1
|
Womersley JS, Obellianne C, Padula AE, Lopez MF, Griffin WC, Ball LE, Berto S, Grant KA, Townsend DM, Uys JD, Mulholland PJ. Adaptations in glutathione-based redox protein signaling pathways and alcohol drinking across species. Biomed Pharmacother 2024; 180:117514. [PMID: 39362067 DOI: 10.1016/j.biopha.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder but there is incomplete knowledge of the underlying molecular etiology. Here, we examined the cytosolic proteome from the nucleus accumbens core (NAcC) of ethanol drinking rhesus macaques to identify ethanol-sensitive signaling proteins. The targets were subsequently investigated using bioinformatics, genetic, and pharmacological manipulations in mouse models of ethanol drinking. Of the 1000+ cytosolic proteins identified in our screen, 50 proteins differed significantly between control and ethanol drinking macaques. Gene Ontology analysis of the differentially expressed proteins identified enrichment in pathways regulating metabolic processes and proteasome activity. Because the family of Glutathione S-transferases (GSTs) was enriched in these pathways, validation studies targeted GSTs using bioinformatics and genetically diverse mouse models. Gstp1 and Gstm2 were identified in Quantitative Trait Loci and published gene sets for ethanol-related phenotypes (e.g., ethanol preference, conditioned taste aversion, differential expression), and recombinant inbred strains that inherited the C57BL/6J allele at the Gstp2 interval consumed higher amounts of ethanol than those that inherited the DBA/2J allele. Genetic deletion of Gstp1/2 led to increased ethanol consumption without altering ethanol metabolism or sucrose preference. Administration of the pharmacologic activator of Gstp1/2, carnosic acid, decreased voluntary ethanol drinking. Proteomic analysis of the NAcC cytosolic of heavy drinking macaques that were validated in mouse models indicate a role for glutathione-mediated redox regulation in ethanol-related neurobiology and the potential of pharmacological interventions targeting this system to modify excessive ethanol drinking.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Clémence Obellianne
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - William C Griffin
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joachim D Uys
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Bhandari A, Seguin A, Rothenfluh A. Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. Int J Mol Sci 2024; 25:6838. [PMID: 38999947 PMCID: PMC11241699 DOI: 10.3390/ijms25136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.
Collapse
Affiliation(s)
- Aakriti Bhandari
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Seguin
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Aceto G, Nardella L, Nanni S, Pecci V, Bertozzi A, Nutarelli S, Viscomi MT, Colussi C, D'Ascenzo M, Grassi C. Glycine-induced activation of GPR158 increases the intrinsic excitability of medium spiny neurons in the nucleus accumbens. Cell Mol Life Sci 2024; 81:268. [PMID: 38884814 PMCID: PMC11335193 DOI: 10.1007/s00018-024-05260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.
Collapse
Affiliation(s)
- Giuseppe Aceto
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Luca Nardella
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Simona Nanni
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Marcello D'Ascenzo
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy.
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
4
|
Silva-Cardoso GK, N'Gouemo P. Influence of Inherited Seizure Susceptibility on Intermittent Voluntary Alcohol Consumption and Alcohol Withdrawal Seizures in Genetically Epilepsy-Prone Rats (GEPR-3s). Brain Sci 2024; 14:188. [PMID: 38391762 PMCID: PMC10886844 DOI: 10.3390/brainsci14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The link between epilepsy and alcohol consumption is complex, with conflicting reports. To enhance our understanding of this link, we conducted a study to determine how inherited seizure susceptibility affects voluntary alcohol consumption and influences alcohol withdrawal seizures in male and female genetically epilepsy-prone rats (GEPR-3s) compared to Sprague Dawley (SD) rats. METHODS In the first experiment, animals were given access to two bottles simultaneously, one containing water and the other 7.5%, 15%, or 30% (v/v) alcohol three times a week for each dose after acclimation to drinking water. In a second experiment, animals were tested for acoustically evoked alcohol seizures 24 h after the last session of voluntary alcohol consumption. RESULTS Analysis revealed that GEPR-3s (males and females) had lower alcohol intake and preference than SD rats, particularly at lower alcohol concentrations. However, female GEPR-3s consumed more alcohol and had a higher alcohol preference than males. Furthermore, withdrawal from voluntary alcohol consumption facilitated the onset and duration of seizures in GEPR-3s. CONCLUSIONS Our study suggests that genetic seizure susceptibility in GEPR-3s is negatively associated with alcohol consumption. However, withdrawal from low to moderate amounts of alcohol intake can promote epileptogenesis in the epileptic GEPR-3s.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
5
|
Thompson SM, Fabian CB, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. Neuropharmacology 2023; 238:109638. [PMID: 37482180 PMCID: PMC10529784 DOI: 10.1016/j.neuropharm.2023.109638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC/90 mg/dL) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-13 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.
Collapse
Affiliation(s)
- Shannon M Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carly B Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. Mol Psychiatry 2023; 28:4766-4776. [PMID: 37679472 PMCID: PMC10918038 DOI: 10.1038/s41380-023-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson-MUSC Artificial Intelligence Hub, Clemson University, Clemson, SC, 29634-0975, USA
| | - Lauren E Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
7
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542637. [PMID: 37398482 PMCID: PMC10312445 DOI: 10.1101/2023.05.28.542637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
|
8
|
Thompson SM, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531614. [PMID: 36945582 PMCID: PMC10028880 DOI: 10.1101/2023.03.07.531614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-11 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.
