1
|
Wang R, Zhu L, Fan Y, Du H, Han W, Guan F, Zhu Y, Ni T, Chen T. Dopamine D3 receptor mediates natural and methamphetamine rewards via regulating the expression of miR-29c in the nucleus accumbens of mice. Neuropharmacology 2025; 262:110200. [PMID: 39490406 DOI: 10.1016/j.neuropharm.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The dopamine D3 receptor (D3R), principally confined to the nucleus accumbens (NAc), is involved in regulating natural and drug rewards; however, the molecular mechanisms underlying the associated process remain unclear. Earlier research has reported the concurrent influence of D3R and miR-29c expressed in the NAc on methamphetamine (METH)-induced reward behaviors and microglial activation, hinting at regulatory roles in reward processing. Herein, we performed viral manipulation-mediating D3R/miR-29c overexpression and inhibition in the whole NAc in male D3R knockout and wild-type mice to investigate this potential relationship. Behavioral responses to the rewarding stimuli were assessed using sucrose preference score, METH-induced locomotor sensitization, and METH-induced conditioned place preference tests. Overall, we observed a notable decrease in the behavioral response to sucrose and METH in D3R-deficient mice, accompanied by the downregulation of miR-29c expression in the NAc. Diminished responses to those rewarding stimuli in D3R-deficient mice primarily stemmed from the reduction of GSK3β activity and subsequent down-regulation of miR-29c in the NAc. Microglial activation in the NAc mediates the effect of D3R-miR-29c deficiency on the reward effects of sucrose and METH. Pharmacological suppression of microglial activity rescued the reduced response in mice lacking D3R-miR-29c in the NAc. Overall, this study revealed the mechanism by which D3R regulates both natural and drug rewards via miR-29c in the murine NAc, highlighting the role of the NAc D3R-miR-29c pathway as a critical regulator of rewards, and providing new insights into the role of NAc D3R-miR-29c in encoding rewarding experiences.
Collapse
Affiliation(s)
- Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yunting Fan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huiqing Du
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Han
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Fanglin Guan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China
| | - Tong Ni
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
2
|
Barattini AE, Pahng AR. Interactions of pain and opioids on conditioned place preference in rodents. Psychopharmacology (Berl) 2025; 242:1-26. [PMID: 39562334 PMCID: PMC11741919 DOI: 10.1007/s00213-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
RATIONALE Opioid analgesics are the most effective medications used for the treatment of pain, however there are significant risks associated with repeated opioid use including opioid misuse and opioid use disorder development. Chronic pain affects millions of adults in the United States, and opioid misuse is often comorbid with pain conditions in individuals who are repeatedly treated with opioids. In addition to providing pain relief, opioids produce rewarding effects, but in chronic pain states, reward processing can become dysregulated. The conditioned place preference task is commonly used to measure the rewarding properties of opioids in rodents. During this task, opioid administration is paired with a distinct environment through repeated conditioning and the change in an animal's preference for the paired environment indicates whether the opioid is rewarding or not. OBJECTIVES Rodent pain models can be combined with conditioned place preference to examine the effects of pain on opioid reward. The existing preclinical literature on pain effects on conditioned place preference is conflicting, where pain conditions have been reported to enhance, suppress, or have no effect on opioid reward. This review will discuss several factors that may contribute to these discordant findings including conditioning session duration and number, rodent strain differences in opioid sensitivity, analgesic properties of opioids at tested doses, locomotor effects at tested doses, and diurnal variation in pain sensitivity. Future studies should consider how these factors contribute to opioid conditioned place preference in both pain and pain-free animals to have a better understanding of the interactions between pain and opioid reward.
Collapse
Affiliation(s)
- Angela E Barattini
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Amanda R Pahng
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA.
- Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
3
|
Shafieichaharberoud F, Lang S, Whalen C, Rivera Quiles C, Purcell L, Talbot C, Wang P, Norton EB, Mazei-Robison M, Sulima A, Jacobson AE, Rice KC, Matyas GR, Huang X. Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles. Bioconjug Chem 2024; 35:164-173. [PMID: 38113481 PMCID: PMC11259974 DOI: 10.1021/acs.bioconjchem.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qβ (mQβ), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQβ-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQβ-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQβ-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.
