1
|
Dharavath RN, Pina-Leblanc C, Tang VM, Sloan ME, Nikolova YS, Pangarov P, Ruocco AC, Shield K, Voineskos D, Blumberger DM, Boileau I, Bozinoff N, Gerretsen P, Vieira E, Melamed OC, Sibille E, Quilty LC, Prevot TD. GABAergic signaling in alcohol use disorder and withdrawal: pathological involvement and therapeutic potential. Front Neural Circuits 2023; 17:1218737. [PMID: 37929054 PMCID: PMC10623140 DOI: 10.3389/fncir.2023.1218737] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Alcohol is one of the most widely used substances. Alcohol use accounts for 5.1% of the global disease burden, contributes substantially to societal and economic costs, and leads to approximately 3 million global deaths yearly. Alcohol use disorder (AUD) includes various drinking behavior patterns that lead to short-term or long-lasting effects on health. Ethanol, the main psychoactive molecule acting in alcoholic beverages, directly impacts the GABAergic system, contributing to GABAergic dysregulations that vary depending on the intensity and duration of alcohol consumption. A small number of interventions have been developed that target the GABAergic system, but there are promising future therapeutic avenues to explore. This review provides an overview of the impact of alcohol on the GABAergic system, the current interventions available for AUD that target the GABAergic system, and the novel interventions being explored that in the future could be included among first-line therapies for the treatment of AUD.
Collapse
Affiliation(s)
| | - Celeste Pina-Leblanc
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Victor M. Tang
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addiction Division, CAMH, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Matthew E. Sloan
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Addiction Division, CAMH, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
| | - Anthony C. Ruocco
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Kevin Shield
- Institute of Mental Health Policy Research, CAMH, Toronto, ON, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Daniel M. Blumberger
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Isabelle Boileau
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nikki Bozinoff
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Osnat C. Melamed
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Lena C. Quilty
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
McPhee MD, Hendershot CS. Meta-analysis of acute alcohol effects on response inhibition. Neurosci Biobehav Rev 2023; 152:105274. [PMID: 37277010 DOI: 10.1016/j.neubiorev.2023.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Alcohol intoxication impairs response inhibition; however, discrepant findings have been reported regarding the magnitude and moderators of this effect. This meta-analysis of human laboratory studies aimed to quantify acute effects of alcohol on response inhibition and evaluate moderators of this effect. Eligible studies examined alcohol's effects on response inhibition with the Go/No-Go (GNG) task (n = 1616 participants) or Stop Signal Task (SST) (n = 1310 participants). Results revealed a detrimental effect of acute alcohol on response inhibition overall (g = 0.411, 95 % CI [0.350, 0.471]), with similar effects in studies using GNG (g = 0.431, SE = 0.031) and SST (g = 0.366, SE = 0.063). Effect sizes were larger in studies involving higher breath alcohol concentration levels and under GNG conditions that established a prepotent response set. These findings establish the magnitude, precision, and potential moderators of alcohol's effects on inhibitory control, furthering understanding of a key neurobehavioral mechanism proposed to underlie alcohol-related impulsivity and impaired control over consumption.
Collapse
Affiliation(s)
- Matthew D McPhee
- Rotman Research Institute, Baycrest Academy for Research and Education, 3560 Bathurst Street, Toronto M6A2E1, Ontario, Canada.