Collapse
|
9
|
Inactivation of the Lateral Hypothalamus Attenuates Methamphetamine-Induced Conditioned Place Preference through Regulation of Kcnq3 Expression. Int J Mol Sci 2022; 23:ijms23137305. [PMID: 35806315 PMCID: PMC9266452 DOI: 10.3390/ijms23137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Repeated administration of methylamphetamine (MA) induces MA addiction, which is featured by awfully unpleasant physical and emotional experiences after drug use is terminated. Neurophysiological studies show that the lateral hypothalamus (LH) is involved in reward development and addictive behaviors. Here, we show that repeated administration of MA activates the expression of c-Fos in LH neurons responding to conditioned place preference (CPP). Chemogenetic inhibition of the LH can disrupt the addiction behavior, demonstrating that the LH plays an important role in MA-induced reward processing. Critically, MA remodels the neurons of LH synaptic plasticity, increases intracellular calcium level, and enhances spontaneous current and evoked potentials of neurons compared to the saline group. Furthermore, overexpression of the potassium voltage-gated channel subfamily Q member 3 (Kcnq3) expression can reverse the CPP score and alleviate the occurrence of addictive behaviors. Together, these results unravel a new neurobiological mechanism underlying the MA-induced addiction in the lateral hypothalamus, which could pave the way toward new and effective interventions for this addiction disease.
Collapse
|
10
|
Zaniewska M, Mosienko V, Bader M, Alenina N. Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 2022; 11:cells11050874. [PMID: 35269497 PMCID: PMC8909500 DOI: 10.3390/cells11050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Indirect evidence supports a link between disrupted serotonin (5-hydroxytryptamine; 5-HT) signaling in the brain and addictive behaviors. However, the effects of hyposerotonergia on ethanol drinking behavior are contradictory. In this study, mice deficient in tryptophan hydroxylase 2 (Tph2−/−), the rate-limiting enzyme of 5-HT synthesis in the brain, were used to assess the role of central 5-HT in alcohol drinking behavior. Life-long 5-HT depletion in these mice led to an increased ethanol consumption in comparison to wild-type animals in a two-bottle choice test. Water consumption was increased in naïve 5-HT-depleted mice. However, exposure of Tph2−/− animals to ethanol resulted in the normalization of water intake to the level of wild-type mice. Tph2 deficiency in mice did not interfere with ethanol-evoked antidepressant response in the forced swim test. Gene expression analysis in wild-type animals revealed no change in Tph2 expression in the brain of mice consuming ethanol compared to control mice drinking water. However, within the alcohol-drinking group, inter-individual differences in chronic ethanol intake correlated with Tph2 transcript levels. Taken together, central 5-HT is an important modulator of drinking behavior in mice but is not required for the antidepressant effects of ethanol.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| | - Valentina Mosienko
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; (V.M.); (M.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Correspondence: (M.Z.); (N.A.); Tel.: +48-1-2662-3289 (M.Z.); +49-30-9406-3576 (N.A.)
| |
Collapse
|
11
|
Costi S, Han MH, Murrough JW. The Potential of KCNQ Potassium Channel Openers as Novel Antidepressants. CNS Drugs 2022; 36:207-216. [PMID: 35258812 DOI: 10.1007/s40263-021-00885-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide and less than one-third of patients with MDD achieve stable remission of symptoms, despite currently available treatments. Although MDD represents a serious health problem, a complete understanding of the neurobiological mechanisms underlying this condition continues to be elusive. Accumulating evidence from preclinical and animal studies provides support for the antidepressant potential of modulators of KCNQ voltage-gated potassium (K+) channels. KCNQ K+ channels, through regulation of neuronal excitability and activity, contribute to neurophysiological mechanisms underlying stress resilience, and represent potential targets of drug discovery for depression. The present article focuses on the pharmacology and efficacy of KCNQ2/3 K+ channel openers as novel therapeutic agents for depressive disorders from initial studies conducted on animal models showing depressive-like behaviors to recent work in humans that examines the potential for KCNQ2/3 channel modulators as novel antidepressants. Data from preclinical work suggest that KCNQ-type K+ channels are an active mediator of stress resilience and KCNQ2/3 K+ channel openers show antidepressant efficacy. Similarly, evidence from clinical trials conducted in patients with MDD using the KCNQ2/3 channel opener ezogabine (retigabine) showed significant improvements in depressive symptoms and anhedonia. Overall, KCNQ channel openers appear a promising target for the development of novel therapeutics for the treatment of psychiatric disorders and specifically for MDD.
Collapse
Affiliation(s)
- Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Center for Affective Neuroscience, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - James W Murrough
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Guo Y, Du P, Guo L, Lin X, He B, Yu L. Alcohol use among patients with epilepsy in western China. A hospital-based study. Epilepsy Behav 2021; 124:108302. [PMID: 34509040 DOI: 10.1016/j.yebeh.2021.108302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022]
Abstract
AMIS: Alcohol consumption has multiple negative consequences for people with epilepsy, including precipitation of seizure or status epilepticus, worsening of seizure control, increased adverse effects of anti-seizure medications, increased sudden unexpected death in epilepsy, and premature mortality. The aim of this study was to investigate alcohol use and explore the sociodemographic and clinical factors associated with alcohol use among patients with epilepsy in western China. METHODS A face-to-face questionnaire on alcohol use was conducted at Sichuan Provincial People's Hospital from December 2020 to June 2021. All adult patients who came to our epilepsy center (inpatient and outpatient) were invited to participate in this study. Logistic regression was used to evaluate the possible risk factors associated with alcohol use within the last 12 months. RESULTS A total of 425 patients completed this study, 24.2% of patients with epilepsy had used alcohol within the last 12 months, being male and having a history of alcohol use were independently associated factors. Among patients who had used alcohol within the last 12 months, 52.4% complained of worsening of seizure control, heavy alcohol use, and frequent alcohol use were independently associated with worsening of seizure control after alcohol use in patients with epilepsy. CONCLUSION This study revealed that the rate of alcohol use among patients with epilepsy was high. Male patients with a history of alcohol use were more prone to alcohol use after a diagnosis of epilepsy. Heavy alcohol use and frequent alcohol use were independently associated with worsening of seizure control after alcohol use in patients with epilepsy. Patient education on the destructive effects of alcohol use is needed for patients with epilepsy.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China
| | - Peishan Du
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China
| | - Lixia Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China
| | - Xu Lin
- Department of Neurology, Chengdu 363 Hospital, Daosangshu Street, Chengdu, Sichuan 610072, People's Republic of China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China.
