1
|
Dagher M, Alayoubi M, Sigal GH, Cahill CM. Unveiling the link between chronic pain and misuse of opioids and cannabis. J Neural Transm (Vienna) 2024; 131:563-580. [PMID: 38570361 DOI: 10.1007/s00702-024-02765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Over 50 million Americans endure chronic pain where many do not receive adequate treatment and self-medicate to manage their pain by taking substances like opioids and cannabis. Research has shown high comorbidity between chronic pain and substance use disorders (SUD) and these disorders share many common neurobiological underpinnings, including hypodopaminergic transmission. Drugs commonly used for self-medication such as opioids and cannabis relieve emotional, bothersome components of pain as well as negative emotional affect that perpetuates misuse and increases the risk of progressing towards drug abuse. However, the causal effect between chronic pain and the development of SUDs has not been clearly established. In this review, we discuss evidence that affirms the proposition that chronic pain is a risk factor for the development of opioid and cannabis use disorders by outlining the clinical evidence and detailing neurobiological mechanisms that link pain and drug misuse. Central to the link between chronic pain and opioid and cannabis misuse is hypodopaminergic transmission and the modulation of dopamine signaling in the mesolimbic pathway by opioids and cannabis. Moreover, we discuss the role of kappa opioid receptor activation and neuroinflammation in the context of dopamine transmission, their contribution to opioid and cannabis withdrawal, along with potential new treatments.
Collapse
Affiliation(s)
- Merel Dagher
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
| | - Myra Alayoubi
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gabriella H Sigal
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA.
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Zhu Y, Wang K, Ma T, Ji Y, Lou Y, Fu X, Lu Y, Liu Y, Dang W, Zhang Q, Yin F, Wang K, Yu B, Zhang H, Lai J, Wang Y. Nucleus accumbens D1/D2 circuits control opioid withdrawal symptoms in mice. J Clin Invest 2023; 133:e163266. [PMID: 37561576 PMCID: PMC10503809 DOI: 10.1172/jci163266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
The nucleus accumbens (NAc) is the most promising target for drug use disorder treatment. Deep brain stimulation (DBS) of NAc is effective for drug use disorder treatment. However, the mechanisms by which DBS produces its therapeutic effects remain enigmatic. Here, we define a behavioral cutoff criterion to distinguish depressive-like behaviors and non-depressive-like behaviors in mice after morphine withdrawal. We identified a basolateral amygdala (BLA) to NAc D1 medium spiny neuron (MSN) pathway that controls depressive-like behaviors after morphine withdrawal. Furthermore, the paraventricular nucleus of thalamus (PVT) to NAc D2 MSN pathway controls naloxone-induced acute withdrawal symptoms. Optogenetically induced long-term potentiation with κ-opioid receptor (KOR) antagonism enhanced BLA to NAc D1 MSN signaling and also altered the excitation/inhibition balance of NAc D2 MSN signaling. We also verified that a new 50 Hz DBS protocol reversed morphine withdrawal-evoked abnormal plasticity in NAc. Importantly, this refined DBS treatment effectively alleviated naloxone-induced withdrawal symptoms and depressive-like behaviors and prevented stress-induced reinstatement. Taken together, the results demonstrated that input- and cell type-specific synaptic plasticity underlies morphine withdrawal, which may lead to novel targets for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Kejia Wang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Ji
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yin Lou
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyu Fu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Ye Lu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yige Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Wei Dang
- The Sixth Ward, Xi’an Mental Health Center, Xi’an, China
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Fangyuan Yin
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Kena Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Bing Yu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hongbo Zhang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Jianghua Lai
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
| | - Yunpeng Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi’an Jiaotong University, Xi’an, China
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Estave PM, Sun H, Peck EG, Holleran KM, Chen R, Jones SR. Cocaine self-administration augments kappa opioid receptor system-mediated inhibition of dopamine activity in the mesolimbic dopamine system. IBRO Neurosci Rep 2023; 14:129-137. [PMID: 36748012 PMCID: PMC9898071 DOI: 10.1016/j.ibneur.