hospitalization could reflect effects of illness-course or care. Attempt severity was not related to volume reduction. Research on suicidality-brain relationships should include illness-course and attempt severity measures.
Collapse
Affiliation(s)
- M Lijffijt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
About one-third of lithium-treated, bipolar patients are excellent lithium responders; that is, lithium monotherapy totally prevents further episodes of bipolar disorder for ten years and more. These patients are clinically characterized by an episodic clinical course with complete remission, a bipolar family history, low psychiatric comorbidity, mania-depression episode sequences, a moderate number of episodes, and a low number of hospitalizations in the pre-lithium period. Recently, it has been found that temperamental features of hypomania (a hyperthymic temperament) and a lack of cognitive disorganization predict the best results of lithium prophylaxis. Lithium exerts a neuroprotective effect, in which increased expression of brain-derived neurotrophic factor (BDNF) and inhibition of the glycogen synthase kinase-3 (GSK-3) play an important role. The response to lithium has been connected with the genotype of the BDNF gene and serum BDNF levels. A better response to lithium is connected with the Met allele of the BDNF Val/Met polymorphism, as is a hyperthymic temperament. Excellent lithium responders have normal cognitive functions and serum BDNF levels, even after long-term duration of the illness. The preservation of cognitive functions in long-term lithium-treated patients may be connected with the stimulation of the BDNF system, with the resulting prevention of affective episodes exerting deleterious cognitive effects, and possibly also with lithium's antiviral effects. A number of candidate genes that are related to neurotransmitters, intracellular signaling, neuroprotection, circadian rhythms, and other pathogenic mechanisms of bipolar disorder were found to be associated with the lithium prophylactic response. The Consortium on Lithium Genetics (ConLiGen) has recently performed the first genome-wide association study on the lithium response in bipolar disorder.
Collapse
|
31
|
Weisenbach SL, Marshall D, Weldon AL, Ryan KA, Vederman AC, Kamali M, Zubieta JK, McInnis MG, Langenecker SA. The double burden of age and disease on cognition and quality of life in bipolar disorder. Int J Geriatr Psychiatry 2014; 29:952-61. [PMID: 24677268 DOI: 10.1002/gps.4084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Bipolar disorder (BPD) and normal aging are known to impact cognitive skills and health-related quality of life (HRQOL). This study investigated how aging and disease interact in predicting cognitive and psychosocial outcomes. METHODS Eight cognitive and ten subjective HRQOL domain ratings were measured. Subjects included 80 young (18-29 years) and late middle-aged (50-65 years) BPD patients in the euthymic phase and 70 age-equivalent healthy comparison participants. RESULTS An age X disease interaction was detected in three domains of cognitive functioning that reflect emotion processing, processing speed, and executive functioning skills, with BPD patients in the older group performing most poorly. There was a double burden of aging and disease on reported ability to perform physical tasks. However, regardless of age, disease status was associated with lower ratings of HRQOL in the psychosocial/affective sphere and the majority of cognitive domains. Post hoc analyses revealed that number of years ill was positively associated with select HRQOL ratings in older, but not younger BPD adults. CONCLUSIONS These findings may stimulate future longitudinal study of cognition and quality of life in BPD patients across the life span, focusing on additive and interactive effects of aging and disease burden, which could culminate in developing more effective treatment and rehabilitation strategies for this traditionally challenging to treat population.
Collapse
Affiliation(s)
- Sara L Weisenbach
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND No study has investigated when preventive treatment with lithium should be initiated in bipolar disorder. AIMS To compare response rates among patients with bipolar disorder starting treatment with lithium early v. late. METHOD Nationwide registers were used to identify all patients with a diagnosis of bipolar disorder in psychiatric hospital settings who were prescribed lithium during the period 1995-2012 in Denmark (n = 4714). Lithium responders were defined as patients who, following a stabilisation lithium start-up period of 6 months, continued lithium monotherapy without being admitted to hospital. Early v. late intervention was defined in two ways: (a) start of lithium following first contact; and (b) start of lithium following a diagnosis of a single manic/mixed episode. RESULTS Regardless of the definition used, patients who started lithium early had significantly decreased rates of non-response to lithium compared with the rate for patients starting lithium later (adjusted analyses: first v. later contact: P<0.0001; hazard ratio (HR) = 0.87, 95% CI 0.76-0.91; single manic/mixed episode v. bipolar disorder: P<0.0001; HR = 0.75, 95% CI 0.67-0.84). CONCLUSIONS Starting lithium treatment early following first psychiatric contact or a single manic/mixed episode is associated with increased probability of lithium response.