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 32# W. Sec 2, 1st Ring Rd, Chengdu, Sichuan 610072, People's Republic of China.
| |
Collapse
|
13
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
14
|
Springer K, Varghese N, Tzingounis AV. Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders. Dev Neurosci 2021; 43:191-200. [PMID: 33794528 PMCID: PMC8440324 DOI: 10.1159/000515495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
KCNQ2 and KCNQ3 pathogenic channel variants have been associated with a spectrum of developmentally regulated diseases that vary in age of onset, severity, and whether it is transient (i.e., benign familial neonatal seizures) or long-lasting (i.e., developmental and epileptic encephalopathy). KCNQ2 and KCNQ3 channels have also emerged as a target for novel antiepileptic drugs as their activation could reduce epileptic activity. Consequently, a great effort has taken place over the last 2 decades to understand the mechanisms that control the assembly, gating, and modulation of KCNQ2 and KCNQ3 channels. The current view that KCNQ2 and KCNQ3 channels assemble as heteromeric channels (KCNQ2/3) forms the basis of our understanding of KCNQ2 and KCNQ3 channelopathies and drug design. Here, we review the evidence that supports the formation of KCNQ2/3 heteromers in neurons. We also highlight functional and transcriptomic studies that suggest channel composition might not be necessarily fixed in the nervous system, but rather is dynamic and flexible, allowing some neurons to express KCNQ2 and KCNQ3 homomers. We propose that to fully understand KCNQ2 and KCNQ3 channelopathies, we need to adopt a more flexible view of KCNQ2 and KCNQ3 channel stoichiometry, which might differ across development, brain regions, cell types, and disease states.
Collapse
Affiliation(s)
- Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
McCoy MT, Jayanthi S, Cadet JL. Potassium Channels and Their Potential Roles in Substance Use Disorders. Int J Mol Sci 2021; 22:1249. [PMID: 33513859 PMCID: PMC7865894 DOI: 10.3390/ijms22031249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
Substance use disorders (SUDs) are ubiquitous throughout the world. However, much remains to be done to develop pharmacotherapies that are very efficacious because the focus has been mostly on using dopaminergic agents or opioid agonists. Herein we discuss the potential of using potassium channel activators in SUD treatment because evidence has accumulated to support a role of these channels in the effects of rewarding drugs. Potassium channels regulate neuronal action potential via effects on threshold, burst firing, and firing frequency. They are located in brain regions identified as important for the behavioral responses to rewarding drugs. In addition, their expression profiles are influenced by administration of rewarding substances. Genetic studies have also implicated variants in genes that encode potassium channels. Importantly, administration of potassium agonists have been shown to reduce alcohol intake and to augment the behavioral effects of opioid drugs. Potassium channel expression is also increased in animals with reduced intake of methamphetamine. Together, these results support the idea of further investing in studies that focus on elucidating the role of potassium channels as targets for therapeutic interventions against SUDs.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, USA; (M.T.M.); (S.J.)
| |
Collapse
|
16
|
Zwierzyńska E, Krupa-Burtnik A, Pietrzak B. Beneficial effect of retigabine on memory in rats receiving ethanol. Pharmacol Rep 2021; 73:480-489. [PMID: 33385172 PMCID: PMC7994244 DOI: 10.1007/s43440-020-00205-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 11/25/2022]
Abstract
Background Retigabine belongs to the novel generation of antiepileptic drugs but its complex mechanism of action causes that the drug might be effective in other diseases, for instance, alcohol dependence. It is known that ethanol abuse impaired the function of brain structures associated with memory and learning such as the hippocampus. In our previous study, retigabine reduced hippocampal changes induced by ethanol in the EEG rhythms in rabbits. This study is focused on the impact of retigabine on memory processes in male rats receiving alcohol. Methods Memory was evaluated in various experimental models: Morris water maze, Contextual, and Cued Fear Conditioning tests. Retigabine was administered for 3 weeks directly to the stomach via oral gavage at a dose of 10 mg/kg. Rats received also 20% ethanol (5 g/kg/day in two doses) via oral gavage for 3 weeks and had free access to 5% ethanol in the afternoon and at night. Morris water maze was performed after 1 and 3 weeks of ethanol administration and after 1 week from the discontinuation of ethanol administration. Contextual and Cued Fear Conditioning tests were carried out after 24 h and 72 h of alcohol discontinuation. Results The drug significantly decreased ethanol-induced memory disturbances during alcohol administration as well as slightly improved learning processes after the discontinuation of ethanol administration. Conclusions This beneficial effect of retigabine-ethanol interaction on memory may be a relevant element of the drug’s impact on the development of addiction.