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Prior studies examining the effects of cocaine on the dynorphin/kappa opioid receptor (Dyn/KOR) system primarily focus on non-contingent cocaine exposure, but the effects of self-administration, which more closely reflects human drug-taking behaviors, are not well studied. In this study we characterized the effects of escalated intravenous cocaine self-administration on the functional state of the Dyn/KOR system and its interaction with mesolimbic dopamine signaling. Rats self-administered cocaine in an extended access, limited intake cocaine procedure, in which animals obtained 40 infusions per day (1.5 mg/kg/inf) for 5 consecutive days to ensure comparable consumption levels. Following single day tests of cue reactivity and progressive ratio responding, quantitative real-time polymerase chain reaction was used to measure levels of Oprk and Pdyn transcripts in the ventral tegmental area and nucleus accumbens. Additionally, after self-administration, ex vivo fast-scan cyclic voltammetry in the NAc was used to examine the ability of the KOR agonist U50,488 to inhibit dopamine release. We found that KOR-induced inhibition of dopamine release was enhanced in animals that self-administered cocaine compared to controls, suggesting upregulated Dyn/KOR activity after cocaine self-administration. Furthermore, expression levels of Pdyn in the nucleus accumbens and ventral tegmental area, and Oprk in the nucleus accumbens, were elevated in cocaine animals compared to controls. Additionally, Pdyn expression in the nucleus accumbens was negatively correlated with progressive ratio breakpoints, a measure of motivation to self-administer cocaine. Overall, these data suggest that cocaine self-administration elevates KOR/Dyn system activity in the mesolimbic dopamine pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara R. Jones
- Correspondence to: Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
4
|
Metz VG, da Rosa JLO, Rossato DR, Burger ME, Pase CS. Cannabidiol treatment prevents drug reinstatement and the molecular alterations evoked by amphetamine on receptors and enzymes from dopaminergic and endocannabinoid systems in rats. Pharmacol Biochem Behav 2022; 218:173427. [PMID: 35810923 DOI: 10.1016/j.pbb.2022.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
5
|
Brice-Tutt AC, Eans SO, Yakovlev D, Aldrich JV, McLaughlin JP. An analog of [d-Trp]CJ-15,208 exhibits kappa opioid receptor antagonism following oral administration and prevents stress-induced reinstatement of extinguished morphine conditioned place preference. Pharmacol Biochem Behav 2022; 217:173405. [PMID: 35584724 DOI: 10.1016/j.pbb.2022.173405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/26/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Opioid use disorder (OUD) relapse rates are discouragingly high, underscoring the need for new treatment options. The macrocyclic tetrapeptide natural product CJ-15,208 and its stereoisomer [d-Trp]CJ-15,208 demonstrate kappa opioid receptor (KOR) antagonist activity upon oral administration which prevents stress-induced reinstatement of cocaine-seeking behavior. In order to further explore the structure-activity relationships and expand the potential therapeutic applications of KOR antagonism for the treatment of OUD, we screened a series of 24 analogs of [d-Trp]CJ-15,208 with the goal of enhancing KOR antagonist activity. From this screening, analog 22 arose as a compound of interest, demonstrating dose-dependent KOR antagonism after central and oral administration lasting at least 2.5 h. In further oral testing, analog 22 lacked respiratory, locomotor, or reinforcing effects, consistent with the absence of opioid agonism. Pretreatment with analog 22 (30 mg/kg, p.o.) prevented stress-induced reinstatement of extinguished morphine conditioned place preference and reduced some signs of naloxone-precipitated withdrawal in mice physically dependent on morphine. Collectively, these data support the therapeutic potential of KOR antagonists to support abstinence in OUD and ameliorate opioid withdrawal.
Collapse
Affiliation(s)
- Ariana C Brice-Tutt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Dmitry Yakovlev
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
6
|
Estave PM, Spodnick MB, Karkhanis AN. KOR Control over Addiction Processing: An Exploration of the Mesolimbic Dopamine Pathway. Handb Exp Pharmacol 2022; 271:351-377. [PMID: 33301050 PMCID: PMC8192597 DOI: 10.1007/164_2020_421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug addiction is a complex, persistent, and chronically relapsing neurological disorder exacerbated by acute and chronic stress. It is well known that the dynorphin/kappa opioid receptor (KOR) system regulates stress perception and responsivity, while the mesolimbic dopamine system plays a role in reward and reinforcement associated with alcohol and substance use disorders. Interestingly, the dopamine and dynorphin/KOR systems are highly integrated in mesolimbic areas, with KOR activation leading to inhibition of dopamine release, further altering the perception of reinforcing and aversive stimuli. Chronic or repeated exposure to stress or drugs potentiates KOR function ultimately contributing to a hypodopaminergic state. This hypodopaminergic state is one of the hallmarks of hyperkatifeia, defined as the hypersensitivity to emotional distress that is exacerbated during drug withdrawal and abstinence. The relationship between stress and drug addiction is bidirectional; repeated/chronic stress promotes pro-addictive behaviors, and repeated cycles of drug exposure and withdrawal, across various drug classes, produces stress. Neuroadaptations driven by this bidirectional relationship ultimately influence the perception of the reinforcing value of rewarding stimuli. In this chapter, we address the involvement of the dopamine and dynorphin/KOR systems and their interactions in shaping reinforcement value processing after drug and stress exposure, as well as a combinatorial impact of both drugs and stress.