| | - Christian S Hendershot
- Bowles Center for Alcohol Studies, 104 Manning Drive, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, 104 Manning Drive, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
3
|
Stock AK, Wendiggensen P, Ghin F, Beste C. Alcohol-induced deficits in reactive control of response selection and inhibition are counteracted by a seemingly paradox increase in proactive control. Sci Rep 2023; 13:1097. [PMID: 36658291 PMCID: PMC9852446 DOI: 10.1038/s41598-023-28012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
High-dose alcohol intoxication reduces cognitive control, including inhibition. Although inhibition deficits may contribute to the behavioral deficits commonly observed in alcohol use disorder (AUD), many questions about potentially modulating factors have remained unanswered. We examined the effects of experimentally induced high-dose alcohol intoxication (~ 1.1 ‰) on the interplay between controlled vs. automatic response selection and inhibition in healthy young men. A holistic EEG-based theta activity analysis that considered both reactive control during task performance and preceding proactive control processes was run. It revealed a previously unknown seesaw relationship, with decreased reactive control, but paradoxically increased proactive control. Most importantly, alcohol-induced increases in proactive occipital theta band power were associated with reductions in negative alcohol effects on reactive control processes associated with decreased activity in the SMA and medial frontal cortex. Our findings demonstrate that research should not solely focus on immediate effects during task performance. Aside from differential neurobiochemical and neuroanatomical effects of alcohol, it is also conceivable that proactive control may have been recruited in a (secondary) response to compensate for alcohol-induced impairments in reactive control. Against this background, it could be promising to investigate changes in such compensatory mechanisms in pronounced alcohol-associated inhibition deficits, like in AUD patients.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany. .,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany. .,Faculty of Psychology, TU Dresden, Dresden, Germany.
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
On the Role of Stimulus-Response Context in Inhibitory Control in Alcohol Use Disorder. J Clin Med 2022; 11:jcm11216557. [DOI: 10.3390/jcm11216557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The behavioral and neural dynamics of response inhibition deficits in alcohol use disorder (AUD) are still largely unclear, despite them possibly being key to the mechanistic understanding of the disorder. Our study investigated the effect of automatic vs. controlled processing during response inhibition in participants with mild-to-moderate AUD and matched healthy controls. For this, a Simon Nogo task was combined with EEG signal decomposition, multivariate pattern analysis (MVPA), and source localization methods. The final sample comprised n = 59 (32♂) AUD participants and n = 64 (28♂) control participants. Compared with the control group, AUD participants showed overall better response inhibition performance. Furthermore, the AUD group was less influenced by the modulatory effect of automatic vs. controlled processes during response inhibition (i.e., had a smaller Simon Nogo effect). The neurophysiological data revealed that the reduced Simon Nogo effect in the AUD group was associated with reduced activation differences between congruent and incongruent Nogo trials in the inferior and middle frontal gyrus. Notably, the drinking frequency (but not the number of AUD criteria we had used to distinguish groups) predicted the extent of the Simon Nogo effect. We suggest that the counterintuitive advantage of participants with mild-to-moderate AUD over those in the control group could be explained by the allostatic model of drinking effects.
Collapse
|
5
|
Gholamipourbarogh N, Ghin F, Mückschel M, Frings C, Stock A, Beste C. Evidence for independent representational contents in inhibitory control subprocesses associated with frontoparietal cortices. Hum Brain Mapp 2022; 44:1046-1061. [PMID: 36314869 PMCID: PMC9875938 DOI: 10.1002/hbm.26135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022] Open
Abstract
Inhibitory control processes have intensively been studied in cognitive science for the past decades. Even though the neural dynamics underlying these processes are increasingly better understood, a critical open question is how the representational dynamics of the inhibitory control processes are modulated when engaging in response inhibition in a relatively automatic or a controlled mode. Against the background of an overarching theory of perception-action integration, we combine temporal and spatial EEG signal decomposition methods with multivariate pattern analysis and source localization to obtain fine-grained insights into the neural dynamics of the representational content of response inhibition. For this purpose, we used a sample of N = 40 healthy adult participants. The behavioural data suggest that response inhibition was better in a more controlled than a more automated response execution mode. Regarding neural dynamics, effects of response inhibition modes relied on a concomitant coding of stimulus-related information and rules of how stimulus information is related to the appropriate motor programme. Crucially, these fractions of information, which are encoded at the same time in the neurophysiological signal, are based on two independent spatial neurophysiological activity patterns, also showing differences in the temporal stability of the representational content. Source localizations revealed that the precuneus and inferior parietal cortex regions are more relevant than prefrontal areas for the representation of stimulus-response selection codes. We provide a blueprint how a concatenation of EEG signal analysis methods, capturing distinct aspects of neural dynamics, can be connected to cognitive science theory on the importance of representations in action control.