Collapse
Affiliation(s)
- Ewa Zwierzyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland.
| | - Agata Krupa-Burtnik
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland
| | - Bogusława Pietrzak
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland
| |
Collapse
|
17
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|
18
|
Padula AE, Rinker JA, Lopez MF, Mulligan MK, Williams RW, Becker HC, Mulholland PJ. Bioinformatics identification and pharmacological validation of Kcnn3/K Ca2 channels as a mediator of negative affective behaviors and excessive alcohol drinking in mice. Transl Psychiatry 2020; 10:414. [PMID: 33247097 PMCID: PMC7699620 DOI: 10.1038/s41398-020-01099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mood disorders are often comorbid with alcohol use disorder (AUD) and play a considerable role in the development and maintenance of alcohol dependence and relapse. Because of this high comorbidity, it is necessary to determine shared and unique genetic factors driving heavy drinking and negative affective behaviors. In order to identify novel pharmacogenetic targets, a bioinformatics analysis was used to quantify the expression of amygdala K+ channel genes that covary with anxiety-related phenotypes in the well-phenotyped and fully sequenced family of BXD strains. We used a model of stress-induced escalation of drinking in alcohol-dependent mice to measure negative affective behaviors during abstinence. A pharmacological approach was used to validate the key bioinformatics findings in alcohol-dependent, stressed mice. Amygdalar expression of Kcnn3 correlated significantly with 40 anxiety-associated phenotypes. Further examination of Kcnn3 expression revealed a strong eigentrait for anxiety-like behaviors and negative correlations with binge-like and voluntary alcohol drinking. Mice treated with chronic intermittent alcohol exposure and repeated swim stress consumed more alcohol in their home cages and showed hypophagia on the novelty-suppressed feeding test during abstinence. Pharmacologically targeting Kcnn gene products with the KCa2 (SK) channel-positive modulator 1-EBIO decreased drinking and reduced feeding latency in alcohol-dependent, stressed mice. Collectively, these validation studies provide central nervous system links into the covariance of stress, negative affective behaviors, and AUD in the BXD strains. Further, the bioinformatics discovery tool is effective in identifying promising targets (i.e., KCa2 channels) for treating alcohol dependence exacerbated by comorbid mood disorders.
Collapse
Affiliation(s)
- Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
19
|
Vigil FA, Carver CM, Shapiro MS. Pharmacological Manipulation of K v 7 Channels as a New Therapeutic Tool for Multiple Brain Disorders. Front Physiol 2020; 11:688. [PMID: 32636759 PMCID: PMC7317068 DOI: 10.3389/fphys.2020.00688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
K v 7 ("M-type," KCNQ) K+ currents, play dominant roles in controlling neuronal excitability. They act as a "brake" against hyperexcitable states in the central and peripheral nervous systems. Pharmacological augmentation of M current has been developed for controlling epileptic seizures, although current pharmacological tools are uneven in practical usefulness. Lately, however, M-current "opener" compounds have been suggested to be efficacious in preventing brain damage after multiple types of insults/diseases, such as stroke, traumatic brain injury, drug addiction and mood disorders. In this review, we will discuss what is known to date on these efforts and identify gaps in our knowledge regarding the link between M current and therapeutic potential for these disorders. We will outline the preclinical experiments that are yet to be performed to demonstrate the likelihood of success of this approach in human trials. Finally, we also address multiple pharmacological tools available to manipulate different K v 7 subunits and the relevant evidence for translational application in the clinical use for disorders of the central nervous system and multiple types of brain insults. We feel there to be great potential for manipulation of K v 7 channels as a novel therapeutic mode of intervention in the clinic, and that the paucity of existing therapies obligates us to perform further research, so that patients can soon benefit from such therapeutic approaches.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
20
|
Wang X, Wu J, Wu Y, Wang M, Wang Z, Wu T, Chen D, Tang X, Qin X, Wu Y, Hu Y. Pleiotropic Effects of a KCNQ1 Variant on Lipid Profiles and Type 2 Diabetes: A Family-Based Study in China. J Diabetes Res 2020; 2020:8278574. [PMID: 32016123 PMCID: PMC6982365 DOI: 10.1155/2020/8278574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The genetic variant rs2237895, located in the Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1) gene, has been replicated to be associated with type 2 diabetes mellitus (T2DM) susceptibility, but the relationship with lipids is conflicting. Furthermore, the common genetic predisposition to T2DM and lipids was not fully detected. METHODS In total, 5839 individuals (2220 were T2DM patients) across 2885 families were included. The effect of rs2237895 on T2DM and lipids was estimated using linear regression and logistic regression models after adjustment for multiple covariates. Mediation analysis was then used to test whether KCNQ1 participated in T2DM pathogenesis via lipid-mediated pathways. RESULTS Per allele-C of rs2237895 was associated with 17% (11-23%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%. CONCLUSION KCNQ1 had pleiotropic effects on lipids and T2DM, and the unexpected genetic effect on association of HDL-C with T2DM was observed, indicating the different pathways to lipids and T2DM. Further research studies are needed to verify potential biological mechanisms.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Medical Informatics Center, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
21
|
Jayanthi S, Torres OV, Ladenheim B, Cadet JL. A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Mol Neurobiol 2019; 57:1459-1472. [PMID: 31758400 PMCID: PMC7060962 DOI: 10.1007/s12035-019-01830-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
The transition from occasional to escalated psychostimulant use is accelerated by prior drug exposure. These behavioral observations may be related to long-lasting transcriptional and/or epigenetic changes induced by the drug pre-exposure. Herein, we investigated if a single methamphetamine (METH) injection would enhance METH self-administration (SA) and impact any METH SA-induced epigenetic or transcriptional alterations. We thus injected a single METH dose (10 mg/kg) or saline to rats before training them to self-administer METH or saline. There were three experimental groups in SA experiments: (1) a single saline injection followed by saline SA (SS); (2) a single saline injection followed by METH SA (SM); and (3) a single METH injection followed by METH SA (MM). METH-pretreated rats escalated METH SA earlier and took more METH than saline-pretreated animals. Both groups showed similar incubation of cue-induced METH craving. Because compulsive METH takers and METH-abstinent rats show differences in potassium (K+) channel mRNA levels in their nucleus accumbens (NAc), we wondered if K+ channel expression might also help to distinguish between SM and MM groups. We found increases in mRNA and protein expression of shaker-related voltage-gated K+ channels (Kv1: Kcna1, Kcna3, and Kcna6) and calcium-activated K+ channels (Kcnn1) in the SM compared to MM rats. SM rats also showed decreased DNA methylation at the CpG-rich sites near the promoter region of Kcna1, Kcna3 and Kcnn1 genes in comparison to MM rats. Together, these results provide additional evidence for potentially using K+ channels as therapeutic targets against METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Oscar V Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
22
|
O'Donovan B, Adeluyi A, Anderson EL, Cole RD, Turner JR, Ortinski PI. Altered gating of K v1.4 in the nucleus accumbens suppresses motivation for reward. eLife 2019; 8:e47870. [PMID: 31487241 PMCID: PMC6728144 DOI: 10.7554/elife.47870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial variability in willingness to exert effort for reward was not associated with operant responding under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a divergent NAc shell transcriptome with differential regulation at potassium and dopamine signaling genes. Functionally, motivation was inversely related to excitability of NAc principal neurons. Furthermore, neuronal and behavioral outputs associated with low motivation were linked to faster inactivation of a voltage-gated potassium channel, Kv1.4. These results raise the prospect of targeting Kv1.4 gating in psychiatric conditions associated with motivational dysfunction.