Collapse
Affiliation(s)
- Paige M Estave
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary B Spodnick
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA
| | - Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, Binghamton, NY, USA.
| |
Collapse
|
7
|
Robertson SH, Jutkiewicz EM. Effects of food restriction on the conditioned reinforcing properties of an opioid-associated stimulus. Behav Pharmacol 2021; 32:505-514. [PMID: 34320518 PMCID: PMC8373806 DOI: 10.1097/fbp.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Food restriction promotes drug self-administration; however, the effects of food restriction on the conditioned reinforcing properties of drug-associated stimuli are less clear. We tested the extent to which food restriction modified the conditioned reinforcing properties of a remifentanil-associated stimulus following conditioning with 3.2 or 1.0 μg/kg/infusion of remifentanil. First, we provided restricted (20 g/day standard chow) or ad libitum access to standard chow to rats. Second, within each feeding condition, we exposed rats to 20 intravenous infusions of remifentanil and 20 stimulus presentations that were delivered response independently each day for 5 days. For the experimental group (paired Pavlovian), the remifentanil infusions and stimulus presentations were delivered concurrently. The control group (random control) received the same number of infusions and stimulus presentations, but were not paired. For 28 sessions, we tested the extent to which the stimulus functioned as a conditioned reinforcer by allowing rats to freely respond for presentations of the remifentanil-associated stimulus. Following conditioning with 3.2 μg/kg/infusion of remifentanil, we found that rats that in the Paired Pavlovian group responded for the remifentanil-associated stimulus significantly more than rats in the Random control group, regardless of feeding condition. Following conditioning with 1.0 μg/kg/infusion of remifentanil, the remifentanil-associated stimulus was not associated with conditioned reinforcing properties, regardless of feeding condition. These findings confirm previous research demonstrating that a remifentanil-associated stimulus takes on conditioned reinforcing properties in a dose-dependent manner.
Collapse
Affiliation(s)
- Stephen H Robertson
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
8
|
Martin EL, Doncheck EM, Reichel CM, McRae-Clark AL. Consideration of sex as a biological variable in the translation of pharmacotherapy for stress-associated drug seeking. Neurobiol Stress 2021; 15:100364. [PMID: 34345636 PMCID: PMC8319013 DOI: 10.1016/j.ynstr.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022] Open
Abstract
Stress is a frequent precipitant of relapse to drug use. Pharmacotherapies targeting a diverse array of neural systems have been assayed for efficacy in attenuating stress-induced drug-seeking in both rodents and in humans, but none have shown enough evidence of utility to warrant routine use in the clinic. We posit that a critical barrier in effective translation is inattention to sex as a biological variable at all phases of the research process. In this review, we detail the neurobiological systems implicated in stress-induced relapse to cocaine, opioids, methamphetamine, and cannabis, as well as the pharmacotherapies that have been used to target these systems in rodent models, the human laboratory, and in clinical trials. In each of these areas we additionally describe the potential influences of biological sex on outcomes, and how inattention to fundamental sex differences can lead to biases during drug development that contribute to the limited success of large clinical trials. Based on these observations, we determine that of the pharmacotherapies discussed only α2-adrenergic receptor agonists and oxytocin have a body of research with sufficient consideration of biological sex to warrant further clinical evaluation. Pharmacotherapies that target β-adrenergic receptors, other neuroactive peptides, the hypothalamic-pituitary-adrenal axis, neuroactive steroids, and the endogenous opioid and cannabinoid systems require further assessment in females at the preclinical and human laboratory levels before progression to clinical trials can be recommended.