Collapse
Affiliation(s)
- Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | | | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
6
|
Ghin F, Stock AK, Beste C. The importance of resource allocation for the interplay between automatic and cognitive control in response inhibition – an EEG source localization study. Cortex 2022; 155:202-217. [DOI: 10.1016/j.cortex.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
|
7
|
Konjusha A, Colzato L, Ghin F, Stock A, Beste C. Auricular transcutaneous vagus nerve stimulation for alcohol use disorder: A chance to improve treatment? Addict Biol 2022; 27:e13202. [DOI: 10.1111/adb.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
- Biopsychology, Faculty of Psychology TU Dresden Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
- University Neuropsychology Center, Faculty of Medicine TU Dresden Dresden Germany
| |
Collapse
|
8
|
A. Markovics J. Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism of Action for All Methods of Neurofeedback. ARTIF INTELL 2022. [DOI: 10.5772/intechopen.98343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are several different methods of neurofeedback, most of which presume an operant conditioning model whereby the subject learns to control their brain activity in particular regions of the brain and/or at particular brainwave frequencies based on reinforcement. One method, however, called infra-low frequency [ILF] neurofeedback cannot be explained through this paradigm, yet it has profound effects on brain function. Like a conductor of a symphony, recent evidence demonstrates that the primary ILF (typically between 0.01–0.1 Hz), which correlates with the fluctuation of oxygenated and deoxygenated blood in the brain, regulates all of the classic brainwave bands (i.e. alpha, theta, delta, beta, gamma). The success of ILF neurofeedback suggests that all forms of neurofeedback may work through a similar mechanism that does not fit the operant conditioning paradigm. This chapter focuses on the possible mechanisms of action for ILF neurofeedback, which may be generalized, based on current evidence.
Collapse
|
9
|
Wendiggensen P, Ghin F, Koyun AH, Stock AK, Beste C. Pretrial Theta Band Activity Affects Context-dependent Modulation of Response Inhibition. J Cogn Neurosci 2022; 34:605-617. [PMID: 35061021 DOI: 10.1162/jocn_a_01816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The ability to inhibit a prepotent response is a crucial prerequisite of goal-directed behavior. So far, research on response inhibition has mainly examined these processes when there is little to no cognitive control during the decision to respond. We manipulated the "context" in which response inhibition has to be exerted (i.e., a controlled or an automated context) by combining a Simon task with a go/no-go task and focused on theta band activity. To investigate the role of "context" in response inhibition, we also examined how far theta band activity in the pretrial period modulates context-dependent variations of theta band activity during response inhibition. This was done in an EEG study applying beamforming methods. Here, we examined n = 43 individuals. We show that an automated context, as opposed to a controlled context, compromises response inhibition performance and increases the need for cognitive control. This was also related to context-dependent modulations of theta band activity in superior frontal and middle frontal regions. Of note, results showed that theta band activity in the pretrial period, associated with the right inferior frontal cortex, was substantially correlated with context-dependent modulations of theta band activity during response inhibition. The direction of the obtained correlation provides insights into the functional relevance of a pretrial theta band activity. The data suggest that pretrial theta band activity reflects some form of attentional sampling to inform possible upcoming processes signaling the need for cognitive control.