Collapse
Affiliation(s)
| | - Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Erin L Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Robert D Cole
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| | - Jill R Turner
- College of PharmacyUniversity of KentuckyLexingtonUnited States
| | - Pavel I Ortinski
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
23
|
Kang S, Li J, Zuo W, Chen P, Gregor D, Fu R, Han X, Bekker A, Ye JH. Downregulation of M-channels in lateral habenula mediates hyperalgesia during alcohol withdrawal in rats. Sci Rep 2019; 9:2714. [PMID: 30804373 PMCID: PMC6389965 DOI: 10.1038/s41598-018-38393-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/21/2018] [Indexed: 01/21/2023] Open
Abstract
Hyperalgesia often occurs in alcoholics, especially during abstinence, yet the underlying mechanisms remain elusive. The lateral habenula (LHb) has been implicated in the pathophysiology of pain and alcohol use disorders. Suppression of m-type potassium channels (M-channels) has been found to contribute to the hyperactivity of LHb neurons of rats withdrawn from chronic alcohol administration. Here, we provided evidence that LHb M-channels may contribute to hyperalgesia. Compared to alcohol naïve counterparts, in male Long-Evans rats at 24-hours withdrawal from alcohol administration under the intermittent access paradigm for eight weeks, hyperalgesia was evident (as measured by paw withdrawal latencies in the Hargreaves Test), which was accompanied with higher basal activities of LHb neurons in brain slices, and lower M-channel protein expression. Inhibition of LHb neurons by chemogenetics, or pharmacological activation of M-channels, as well as overexpression of M-channels' subunit KCNQ3, relieved hyperalgesia and decreased relapse-like alcohol consumption. In contrast, chemogenetic activation of LHb neurons induced hyperalgesia in alcohol-naive rats. These data reveal a central role for the LHb in hyperalgesia during alcohol withdrawal, which may be due in part to the suppression of M-channels and, thus, highlights M-channels in the LHb as a potential therapeutic target for hyperalgesia in alcoholics.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Pei Chen
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Danielle Gregor
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Xiao Han
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA. .,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
24
|
Abstract
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
Collapse
|
25
|
McGuier NS, Rinker JA, Cannady R, Fulmer DB, Jones SR, Hoffman M, Mulholland PJ. Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents. Neuropharmacology 2018; 138:10-19. [PMID: 29775679 DOI: 10.1016/j.neuropharm.2018.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode KV7 channels influence alcohol intake and dependence. KV7 channels are a class of slowly activating voltage-dependent K+ channels that regulate neuronal excitability. Studies indicate that the KV7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and KV7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA KV7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective KV7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that KV7.4 channels are a critical mediator of excessive alcohol drinking.
Collapse
Affiliation(s)
- Natalie S McGuier
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States
| | - Jennifer A Rinker
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States; Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, 67 President Street, Charleston, SC, 29425, United States
| | - Reginald Cannady
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States
| | - Diana B Fulmer
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States
| | - Sara R Jones
- Wake Forest School of Medicine, Department of Physiology and Pharmacology, 1 Medical Center Boulevard, Winston Salem, NC, 27157, United States
| | - Michaela Hoffman
- Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, 67 President Street, Charleston, SC, 29425, United States
| | - Patrick J Mulholland
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States; Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, 67 President Street, Charleston, SC, 29425, United States.
| |
Collapse
|
26
|
Barrese V, Stott JB, Greenwood IA. KCNQ-Encoded Potassium Channels as Therapeutic Targets. Annu Rev Pharmacol Toxicol 2018; 58:625-648. [DOI: 10.1146/annurev-pharmtox-010617-052912] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Iain A. Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, United Kingdom;, ,
| |
Collapse
|
27
|
Cannady R, Rinker JA, Nimitvilai S, Woodward JJ, Mulholland PJ. Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. Handb Exp Pharmacol 2018; 248:311-343. [PMID: 29374839 DOI: 10.1007/164_2017_90] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.