Collapse
Affiliation(s)
- Erin L Martin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aimee L McRae-Clark
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
9
|
Lueptow LM, Shashkova EC, Miller MG, Evans CJ, Cahill CM. Insights into the Neurobiology of Craving in Opioid Use Disorder. CURRENT ANESTHESIOLOGY REPORTS 2021; 10:378-387. [PMID: 33424457 DOI: 10.1007/s40140-020-00420-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose of review Opioids remain the most potent form of pain relief currently available, yet have a high abuse liability. Here we discuss underlying neurobiological changes in Opioid Use Disorder (OUD) that likely contribute to drug craving, which in turn drives continued drug use and relapse. Recent findings Craving has emerged as a strong indicator in drug-seeking and relapse. Studies have demonstrated a number of allostatic changes in circuitry that facilitate learning of drug-stimuli relationships, thereby augmenting cue-triggered drug use and relapse. Summary This review will focus on key neurobiological changes in underlying circuitry observed during the initial and continued exposure to opioids that result in an increase in neural-reactivity to drug-related intrinsic and extrinsic drug cues, and to enhanced learning of drug-context correlations. This sensitized learning state may be an indication of the underlying framework that drives craving and ultimately, motivates increased salience of drug cues and drives drug-seeking.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, 90095, USA.,Shirley and Stefan Hatos Center for Neuropharmacology, Los Angeles, CA, 90095, USA.,Department of Psychology at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Elizabeth C Shashkova
- Shirley and Stefan Hatos Center for Neuropharmacology, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Margaret G Miller
- Shirley and Stefan Hatos Center for Neuropharmacology, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, 90095, USA.,Shirley and Stefan Hatos Center for Neuropharmacology, Los Angeles, CA, 90095, USA.,Jane & Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, 90095, USA.,Shirley and Stefan Hatos Center for Neuropharmacology, Los Angeles, CA, 90095, USA.,Jane & Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, 90095, USA.,David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Abstract
Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.
Collapse
|
11
|
Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology 2019; 44:465-477. [PMID: 30293087 PMCID: PMC6333846 DOI: 10.1038/s41386-018-0234-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Lifetime relapse rates remain a major obstacle in addressing the current opioid crisis. Relapse to opioid use can be modeled in rodent studies where drug self-administration is followed by a period of abstinence and a subsequent test for drug seeking. Abstinence can be achieved through extinction training, forced abstinence, or voluntary abstinence. Voluntary abstinence can be accomplished by introducing adverse consequences of continued drug self-administration (e.g., punishment or electric barrier) or by introducing an alternative nondrug reward in a discrete choice procedure (drug versus palatable food or social interaction). In this review, we first discuss pharmacological and circuit mechanisms of opioid seeking, as assessed in the classical extinction-reinstatement model, where reinstatement is induced by reexposure to the self-administered drug (drug priming), discrete cues, discriminative cues, drug-associated contexts, different forms of stress, or withdrawal states. Next, we discuss pharmacological and circuit mechanisms of relapse after forced or voluntary abstinence, including the phenomenon of "incubation of heroin craving" (the time-dependent increases in heroin seeking during abstinence). We conclude by discussing future directions of preclinical relapse-related studies using opioid drugs.
Collapse
Affiliation(s)
- David J. Reiner
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD USA
| | - Ida Fredriksson
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD USA
| | - Olivia M. Lofaro
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD USA
| | | | - Yavin Shaham
- Behavioral Neuroscience Research Branch, IRP-NIDA-NIH, Baltimore, MD, USA.