Collapse
Affiliation(s)
- Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| |
Collapse
|
10
|
Stock AK, Yu S, Ghin F, Beste C. How low working memory demands and reduced anticipatory attentional gating contribute to impaired inhibition during acute alcohol intoxication. Sci Rep 2022; 12:2892. [PMID: 35190563 PMCID: PMC8861183 DOI: 10.1038/s41598-022-06517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
High-dose alcohol intoxication is commonly associated with impaired inhibition, but the boundary conditions, as well as associated neurocognitive/neuroanatomical changes have remained rather unclear. This study was motivated by the counterintuitive finding that high-dose alcohol intoxication compromises response inhibition performance when working memory demands were low, but not when they were high. To investigate whether this is more likely to be caused by deficits in cognitive control processes or in attentional processes, we examined event-related (de)synchronization processes in theta and alpha-band activity and performed beamforming analyses on the EEG data of previously published behavioral findings. This yielded two possible explanations: There may be a selective decrease of working memory engagement in case of relatively low demand, which boosts response automatization, ultimately putting more strain on the remaining inhibitory resources. Alternatively, there may be a decrease in proactive preparatory and anticipatory attentional gating processes in case of relatively low demand, hindering attentional sampling of upcoming stimuli. Crucially, both of these interrelated mechanisms reflect differential alcohol effects after the actual motor inhibition process and therefore tend to be processes that serve to anticipate future response inhibition affordances. This provides new insights into how high-dose alcohol intoxication can impair inhibitory control.
Collapse
|
11
|
Opitz A, Ghin F, Hubert J, Verster JC, Beste C, Stock AK. Alcohol intoxication, but not hangover, differentially impairs learning and automatization of complex motor response sequences. Sci Rep 2021; 11:12539. [PMID: 34131177 PMCID: PMC8206163 DOI: 10.1038/s41598-021-90803-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Behavioral automatization usually makes us more efficient and less error-prone, but may also foster dysfunctional behavior like alcohol abuse. Yet, it has remained unclear whether alcohol itself causes the shift from controlled to habitual behavior commonly observed in alcohol use disorder (AUD). We thus investigated how the acute and post-acute effects of binge drinking affect the automatization of motor response sequences and the execution of automated vs. controlled motor response sequences. N = 70 healthy young men performed a newly developed automatization paradigm once sober and once after binge drinking (half of them intoxicated and half of them hungover). While we found no significant effects of alcohol hangover, acute intoxication (~ 1.2 ‰) had two dissociable effects: Firstly, it impaired the automatization of complex motor response sequence execution. Secondly, it eliminated learning effects in response selection and pre-motor planning processes. The results suggest that alcohol hangover did not affect controlled or automated processes, and disprove the assumption that alcohol intoxication generally spares or facilitates motor response sequence automatization. As these effects could be specific to the investigated explicit learning context, acute intoxication might potentially still improve the execution of pre-existing automatisms and/or the implicit acquisition of motor response sequence automatisms.
Collapse
Affiliation(s)
- Antje Opitz
- grid.4488.00000 0001 2111 7257Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Filippo Ghin
- grid.4488.00000 0001 2111 7257Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Jan Hubert
- grid.4488.00000 0001 2111 7257Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Joris C. Verster
- grid.5477.10000000120346234Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands ,grid.1027.40000 0004 0409 2862Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Christian Beste
- grid.4488.00000 0001 2111 7257Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Ann-Kathrin Stock
- grid.4488.00000 0001 2111 7257Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany ,grid.4488.00000 0001 2111 7257Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| |
Collapse
|
12
|
Stock A, Bensmann W, Zink N, Münchau A, Beste C. Automatic aspects of response selection remain unchanged during high-dose alcohol intoxication. Addict Biol 2021; 26:e12852. [PMID: 31821661 DOI: 10.1111/adb.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022]
Abstract
Regular binge-drinking increases the risk of developing alcohol use disorder (AUD) and induces similar acute effects on behavioral control, particularly in case of response selection conflicts. No such effects have been reported for automatic/bottom-up response selection, even though AUD alters automaticity. However, it has never been reliably tested whether this domain is truly unchanged during high-dose alcohol intoxication. To investigate this question with the help of Bayesian analyses, we subjected n=31 young healthy male participants to a within-subject design, where each participant was tested twice in a counter-balanced order (ie, once sober and once intoxicated at 1.1‰). On each appointment, the participants performed the S-R paradigm, which assesses automatic stimulus-response (S-R) binding within the framework of the theory of event coding (TEC). In short, the TEC states that stimulus features and responses become encoded in an event file when they occur simultaneously. These event files will be reactivated by any matching stimulus feature, thus facilitating the encoded response (and hampering different responses). Alcohol led to a general decrease in behavioral performance, as demonstrated by significant main effects of intoxication status on accuracy and response times (all P ≤ .009). We also reproduced typical task effects, but did not find any significant interactions with the intoxication factor (all P ≥ .099). The latter was further substantiated by Bayesian analyses providing positive to strong evidence for the null hypothesis. Taken together, our results demonstrate that even high-dose alcohol intoxication does not impair automatic response selection/S-R associations.