Collapse
Affiliation(s)
- Reginald Cannady
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Rinker
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Sudarat Nimitvilai
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
28
|
Gao K, Ren Y, Wang J, Liu Z, Li J, Li L, Wang B, Li H, Wang Y, Cao Y, Ohno K, Zhai R, Liang Z. Interactions between genetic polymorphisms of glucose metabolizing genes and smoking and alcohol consumption in the risk of type 2 diabetes mellitus. Appl Physiol Nutr Metab 2017; 42:1316-1321. [PMID: 28806535 DOI: 10.1139/apnm-2017-0232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The impact of gene-environment interaction on diabetes remains largely unknown. We aimed to investigate if interaction between glucose metabolizing genes and lifestyle factors is associated with type 2 diabetes mellitus (T2DM). Interactions between genotypes of 4 glucose metabolizing genes (MTNR1B, KCNQ1, KLF14, and GCKR) and lifestyle factors were estimated in 722 T2DM patients and 759 controls, using multiple logistic regression. No significant associations with T2DM were detected for the single nucleotide polymorphisms of MTNR1B, KLF14 and GCKR. However, rs151290 (KCNQ1) polymorphisms were found to be associated with risk of T2DM. Compared with AA, the odds ratios (ORs) of AC or CC genotypes for developing T2DM were 1.545 (P = 0.0489) and 1.603 (P = 0.0383), respectively. In stratified analyses, the associations were stronger in smokers with CC than smokers with AA (OR = 3.668, P = 0.013); drinkers with AC (OR = 5.518, P = 0.036), CC (OR = 8.691, P = 0.0095), and AC+CC (OR = 6.764, P = 0.016) than drinkers with AA. Compared with nondrinkers with AA, drinkers who carry AC and CC had 12.072-fold (P = 0.0007) and 8.147-fold (P = 0.0052) higher risk of developing T2DM. In conclusions, rs151290 (KCNQ1) polymorphisms are associated with increased risk of T2DM, alone and especially in interaction with smoking and alcohol.
Collapse
Affiliation(s)
- Kaiping Gao
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Yongcheng Ren
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinjin Wang
- Department of Traditional Chinese Medicine Prevention, Preventive Medicine Research Evaluation Center, Henan University of Traditional Chinese Medicine, Zhengzhou, 450001, China
| | - Zichen Liu
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Jianna Li
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Linlin Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingyuan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Li
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Yaxi Wang
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Yunkai Cao
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, University Graduate School of Medicine, Nagoya, 4668550, Japan
| | - Rihong Zhai
- Department of Preventive Medicine, Shenzhen University School of Medicine, 3688 Nanhai Road, Shenzhen, 518060, China
| | - Zhen Liang
- Department of Geriatric Medicine, The 1st Affiliated Hospital of Shenzhen University, 3002 West Sungang Road, Shenzhen, 518035, China
| |
Collapse
|
29
|
The possibility of adverse effect of Kv7-channel opener retigabine on memory processes in rats. Epilepsy Behav 2017; 75:170-175. [PMID: 28866337 DOI: 10.1016/j.yebeh.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Retigabine is a novel antiepileptic drug with a unique and complex mechanism of action which allows its use in many diseases associated with impaired neuronal activity. This study sought to examine the impact of retigabine on two types of memory in rats. METHODS Adult male Wistar rats were used to assess the effect of retigabine, administered p.o. as single (10mg/kg or 20mg/kg) or repeated doses, on spatial memory with the Morris water maze test (MWM) and emotional memory, associated with fear, with the passive avoidance test (PA). RESULTS Retigabine administered at a high single dose transiently impairs learning processes in rats. In the MWM, these changes were delayed in time and of a lesser degree when retigabine was given at low single dose. Additionally, the drug administered repeatedly for 2weeks slowed learning processes in the MWM, but this effect occurred only after 1week of administration in the PA. CONCLUSION These findings indicate that retigabine may affect memory and learning processes, especially in the first phase of administration.
Collapse
|
30
|
Kang S, Li J, Zuo W, Fu R, Gregor D, Krnjevic K, Bekker A, Ye JH. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 2017; 42:1813-1824. [PMID: 28387223 PMCID: PMC5520788 DOI: 10.1038/npp.2017.68] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) and anxiety disorders (ADs) are often seen concurrently, but their underlying cellular basis is unclear. For unclear reasons, the lateral habenula (LHb), a key brain region involved in the pathophysiology of ADs, becomes hyperactive after ethanol withdrawal. M-type K+ channels (M-channels), important regulators of neuronal activity, are abundant in the LHb, yet little is known about their role in AUDs and associated ADs. We report here that in rats at 24 h withdrawal from systemic ethanol administration (either by intraperitoneal injection, 2 g/kg, twice/day, for 7 days; or intermittent drinking 20% ethanol in a two-bottle free choice protocol for 8 weeks), the basal firing rate and the excitability of LHb neurons in brain slices was higher, whereas the amplitude of medium afterhyperpolarization and M-type K+ currents were smaller, when compared to ethanol naive rats. Concordantly, M-channel blocker (XE991)-induced increase in the spontaneous firing rate in LHb neurons was smaller. The protein expression of M-channel subunits, KCNQ2/3 in the LHb was also smaller. Moreover, anxiety levels (tested in open field, marble burying, and elevated plus maze) were higher, which were alleviated by LHb inhibition either chemogenetically or by local infusion of the M-channel opener, retigabine. Intra-LHb infusion of retigabine also reduced ethanol consumption and preference. These findings reveal an important role of LHb M-channels in the expression of AUDs and ADs, and suggest that the M-channels could be a potential therapeutic target for alcoholics.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Danielle Gregor
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA, Tel: 973 972 1866, Fax: 973 972 0582, E-mail:
| |
Collapse
|
31
|
Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) or alcoholism is a chronic relapsing disorder. Our knowledge of alcoholism hinges on our understanding of its effects on the brain. This review will center on the effects of alcohol in the lateral habenula (LHb), an epithalamic structure that connects the forebrain with the midbrain and encodes aversive signaling. Like many addictive drugs, alcohol has both rewarding and aversive properties. While alcohol's euphoric property is believed to be important for the initiation of drinking, increasing evidence suggests that alcohol's negative affect plays a critical role in excessive drinking and alcohol dependence. During withdrawal and abstinence, alcoholics often experience anxiety and depressions, both of which have been implicated in relapse drinking. This review focuses on the recent accumulation of knowledge about the effects of acute and chronic alcohol exposure on the activity of and synaptic transmissions on LHb neurons, as well as the effects of manipulation of LHb function on alcohol consumption and related behaviors. Recent evidence highlights a critical role for the LHb in AUD and related psychiatric ailments. Multidisciplinary work in animals collectively suggests that LHb function and activity, including M-type potassium channels and glutamatergic transmission are altered by acute and repeated chronic alcohol exposure. We will also discuss how functional, pharmacological, and chemogenetic manipulation of the LHb affects ethanol drinking and psychiatric disorders occurring in animals withdrawn from chronic alcohol exposure. Conceivable mechanisms behind these effects and their potential as targets for therapies will also be discussed.