| |
Collapse
|
12
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
13
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
14
|
Karimi-Haghighi S, Haghparast A. Cannabidiol inhibits priming-induced reinstatement of methamphetamine in REM sleep deprived rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:307-313. [PMID: 28870635 DOI: 10.1016/j.pnpbp.2017.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022]
Abstract
Methamphetamine (METH) is a widely abused and a severely addictive psychostimulant. Relapse is the main cause of concern when treating addiction. It could manifest after a long period of abstinence. Previous studies showed that there is a strong connection between sleep impairment and relapse. Also, it has been reported that cannabidiol might be a potential treatment for drug craving and relapse. In this study, we used conditioned place preference (CPP) to investigate whether Cannabidiol (CBD), a phytocannabinoid, can prevent METH-induced reinstatement in Rapid Eye Movement Sleep Deprived (RSD) rats. In order to induce CPP, the animals were given METH (1mg/kg; sc) for five days. The effective priming dose of METH (0.5mg/kg, sc) reinstated the extinguished METH-induced CPP. In order to investigate the effect of RSD on METH-induced reinstatement, we used the inverted flowerpot technique to deprive the rats of REM sleep. We found that 24h-RSD could facilitate priming-induced reinstatement of METH. In addition to this, the ICV administration of CBD 10μg/5μl could suppress the METH-induced reinstatement even in RSD rats. In conclusion, the administration of CBD 10μg/5μl effectively prevents METH-induced CPP, even in a condition of stress. CBD can be considered an agent that reduces the risk of the relapse; however, this requires more investigation.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Fluegge K. Does environmental exposure to the greenhouse gas, N 2O, contribute to etiological factors in neurodevelopmental disorders? A mini-review of the evidence. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:6-18. [PMID: 27566494 DOI: 10.1016/j.etap.2016.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Neurodevelopmental disorders are increasing in prevalence worldwide. Previous work suggests that exposure to the environmental air pollutant and greenhouse gas - nitrous oxide (N2O) - may be an etiological factor in neurodevelopmental disorders through the targeting of several neural correlates. METHODOLOGY While a number of recent systematic reviews have addressed the role of general anesthesia in the surgical setting and neurodevelopmental outcomes, a narrative mini-review was conducted to first define and characterize the relevant variables (i.e., N2O, attention-deficit hyperactivity disorder [ADHD] and autism spectrum disorders [ASD]) and their potential interactions into a coherent, hypothesis-generating work. The narrative mini-review merges basic principles in environmental science, anesthesiology, and psychiatry to more fully develop the novel hypotheses that neurodevelopmental impairment found in conditions like ADHD and ASD may be due to exposure to the increasing air pollutant, N2O. RESULTS The results of the present mini-review indicate that exposure to N2O, even at non-toxic doses, may modulate central neurotransmission and target many neural substrates directly implicated in neurodevelopmental disorders, including the glutamatergic, opioidergic, cholinergic, and dopaminergic systems. Epidemiological studies also indicate that early and repeated exposure to general anesthesia, including N2O, may contribute to later adverse neurodevelopmental outcomes in children. CONCLUSIONS The current evidence and subsequent hypotheses suggest that a renewed interest be taken in the toxicological assessment of environmental N2O exposure using validated biomarkers and psychiatric endpoints. Given the relevance of N2O as a greenhouse gas, societies may also wish to engage in a more robust monitoring and reporting of N2O levels in the environment for climactic benefit as well.
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA.
| |
Collapse
|
17
|
Abstract
Opioid drugs are potent modulators of many physiological and psychological processes. When given acutely, they can elicit the signature responses of euphoria and analgesia that societies have coveted for centuries. Repeated, or chronic, use of opioids induces adaptive or allostatic changes that modify neuronal circuitry and create an altered normality — the “drug-dependent” state. This state, at least that exhibited by those maintained continuously on long-acting opioid drugs such as methadone or buprenorphine, is generally indistinguishable from the drug-naïve state for most overt behaviors. The consequences of the allostatic changes (cellular, circuit, and system adaptations) that accompany the drug-dependent state are revealed during drug withdrawal. Drug cessation triggers a temporally orchestrated allostatic re-establishment of neuronal systems, which is manifested as opposing physiological and psychological effects to those exhibited by acute drug intoxication. Some withdrawal symptoms, such as physical symptoms (sweating, shaking, and diarrhea) resolve within days, whilst others, such as dysphoria, insomnia, and anxiety, can linger for months, and some adaptations, such as learned associations, may be established for life. We will briefly discuss the cellular mechanisms and neural circuitry that contribute to the opioid drug-dependent state, inferring an emerging role for neuroinflammation. We will argue that opioid addictive behaviors result from a learned relationship between opioids and relief from an existing or withdrawal-induced anxiogenic and/or dysphoric state. Furthermore, a future stressful life event can recall the memory that opioid drugs alleviate negative affect (despair, sadness, and anxiety) and thereby precipitate craving, resulting in relapse. A learned association of relief of aversive states would fuel drug craving in vulnerable people living in an increasingly stressful society. We suggest that this route to addiction is contributive to the current opioid epidemic in the USA.