Collapse
Affiliation(s)
- Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
| | - Alexander Münchau
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry University of Lübeck Lübeck Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany
| |
Collapse
|
13
|
Berghäuser J, Bensmann W, Zink N, Endrass T, Beste C, Stock AK. Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies. J Clin Med 2020; 9:jcm9051453. [PMID: 32414137 PMCID: PMC7290484 DOI: 10.3390/jcm9051453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Frequent alcohol binges shift behavior from goal-directed to habitual processing modes. This shift in reward-associated learning strategies plays a key role in the development and maintenance of alcohol use disorders and seems to persist during (early stages of) sobriety in at-risk drinkers. Yet still, it has remained unclear whether this phenomenon might be associated with alcohol hangover and thus also be found in social drinkers. In an experimental crossover design, n = 25 healthy young male participants performed a two-step decision-making task once sober and once hungover (i.e., when reaching sobriety after consuming 2.6 g of alcohol per estimated liter of total body water). This task allows the separation of effortful model-based and computationally less demanding model-free learning strategies. The experimental induction of alcohol hangover was successful, but we found no significant hangover effects on model-based and model-free learning scores, the balance between model-free and model-based valuation (ω), or perseveration tendencies (π). Bayesian analyses provided positive evidence for the null hypothesis for all measures except π (anecdotal evidence for the null hypothesis). Taken together, alcohol hangover, which results from a single binge drinking episode, does not impair the application of effortful and computationally costly model-based learning strategies and/or increase model-free learning strategies. This supports the notion that the behavioral deficits observed in at-risk drinkers are most likely not caused by the immediate aftereffects of individual binge drinking events.
Collapse
Affiliation(s)
- Julia Berghäuser
- Chair of Addiction Research, Institute for Clinical Psychology and Psychotherapy, Faculty of Psychology TU Dresden, Chemnitzer Str. 46, 01062 Dresden, Germany; (J.B.); (T.E.)
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (W.B.); (N.Z.); (C.B.)
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (W.B.); (N.Z.); (C.B.)
| | - Tanja Endrass
- Chair of Addiction Research, Institute for Clinical Psychology and Psychotherapy, Faculty of Psychology TU Dresden, Chemnitzer Str. 46, 01062 Dresden, Germany; (J.B.); (T.E.)
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (W.B.); (N.Z.); (C.B.)
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (W.B.); (N.Z.); (C.B.)