Collapse
Affiliation(s)
- Lars Vedel Kessing
- Lars Vedel Kessing, MD, DMSc, Psychiatric Center Copenhagen, Department O, and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Eleni Vradi, MSc, Per Kragh Andersen, MSc, PhD, DMSc, Department of Biostatistics, University of Copenhagen, Denmark
| | - Eleni Vradi
- Lars Vedel Kessing, MD, DMSc, Psychiatric Center Copenhagen, Department O, and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Eleni Vradi, MSc, Per Kragh Andersen, MSc, PhD, DMSc, Department of Biostatistics, University of Copenhagen, Denmark
| | - Per Kragh Andersen
- Lars Vedel Kessing, MD, DMSc, Psychiatric Center Copenhagen, Department O, and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Eleni Vradi, MSc, Per Kragh Andersen, MSc, PhD, DMSc, Department of Biostatistics, University of Copenhagen, Denmark
| |
Collapse
|
33
|
Dual regulation of G proteins and the G-protein-activated K+ channels by lithium. Proc Natl Acad Sci U S A 2014; 111:5018-23. [PMID: 24639496 DOI: 10.1073/pnas.1316425111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lithium (Li(+)) is widely used to treat bipolar disorder (BPD). Cellular targets of Li(+), such as glycogen synthase kinase 3β (GSK3β) and G proteins, have long been implicated in BPD etiology; however, recent genetic studies link BPD to other proteins, particularly ion channels. Li(+) affects neuronal excitability, but the underlying mechanisms and the relevance to putative BPD targets are unknown. We discovered a dual regulation of G protein-gated K(+) (GIRK) channels by Li(+), and identified the underlying molecular mechanisms. In hippocampal neurons, therapeutic doses of Li(+) (1-2 mM) increased GIRK basal current (Ibasal) but attenuated neurotransmitter-evoked GIRK currents (Ievoked) mediated by Gi/o-coupled G-protein-coupled receptors (GPCRs). Molecular mechanisms of these regulations were studied with heterologously expressed GIRK1/2. In excised membrane patches, Li(+) increased Ibasal but reduced GPCR-induced GIRK currents. Both regulations were membrane-delimited and G protein-dependent, requiring both Gα and Gβγ subunits. Li(+) did not impair direct activation of GIRK channels by Gβγ, suggesting that inhibition of Ievoked results from an action of Li(+) on Gα, probably through inhibition of GTP-GDP exchange. In direct binding studies, Li(+) promoted GPCR-independent dissociation of Gαi(GDP) from Gβγ by a Mg(2+)-independent mechanism. This previously unknown Li(+) action on G proteins explains the second effect of Li(+), the enhancement of GIRK's Ibasal. The dual effect of Li(+) on GIRK may profoundly regulate the inhibitory effects of neurotransmitters acting via GIRK channels. Our findings link between Li(+), neuronal excitability, and both cellular and genetic targets of BPD: GPCRs, G proteins, and ion channels.
Collapse
|
34
|
Pfaender S, Grabrucker AM. Characterization of biometal profiles in neurological disorders. Metallomics 2014; 6:960-77. [DOI: 10.1039/c4mt00008k] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the findings on dysregulation of metal ions in neurological diseases and tries to develop and predict specific biometal profiles.
Collapse
Affiliation(s)
| | - Andreas M. Grabrucker
- Institute for Anatomy and Cell Biology
- Ulm University
- Ulm, Germany
- WG Molecular Analysis of Synaptopathies
- Neurology Dept
| |
Collapse
|