Collapse
Affiliation(s)
- Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cristina Rivera Quiles
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lillie Purcell
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Cameron Talbot
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Michelle Mazei-Robison
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Marie N, Noble F. Oxycodone, an opioid like the others? Front Psychiatry 2023; 14:1229439. [PMID: 38152360 PMCID: PMC10751306 DOI: 10.3389/fpsyt.2023.1229439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 12/29/2023] Open
Abstract
The over-prescription of opioid analgesics is a growing problem in the field of addiction, which has reached epidemic-like proportions in North America. Over the past decade, oxycodone has gained attention as the leading opioid responsible for the North America opioid crisis. Oxycodone is the most incriminated drug in the early years of the epidemic of opioid use disorder in USA (roughly 1999-2016). The number of preclinical articles on oxycodone is rapidly increasing. Several publications have already compared oxycodone with other opioids, focusing mainly on their analgesic properties. The aim of this review is to focus on the genomic and epigenetic regulatory features of oxycodone compared with other opioid agonists. Our aim is to initiate a discussion of perceptible differences in the pharmacological response observed with these various opioids, particularly after repeated administration in preclinical models commonly used to study drug dependence potential.
Collapse
Affiliation(s)
| | - Florence Noble
- Université Paris Cité, CNRS, Inserm, Pharmacologie et Thérapies des Addictions, Paris, France
| |
Collapse
|
5
|
Bogen IL, Boix F, Andersen JM, Steinsland S, Nerem E, Mørland J. Heroin metabolism in human blood and its impact for the design of an immunotherapeutic approach against heroin effects. Basic Clin Pharmacol Toxicol 2023; 133:418-427. [PMID: 37452619 DOI: 10.1111/bcpt.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Immunotherapeutic interventions that block drug effects by binding drug molecules to specific antibodies in the bloodstream have shown promising effects in animal studies. For heroin, which effects are mainly mediated by the metabolites 6-acetylmorphine (6-AM; also known as 6-monoacetylmorphine or 6-MAM) and morphine, the optimal antibody specificity has been discussed. In rodents, 6-AM specific antibodies have been recommended based on the rapid metabolism of heroin to 6-AM in the bloodstream. Since the metabolic rate of heroin in blood is unsettled in humans, we examined heroin metabolism with state-of-the-art analytical methodology (UHPLC-MS/MS) in freshly drawn human whole blood incubated with a wide range of heroin concentrations (1-500 μM). The half-life of heroin was highly concentration dependent, ranging from 1.2-1.7 min for concentrations at or above 25 μM, and gradually increasing to approximately 20 min for 1 μM heroin. At concentrations that can be attained in the bloodstream shortly after an i.v. injection, approximately 70% was transformed into 6-AM within 3 min, similar to previous observations in vivo. Our results indicate that blood enzymes play a more important role for the rapid metabolism of heroin in humans than previously assumed. This points to 6-AM as an important target for an efficient immunotherapeutic approach to block heroin effects in humans.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Nerem
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jørg Mørland
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
F Martins ML, Loos NHC, El Yattouti M, Offeringa L, Heydari P, Hillebrand MJX, Lebre MC, Beijnen JH, Schinkel AH. P-glycoprotein (MDR1/ABCB1) Restricts Brain Penetration of the Main Active Heroin Metabolites 6-monoacetylmorphine (6-MAM) and Morphine in Mice. Pharm Res 2023; 40:1885-1899. [PMID: 37344602 DOI: 10.1007/s11095-023-03545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND & PURPOSE Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.
Collapse
Affiliation(s)
- Margarida L F Martins
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Nancy H C Loos
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Malika El Yattouti
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lianda Offeringa
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paniz Heydari
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michel J X Hillebrand
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Faculty of Science, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Milella MS, D'Ottavio G, De Pirro S, Barra M, Caprioli D, Badiani A. Heroin and its metabolites: relevance to heroin use disorder. Transl Psychiatry 2023; 13:120. [PMID: 37031205 PMCID: PMC10082801 DOI: 10.1038/s41398-023-02406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
Heroin is an opioid agonist commonly abused for its rewarding effects. Since its synthesis at the end of the nineteenth century, its popularity as a recreational drug has ebbed and flowed. In the last three decades, heroin use has increased again, and yet the pharmacology of heroin is still poorly understood. After entering the body, heroin is rapidly deacetylated to 6-monoacetylmorphine (6-MAM), which is then deacetylated to morphine. Thus, drug addiction literature has long settled on the notion that heroin is little more than a pro-drug. In contrast to these former views, we will argue for a more complex interplay among heroin and its active metabolites: 6-MAM, morphine, and morphine-6-glucuronide (M6G). In particular, we propose that the complex temporal pattern of heroin effects results from the sequential, only partially overlapping, actions not only of 6-MAM, morphine, and M6G, but also of heroin per se, which, therefore, should not be seen as a mere brain-delivery system for its active metabolites. We will first review the literature concerning the pharmacokinetics and pharmacodynamics of heroin and its metabolites, then examine their neural and behavioral effects, and finally discuss the possible implications of these data for a better understanding of opioid reward and heroin addiction. By so doing we hope to highlight research topics to be investigated by future clinical and pre-clinical studies.