- Correspondence:
| |
Collapse
|
14
|
Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. J Clin Med 2020; 9:jcm9020481. [PMID: 32050509 PMCID: PMC7073826 DOI: 10.3390/jcm9020481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol increases GABAergic signaling and decreases glutamatergic signaling in the brain. Variations in these neurotransmitter levels may modulate/predict executive functioning. Matching this, strong impairments of response inhibition are one of the most consistently reported cognitive/behavioral effects of acute alcohol intoxication. However, it has never been investigated whether baseline differences in these neurotransmitters allow to predict how much alcohol intoxication impairs response inhibition, and whether this is reflected in neurophysiological measures of cognitive control. We used MR spectroscopy to assess baseline (i.e., sober) GABA and glutamate levels in the anterior cingulate cortex (ACC) and striatum in n = 30 healthy young males, who were subsequently tested once sober and once intoxicated (1.01 permille). Inhibition was assessed with the sustained attention to response task (SART). This paradigm also allows to examine the effect of different degrees of response automatization, which is a known modulator for response inhibition, but does not seem to be substantially impaired during acute intoxication. As a neurophysiological correlate of response inhibition and control, we quantified EEG-derived theta band power and located its source using beamforming analyses. We found that alcohol-induced response inhibition deficits only occurred in the case of response automatization. This was reflected by decreased theta band activity in the left supplementary motor area (SMA), which may reflect modulations in the encoding of a surprise signal in response to inhibition cues. However, we did not find that differences in baseline (i.e., sober) GABA or glutamate levels significantly modulated differences in the size of alcohol-induced inhibition deficits.
Collapse
|
15
|
Opitz A, Hubert J, Beste C, Stock AK. Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. J Clin Med 2019; 8:jcm8091317. [PMID: 31461971 PMCID: PMC6780538 DOI: 10.3390/jcm8091317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Alcohol hangover commonly occurs after an episode of heavy drinking. It has previously been demonstrated that acute high-dose alcohol intoxication reduces cognitive control, while automatic processes remain comparatively unaffected. However, it has remained unclear whether alcohol hangover, as a consequence of binge drinking, modulates the interplay between cognitive control and automaticity in a comparable way. Therefore, the purpose of this study was to investigate the effects of alcohol hangover on controlled versus automatic response selection and inhibition. N = 34 healthy young men completed a Simon Nogo task, once sober and once hungover. Hangover symptoms were experimentally induced by a standardized administration of alcoholic drinks (with high congener content) on the night before the hangover appointment. We found no significant hangover effects, which suggests that alcohol hangover did not produce the same functional deficits as an acute high-dose intoxication. Yet still, add-on Bayesian analyses revealed that hangover slightly impaired response selection, but not response inhibition. This pattern of effects cannot be explained with the current knowledge on how ethanol and its metabolite acetaldehyde may modulate response selection and inhibition via the dopaminergic or GABAergic system.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Jan Hubert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| |
Collapse
|
16
|
Chmielewski W, Bluschke A, Bodmer B, Wolff N, Roessner V, Beste C. Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Dev Cogn Neurosci 2019; 36:100623. [PMID: 30738306 PMCID: PMC6969218 DOI: 10.1016/j.dcn.2019.100623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023] Open
Abstract
Inhibitory control deficits are a hallmark in ADHD. Yet, inhibitory control includes a multitude of entities (e.g. ‘inhibition of interferences’ and ‘action inhibition’). Examining the interplay between these kinds of inhibitory control provides insights into the architecture of inhibitory control in ADHD. Combining a Simon task and a Go/Nogo task, we assessed the interplay of ‘inhibition of interferences’ and ‘action inhibition’. This was combined with EEG recordings, EEG data decomposition and source localization. Simon interference effects in Go trials were larger in ADHD. At the neurophysiological level, this insufficient inhibition of interferences in ADHD related to the superior parietal cortex. Simon interference effects were absent in action inhibition (Nogo) trials in ADHD, compared to controls. This was supported by bayesian statistics. The power of effects was higher than 95%. The differential effects between the groups were associated with modulations of neurophysiological response selection processes in the superior frontal gyrus. ADHD is not only associated with deficits in inhibitory control. Rather, the organization and architecture of the inhibitory control system is different in ADHD. Distinguishable inhibitory control processes operate on a hierarchical ‘first come, first serve’ basis and are not integrated in ADHD. This is a new facet of ADHD.
Collapse
Affiliation(s)
- Witold Chmielewski
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|