1
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
2
|
Identification of additional dye tracers for measuring solid food intake and food preference via consumption-excretion in Drosophila. Sci Rep 2022; 12:6201. [PMID: 35418664 PMCID: PMC9008003 DOI: 10.1038/s41598-022-10252-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
The Drosophila model has become a leading platform for investigating mechanisms that drive feeding behavior and the effect of diet on physiological outputs. Several methods for tracking feeding behavior in flies have been developed. One method, consumption-excretion or Con-Ex, provides flies with media labeled with dye and then quantifies the amount of dye excreted into the vial as a measure of consumption. We previously found that Blue 1 and Orange 4 work well in Con-Ex and can be used as a dye pair in food preference studies. We have expanded our development of Con-Ex by identifying two additional dyes, Orange G and Yellow 10, that detect the anticipated effects of mating status, strain, starvation and nutrient concentration. Additionally, Orange G and Yellow 10 accumulate linearly in excretion products out to 48 h and the excreted volumes of these two dyes reflect the volumes consumed. Orange G also works with Blue 1 as a dye pair in food preference studies. Finally, consumption of Blue 1, Orange 4, Orange G or Yellow 10 does not affect ethanol sedation or rapid tolerance to ethanol. Our findings establish that Orange G and Yellow 10, like Blue 1 and Orange 4, are suitable for use in Con-Ex.
Collapse
|
3
|
Shell BC, Luo Y, Pletcher S, Grotewiel M. Expansion and application of dye tracers for measuring solid food intake and food preference in Drosophila. Sci Rep 2021; 11:20044. [PMID: 34625601 PMCID: PMC8501022 DOI: 10.1038/s41598-021-99483-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The Drosophila model is used to investigate the effects of diet on physiology as well as the effects of genetic pathways, neural systems and environment on feeding behavior. We previously showed that Blue 1 works well as a dye tracer to track consumption of agar-based media in Drosophila in a method called Con-Ex. Here, we describe Orange 4 as a novel dye for use in Con-Ex studies that expands the utility of this method. Con-Ex experiments using Orange 4 detect the predicted effects of starvation, mating status, strain, and sex on feeding behavior in flies. Orange 4 is consumed and excreted into vials linearly with time in Con-Ex experiments, the number of replicates required to detect differences between groups when using Orange 4 is comparable to that for Blue 1, and excretion of the dye reflects the volume of consumed dye. In food preference studies using Orange 4 and Blue 1 as a dye pair, flies decreased their intake of food laced with the aversive tastants caffeine and NaCl as determined using Con-Ex or a more recently described modification called EX-Q. Our results indicate that Orange 4 is suitable for Con-Ex experiments, has comparable utility to Blue 1 in Con-Ex studies, and can be paired with Blue 1 to assess food preference via both Con-Ex and EX-Q.
Collapse
Affiliation(s)
- Brandon C Shell
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Yuan Luo
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
4
|
Lee KM, Talikoti A, Shelton K, Grotewiel M. Tyramine synthesis, vesicular packaging, and the SNARE complex function coordinately in astrocytes to regulate Drosophila alcohol sedation. Addict Biol 2021; 26:e13019. [PMID: 33538092 PMCID: PMC8225576 DOI: 10.1111/adb.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Identifying mechanisms underlying alcohol-related behaviors could provide important insights regarding the etiology of alcohol use disorder. To date, most genetic studies on alcohol-related behavior in model organisms have focused on neurons, leaving the causal roles of glial mechanisms less comprehensively investigated. Here, we report our studies on the role of Tyrosine decarboxylase 2 (Tdc2), which converts tyrosine to the catecholamine tyramine, in glial cells in Drosophila alcohol sedation. Using genetic approaches that drove transgene expression constitutively in all glia, constitutively in astrocytes and conditionally in glia during adulthood, we found that knockdown and overexpression of Tdc2, respectively, increased and decreased the sensitivity to alcohol sedation in flies. Manipulation of the genes tyramine β-hydroxylase and tyrosine hydroxylase, which respectively synthesize octopamine and dopamine from tyramine and tyrosine, had no discernable effect on alcohol sedation, suggesting that Tdc2 affects alcohol sedation by regulating tyramine production. We also found that knockdown of the vesicular monoamine transporter (VMAT) and disruption of the SNARE complex in all glia or selectively in astrocytes increased sensitivity to alcohol sedation and that both VMAT and the SNARE complex functioned downstream of Tdc2. Our studies support a model in which the synthesis of tyramine and vesicle-mediated release of tyramine from adult astrocytes regulates alcohol sedation in Drosophila. Considering that tyramine is functionally orthologous to norepinephrine in mammals, our results raise the possibility that gliotransmitter synthesis release could be a conserved mechanism influencing behavioral responses to alcohol as well as alcohol use disorder.
Collapse
Affiliation(s)
- Kristen M. Lee
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ananya Talikoti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keith Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mike Grotewiel
- Neuroscience Graduate Program, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
- Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Luo Y, Johnson JC, Chakraborty TS, Piontkowski A, Gendron CM, Pletcher SD. Yeast volatiles double starvation survival in Drosophila. SCIENCE ADVANCES 2021; 7:eabf8896. [PMID: 33980491 PMCID: PMC8115925 DOI: 10.1126/sciadv.abf8896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Organisms make decisions based on the information they gather from their environment, the effects of which affect their fitness. Understanding how these interactions affect physiology may generate interventions that improve the length and quality of life. Here, we provide evidence that exposure to live yeast volatiles during starvation significantly extends survival, increases activity, and slows the rate of triacylglyceride (TAG) decline independent of canonical sensory perception. We demonstrate that ethanol (EtOH) is one of the active components in yeast volatiles that influences these phenotypes and that EtOH metabolites mediate dynamic mechanisms to promote Drosophila survival. Silencing R4d neurons reverses the ability of high EtOH concentrations to promote starvation survival, and their activation promotes EtOH metabolism. The transcription factor foxo promotes EtOH resistance, likely by protection from EtOH toxicity. Our results suggest that food-related cues recruit neural circuits and modulate stress signaling pathways to promote survival during starvation.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Austin Piontkowski
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Scaplen KM, Petruccelli E. Receptors and Channels Associated with Alcohol Use: Contributions from Drosophila. Neurosci Insights 2021; 16:26331055211007441. [PMID: 33870197 PMCID: PMC8020223 DOI: 10.1177/26331055211007441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a debilitating disorder that manifests as problematic patterns of alcohol use. At the core of AUD's behavioral manifestations are the profound structural, physiological, cellular, and molecular effects of alcohol on the brain. While the field has made considerable progress in understanding the neuromolecular targets of alcohol we still lack a comprehensive understanding of alcohol's actions and effective treatment strategies. Drosophila melanogaster is a powerful model for investigating the neuromolecular targets of alcohol because flies model many of the core behavioral elements of AUD and offer a rich genetic toolkit to precisely reveal the in vivo molecular actions of alcohol. In this review, we focus on receptors and channels that are often targeted by alcohol within the brain. We discuss the general roles of these proteins, their role in alcohol-associated behaviors across species, and propose ways in which Drosophila models can help advance the field.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, USA
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
7
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Jeyakannu P, Chandru Senadi G, Chiang C, Kumar Dhandabani G, Chang Y, Wang J. An Efficient Approach to Functionalized Indoles from λ
3
‐Iodanes via Acyloxylation and Acyl Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Palaniraja Jeyakannu
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and TechnologySRM Institute of Science and Technology, Kattankulathur Chennai 603203 India
| | - Chun‐Hsien Chiang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Ganesh Kumar Dhandabani
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Yu‐Ching Chang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|