Collapse
Affiliation(s)
- Michele Stanislaw Milella
- Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy.
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Ginevra D'Ottavio
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Silvana De Pirro
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Norwegian Centre for Addiction Research (SERAF), Faculty of Medicine, University of Oslo, Oslo, Norway
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK
| | | | - Daniele Caprioli
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Aldo Badiani
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK.
- Fondazione Villa Maraini, Rome, Italy.
| |
Collapse
|
8
|
D'Ottavio G, Reverte I, Ragozzino D, Meringolo M, Milella MS, Boix F, Venniro M, Badiani A, Caprioli D. Increased heroin intake and relapse vulnerability in intermittent relative to continuous self-administration: Sex differences in rats. Br J Pharmacol 2023; 180:910-926. [PMID: 34986504 PMCID: PMC9253203 DOI: 10.1111/bph.15791] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Studies using intermittent-access drug self-administration show increased motivation to take and seek cocaine and fentanyl, relative to continuous access. In this study, we examined the effects of intermittent- and continuous-access self-administration on heroin intake, patterns of self-administration and cue-induced heroin-seeking, after forced or voluntary abstinence, in male and female rats. We also modelled brain levels of heroin and its active metabolites. EXPERIMENTAL APPROACH Rats were trained to self-administer a palatable solution and then heroin (0.075 mg·kg-1 per inf) either continuously (6 h·day-1 ; 10 days) or intermittently (6 h·day-1 ; 5-min access every 30-min; 10 days). Brain levels of heroin and its metabolites were modelled using a pharmacokinetic software. Next, heroin-seeking was assessed after 1 or 21 abstinence days. Between tests, rats underwent either forced or voluntary abstinence. The oestrous cycle was measured using a vaginal smear test. KEY RESULTS Intermittent access exacerbated heroin self-administration and was characterized by a burst-like intake, yielding higher brain peaks of heroin and 6-monoacetylmorphine concentrations. Moreover, intermittent access increased cue-induced heroin-seeking during early, but not late abstinence. Heroin-seeking was higher in females after intermittent, but not continuous access, and this effect was independent of the oestrous cycle. CONCLUSIONS AND IMPLICATIONS Intermittent heroin access in rats resembles critical features of heroin use disorder: a self-administration pattern characterized by repeated large doses of heroin and higher relapse vulnerability during early abstinence. This has significant implications for refining animal models of substance use disorder and for better understanding of the neuroadaptations responsible for this disorder. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Ginevra D'Ottavio
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Ingrid Reverte
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Davide Ragozzino
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Meringolo
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Michele Stanislaw Milella
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aldo Badiani
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Sussex Addiction Research and Intervention Centre (SARIC) and School of Psychology, University of Sussex, Brighton, UK
| | - Daniele Caprioli
- Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti - Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
9
|
Andersen FD, Joca S, Hvingelby V, Arjmand S, Pinilla E, Steffensen SC, Simonsen U, Andersen CU. Combined effects of quetiapine and opioids: A study of autopsy cases, drug users and sedation in rats. Addict Biol 2022; 27:e13214. [PMID: 36001431 PMCID: PMC9541371 DOI: 10.1111/adb.13214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Fatal opioid poisonings often involve methadone or morphine. This study aimed to elucidate if quetiapine, a widely used sedative antipsychotic medication, may increase the risk of fatal opioid poisoning by additive inhibitory effects on the central nervous system. We used data from 323 cases of fatal methadone or/and morphine poisonings autopsied from 2013 to 2020, a survey of 34 drug users, and performed blinded placebo‐controlled studies in 75 Flinders Resistant Line rats receiving three cumulative intraperitoneal doses of vehicle, methadone (2.5, 10 and 15 mg/kg), morphine (3.75, 15 and 22.5 mg/kg), quetiapine (3, 10 and 30 mg/kg) or quetiapine combined with methadone or morphine. Quetiapine was detected in 20.4% of fatal opioid poisonings with a significantly increased frequency over time, primarily in low or therapeutic concentrations, and was not associated with methadone or morphine concentrations. Use of quetiapine, most commonly in low‐to‐moderate doses to obtain a sleep‐inducing or tranquillizing effect, was reported by 67.6% of survey respondents. In the animal studies, a significant impairment of sedation score, performance on the rotarod and open field mobility was observed in all treatment groups compared with vehicle. However, the effect of quetiapine plus the opioid was not significantly different from that of the opioid alone. Thus, no additive sedative effects were observed in rats. Our results suggest that quetiapine is more often an innocent bystander than a contributor to fatal opioid poisoning. However, the combined effects on other parameters, including blood pressure, cardiac rhythm and respiratory rate, need investigation.