Collapse
Affiliation(s)
- Avi Shah
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
32
|
Cannady R, McGonigal JT, Newsom RJ, Woodward JJ, Mulholland PJ, Gass JT. Prefrontal Cortex K Ca2 Channels Regulate mGlu 5-Dependent Plasticity and Extinction of Alcohol-Seeking Behavior. J Neurosci 2017; 37:4359-4369. [PMID: 28320841 PMCID: PMC5413180 DOI: 10.1523/jneurosci.2873-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022] Open
Abstract
Identifying novel treatments that facilitate extinction learning could enhance cue-exposure therapy and reduce high relapse rates in alcoholics. Activation of mGlu5 receptors in the infralimbic prefrontal cortex (IL-PFC) facilitates learning during extinction of cue-conditioned alcohol-seeking behavior. Small-conductance calcium-activated potassium (KCa2) channels have also been implicated in extinction learning of fear memories, and mGlu5 receptor activation can reduce KCa2 channel function. Using a combination of electrophysiological, pharmacological, and behavioral approaches, this study examined KCa2 channels as a novel target to facilitate extinction of alcohol-seeking behavior in rats. This study also explored related neuronal and synaptic mechanisms within the IL-PFC that underlie mGlu5-dependent enhancement of extinction learning. Using whole-cell patch-clamp electrophysiology, activation of mGlu5 in ex vivo slices significantly reduced KCa2 channel currents in layer V IL-PFC pyramidal neurons, confirming functional downregulation of KCa2 channel activity by mGlu5 receptors. Additionally, positive modulation of KCa2 channels prevented mGlu5 receptor-dependent facilitation of long-term potentiation in the IL-PFC. Systemic and intra-IL-PFC treatment with apamin (KCa2 channel allosteric inhibitor) significantly enhanced extinction of alcohol-seeking behavior across multiple extinction sessions, an effect that persisted for 3 weeks, but was not observed after apamin microinfusions into the prelimbic PFC. Positive modulation of IL-PFC KCa2 channels significantly attenuated mGlu5-dependent facilitation of alcohol cue-conditioned extinction learning. These data suggest that mGlu5-dependent facilitation of extinction learning and synaptic plasticity in the IL-PFC involves functional inhibition of KCa2 channels. Moreover, these findings demonstrate that KCa2 channels are a novel target to facilitate long-lasting extinction of alcohol-seeking behavior.SIGNIFICANCE STATEMENT Alcohol use disorder is a chronic relapsing disorder that is associated with compulsive alcohol-seeking behavior. One of the main causes of alcohol relapse is the craving caused by environmental cues that are associated with alcohol. These cues are formed by normal learning and memory principles, and the understanding of the brain mechanisms that help form these associations can lead to the development of drugs and/or behavior therapies that reduce the impact that these cues have on relapse in alcoholics.
Collapse
Affiliation(s)
- Reginald Cannady
- Department of Neuroscience
- Department of Psychiatry & Behavioral Sciences, and
| | | | | | - John J Woodward
- Department of Neuroscience
- Department of Psychiatry & Behavioral Sciences, and
| | | | - Justin T Gass
- Department of Neuroscience,
- Department of Psychiatry & Behavioral Sciences, and
- Charleston Alcohol Research Center, Addiction Sciences Division, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
33
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
34
|
Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques. J Neurosci 2017; 37:3646-3660. [PMID: 28270566 DOI: 10.1523/jneurosci.0133-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/17/2017] [Accepted: 02/28/2017] [Indexed: 02/08/2023] Open
Abstract
Cognitive impairments, uncontrolled drinking, and neuropathological cortical changes characterize alcohol use disorder. Dysfunction of the orbitofrontal cortex (OFC), a critical cortical subregion that controls learning, decision-making, and prediction of reward outcomes, contributes to executive cognitive function deficits in alcoholic individuals. Electrophysiological and quantitative synaptomics techniques were used to test the hypothesis that heavy drinking produces neuroadaptations in the macaque OFC. Integrative bioinformatics and reverse genetic approaches were used to identify and validate synaptic proteins with novel links to heavy drinking in BXD mice. In drinking monkeys, evoked firing of OFC pyramidal neurons was reduced, whereas the amplitude and frequency of postsynaptic currents were enhanced compared with controls. Bath application of alcohol reduced evoked firing in neurons from control monkeys, but not drinking monkeys. Profiling of the OFC synaptome identified alcohol-sensitive proteins that control glutamate release (e.g., SV2A, synaptogyrin-1) and postsynaptic signaling (e.g., GluA1, PRRT2) with no changes in synaptic GABAergic proteins. Western blot analysis confirmed the increase in GluA1 expression in drinking monkeys. An exploratory analysis of the OFC synaptome found cross-species genetic links to alcohol intake in discrete proteins (e.g., C2CD2L, DIRAS2) that discriminated between low- and heavy-drinking monkeys. Validation studies revealed that BXD mouse strains with the D allele at the C2cd2l interval drank less alcohol than B allele strains. Thus, by profiling of the OFC synaptome, we identified changes in proteins controlling glutamate release and postsynaptic signaling and discovered several proteins related to heavy drinking that have potential as novel targets for treating alcohol use disorder.SIGNIFICANCE STATEMENT Clinical research identified cognitive deficits in alcoholic individuals as a risk factor for relapse, and alcoholic individuals display deficits on cognitive tasks that are dependent upon the orbitofrontal cortex (OFC). To identify neurobiological mechanisms that underpin OFC dysfunction, this study used electrophysiology and integrative synaptomics in a translational nonhuman primate model of heavy alcohol consumption. We found adaptations in synaptic proteins that control glutamatergic signaling in chronically drinking monkeys. Our functional genomic exploratory analyses identified proteins with genetic links to alcohol and cocaine intake across mice, monkeys, and humans. Future work is necessary to determine whether targeting these novel targets reduces excessive and harmful levels of alcohol drinking.