Collapse
Affiliation(s)
- Christopher J Evans
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- Departments of Anesthesiology & Perioperative Care and Pharmacology, University of California, Irvine, CA, 90095, USA; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
18
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
19
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology 2016; 41:335-56. [PMID: 25976297 PMCID: PMC4677117 DOI: 10.1038/npp.2015.142] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/24/2022]
Abstract
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Douglas Funk
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Anh D Lê
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada
| | - Yavin Shaham
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA
| |
Collapse
|
21
|
Crowley NA, Kash TL. Kappa opioid receptor signaling in the brain: Circuitry and implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:51-60. [PMID: 25592680 PMCID: PMC4465498 DOI: 10.1016/j.pnpbp.2015.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/20/2014] [Accepted: 01/04/2015] [Indexed: 12/15/2022]
Abstract
Kappa opioid receptors (KORs) in the central nervous system have been known to be important regulators of a variety of psychiatry illnesses, including anxiety and addiction, but their precise involvement in these disorders is complex and has yet to be fully elucidated. Here, we briefly review the pharmacology of KORs in the brain, including KOR's involvement in anxiety, depression, and drug addiction. We also review the known neuronal circuitry impacted by KOR signaling, and interactions with corticotrophin-releasing factor (CRF), another key peptide in anxiety-related illnesses, as well as the role of glucocorticoids. We suggest that KORs are a promising therapeutic target for a host of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Nicole A. Crowley
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Abstract
Drug withdrawal is often conceptualized as an aversive state that motivates drug-seeking and drug-taking behaviors in humans. Stress is more difficult to define, but is also frequently associated with aversive states. Here we describe evidence for the simple theory that drug withdrawal is a stress-like state, on the basis of common effects on behavioral, neurochemical, and molecular endpoints. We also describe data suggesting a more complex relationship between drug withdrawal and stress. As one example, we will highlight evidence that, depending on drug class, components of withdrawal can produce effects that have characteristics consistent with mood elevation. In addition, some stressors can act as positive reinforcers, defined as having the ability to increase the probability of a behavior that produces it. As such, accumulating evidence supports the general principles of opponent process theory, whereby processes that have an affective valence are followed in time by an opponent process that has the opposite valence. Throughout, we identify gaps in knowledge and propose future directions for research. A better understanding of the similarities, differences, and overlaps between drug withdrawal and stress will lead to the development of improved treatments for addiction, as well as for a vast array of neuropsychiatric conditions that are triggered or exacerbated by stress.
Collapse
|
23
|
Hardaway JA, Crowley NA, Bulik CM, Kash TL. Integrated circuits and molecular components for stress and feeding: implications for eating disorders. GENES, BRAIN, AND BEHAVIOR 2015; 14:85-97. [PMID: 25366309 PMCID: PMC4465370 DOI: 10.1111/gbb.12185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022]
Abstract
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders.
Collapse
Affiliation(s)
- J. A. Hardaway
- Bowles Alcohol Center, University of North Carolina at Chapel Hill, NC, USA
| | - N. A. Crowley
- Bowles Alcohol Center, University of North Carolina at Chapel Hill, NC, USA
| | - C. M. Bulik
- UNC Eating Disorders Program, University of North Carolina at Chapel Hill, NC, USA
| | - T. L. Kash
- Bowles Alcohol Center, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
24
|
Bailey CP, Husbands SM. Novel approaches for the treatment of psychostimulant and opioid abuse - focus on opioid receptor-based therapies. Expert Opin Drug Discov 2014; 9:1333-44. [PMID: 25253272 PMCID: PMC4587358 DOI: 10.1517/17460441.2014.964203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Psychostimulant and opioid addiction are poorly treated. The majority of abstinent users relapse back to drug-taking within a year of abstinence, making 'anti-relapse' therapies the focus of much current research. There are two fundamental challenges to developing novel treatments for drug addiction. First, there are three key stimuli that precipitate relapse back to drug-taking: stress, presentation of drug-conditioned cue, taking a small dose of drug. The most successful novel treatment would be effective against all three stimuli. Second, a large number of drug users are poly-drug users: taking more than one drug of abuse at a time. The ideal anti-addiction treatment would, therefore, be effective against all classes of drugs of abuse. AREAS COVERED In this review, the authors discuss the clinical need and animal models used to uncover potential novel treatments. There is a very broad range of potential treatment approaches and targets currently being examined as potential anti-relapse therapies. These broadly fit into two categories: 'memory-based' and 'receptor-based' and the authors discuss the key targets here within. EXPERT OPINION Opioid receptors and ligands have been widely studied, and research into how different opioid subtypes affect behaviours related to addiction (reward, dysphoria, motivation) suggests that they are tractable targets as anti-relapse treatments. Regarding opioid ligands as novel 'anti-relapse' medication targets, research suggests that a 'non-selective' approach to targeting opioid receptors will be the most effective.
Collapse
Affiliation(s)
- Chris P Bailey
- University of Bath, Department of Pharmacy and Pharmacology , Claverton Down, Bath, BA2 7AY , UK +01225 384957 ;
| | | |
Collapse
|