Collapse
Affiliation(s)
| | - Sâmia Joca
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Victor Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET Aarhus University Aarhus Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine Aarhus University Aarhus Denmark
| | | | - Simon Comerma Steffensen
- Department of Biomedicine Aarhus University Aarhus Denmark
- Department of Biomedical Sciences/Animal Physiology, Faculty of Veterinary Central University of Venezuela
| | - Ulf Simonsen
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine Aarhus University Hospital Aarhus Denmark
- Department of Biomedicine Aarhus University Aarhus Denmark
- Department of Clinical Pharmacology Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
10
|
Andersen JM, Bogen IL, Karinen R, Brochmann GW, Mørland J, Vindenes V, Boix F. Does the preparation for intravenous administration affect the composition of heroin injections? A controlled laboratory study. Addiction 2021; 116:3104-3112. [PMID: 33739552 DOI: 10.1111/add.15492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
AIMS To study whether the preparation procedure, and its acidic and heating conditions, used by heroin users to prepare heroin for intravenous administration affects the final composition of the fluid to be injected. METHODS Samples from different seizures of illegal heroin provided by the Norwegian police were prepared by adding water and ascorbic acid before heating under controlled conditions in the laboratory. Further, three seizures were prepared with different amounts of ascorbic or citric acid relative to their diacetylmorphine content. Pure diacetylmorphine base or salt was also submitted to the procedure applying two different heating intensities. The seizures and the final product after preparation were analysed for diacetylmorphine, 6-acetylmorphine and morphine using liquid chromatography with tandem mass spectrometry (LC-MS-MS). RESULTS After preparation, a decrease of 19.8% (25th and 75th percentiles = -29.2 and -15.3) in the initial diacetylmorphine content was observed. Both the 6-acetylmorphine and morphine content increased but, due to their low content in the initial product, diacetylmorphine still represented 83.9% (25th and 75th percentiles = 77.3 and 88.0) of the sum of these three opioids in the final solution. The loss of water during preparation caused an increase in the concentration of diacetylmorphine, 6-acetylmorphine and morphine, depending on the heating intensity applied. The content of these opioids was affected by the quantity and type of acid added in relation to the heroin purity and the level of diacetylmorphine dissolved being proportional to the amount of ascorbic acid, but not citric acid, in the sample with high heroin purity. CONCLUSIONS Preparation of heroin for intravenous injection appears to change the amount or concentration of diacetylmorphine and its active metabolites, 6-acetylmorphine and morphine in the final product, depending on heroin purity, amount and type of acid used or heating conditions. These circumstances can contribute to unintentional variations in the potency of the final injected solution, and therefore affect the outcome after injection.
Collapse
Affiliation(s)
- Jannike M Andersen
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Ritva Karinen
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Gerd Wenche Brochmann
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørg Mørland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Division of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Vigdis Vindenes
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics. Metabolites 2021; 11:metabo11090607. [PMID: 34564423 PMCID: PMC8467231 DOI: 10.3390/metabo11090607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Although heroin and morphine are structural analogues and morphine is a metabolite of heroin, it is not known how the effect of each substance on metabolites in vivo differs. Heroin and morphine were administered to C57BL/6J mice in increasing doses from 2 to 25 and 3 to 9 mg kg−1 (twice a day, i.p.), respectively, for 20 days. The animals underwent withdrawal for 5 days and were readministered the drugs after 10 days. Serum and urine analytes were profiled using gas chromatography-mass spectrometry (GC-MS), and metabolic patterns were evaluated based on metabonomics data. Metabonomics data showed that heroin administration changed metabolic pattern, and heroin withdrawal did not quickly restore it to baseline levels. A relapse of heroin exposure changed metabolic pattern again. In contrast, although the administration of morphine changed metabolic pattern, whether from morphine withdrawal or relapse, metabolic pattern was similar to control levels. The analysis of metabolites showed that both heroin and morphine interfered with lipid metabolism, the tricarboxylic acid (TCA) cycle and amino acid metabolism. In addition, both heroin and morphine increased the levels of 3-hydroxybutyric acid and citric acid but decreased the serum levels of 2-ketoglutaric acid and tryptophan. Moreover, heroin and morphine reduced the levels of aconitic acid, cysteine, glycine, and oxalic acid in urine. The results show 3-Hydroxybutyric acid, tryptophan, citric acid and 2-ketoglutaric acid can be used as potential markers of opiate abuse in serum, while oxalic acid, aconitic acid, cysteine, and glycine can be used as potential markers in urine.
Collapse
|
12
|
Díaz-Liñán M, García-Valverde M, Lucena R, Cárdenas S, López-Lorente A. Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|