Collapse
|
35
|
Rinker JA, Fulmer DB, Trantham-Davidson H, Smith ML, Williams RW, Lopez MF, Randall PK, Chandler LJ, Miles MF, Becker HC, Mulholland PJ. Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 2017; 58:33-45. [PMID: 27432260 DOI: 10.1016/j.alcohol.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic-intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC that were dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlates with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction.
Collapse
|
36
|
Darlington TM, McCarthy RD, Cox RJ, Miyamoto-Ditmon J, Gallego X, Ehringer MA. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling. GENES BRAIN AND BEHAVIOR 2016; 15:474-90. [PMID: 27063791 DOI: 10.1111/gbb.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Abstract
Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.
Collapse
Affiliation(s)
- T M Darlington
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Current address: Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - R D McCarthy
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - R J Cox
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - J Miyamoto-Ditmon
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - X Gallego
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
37
|
Zwierzyńska E, Andrzejczak D, Pietrzak B. Does retigabine affect the development of alcohol dependence?--A pharmaco-EEG study. Neurosci Lett 2015; 611:6-13. [PMID: 26598024 DOI: 10.1016/j.neulet.2015.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
New antiepileptic drugs have been investigated for their potential role in the treatment of alcohol dependence. One of these drugs is retigabine and this study examines the effect of retigabine co-administered with ethanol on the development of alcohol dependence and the course of acute withdrawal syndrome. A pharmaco-EEG method was used to examine this impact in selected brain structures of rabbits (midbrain reticular formation, hippocampus and frontal cortex). Retigabine was administered p.o. at a dose of 5mg/kg/day with ethanol ad libitum for 6 weeks and then alone for 2 weeks during an abstinence period. Changes in bioelectric activity, which demonstrated the inhibitory effect of alcohol on the brain structures, were already visible after 2 weeks of ethanol administration. In the abstinence period, changes were of a different nature and significant neuronal hyperactivity was observed, particularly in the midbrain reticular formation and the hippocampus. This findings reveal that retigabine decreased ethanol-induced changes during both alcohol administration and abstinence periods. In particular, the modulatory effect of retigabine on the hippocampus may be a significant element of its mechanism of action in alcohol dependence therapy.
Collapse
Affiliation(s)
- Ewa Zwierzyńska
- Department of Pharmacodynamics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Dariusz Andrzejczak
- Department of Pharmacodynamics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Bogusława Pietrzak
- Department of Pharmacodynamics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
38
|
Bubier JA, Phillips CA, Langston MA, Baker EJ, Chesler EJ. GeneWeaver: finding consilience in heterogeneous cross-species functional genomics data. Mamm Genome 2015; 26:556-66. [PMID: 26092690 PMCID: PMC4602068 DOI: 10.1007/s00335-015-9575-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023]
Abstract
A persistent challenge lies in the interpretation of consensus and discord from functional genomics experimentation. Harmonizing and analyzing this data will enable investigators to discover relations of many genes to many diseases, and from many phenotypes and experimental paradigms to many diseases through their genomic substrates. The GeneWeaver.org system provides a platform for cross-species integration and interrogation of heterogeneous curated and experimentally derived functional genomics data. GeneWeaver enables researchers to store, share, analyze, and compare results of their own genome-wide functional genomics experiments in an environment containing rich companion data obtained from major curated repositories, including the Mouse Genome Database and other model organism databases, along with derived data from highly specialized resources, publications, and user submissions. The data, largely consisting of gene sets and putative biological networks, are mapped onto one another through gene identifiers and homology across species. A versatile suite of interactive tools enables investigators to perform a variety of set analysis operations to find consilience among these often noisy experimental results. Fast algorithms enable real-time analysis of large queries. Specific applications include prioritizing candidate genes for quantitative trait loci, identifying biologically valid mouse models and phenotypic assays for human disease, finding the common biological substrates of related diseases, classifying experiments and the biological concepts they represent from empirical data, and applying patterns of genomic evidence to implicate novel genes in disease. These results illustrate an alternative to strict emphasis on replicability, whereby researchers classify experimental results to identify the conditions that lead to their similarity.
Collapse
Affiliation(s)
| | - Charles A Phillips
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Erich J Baker
- Computer Science Department, Baylor University, Waco, TX, 76798, USA
| | | |
Collapse
|