1
|
Luo M, Trindade Pons V, Thomas NS, Drake J, Su MH, Vladimirov V, van Loo HM, Gillespie NA. The Mechanisms Underlying the Intergenerational Transmission of Substance Use and Misuse: An Integrated Research Approach. Twin Res Hum Genet 2024:1-12. [PMID: 39710930 DOI: 10.1017/thg.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Substance use and substance use disorders run in families. While it has long been recognized that the etiology of substance use behaviors and disorders involves a combination of genetic and environmental factors, two key questions remain largely unanswered: (1) the intergenerational transmission through which these genetic predispositions are passed from parents to children, and (2) the molecular mechanisms linking genetic variants to substance use behaviors and disorders. This article aims to provide a comprehensive conceptual framework and methodological approach for investigating the intergenerational transmission of substance use behaviors and disorders, by integrating genetic nurture analysis, gene expression imputation, and weighted gene co-expression network analysis. We also additionally describe two longitudinal cohorts - the Brisbane Longitudinal Twin Study in Australia and the Lifelines Cohort Study in the Netherlands. By applying the methodological framework to these two unique datasets, our future research will explore the complex interplay between genetic factors, gene expression, and environmental influences on substance use behaviors and disorders across different life stages and populations.
Collapse
Affiliation(s)
- Mannan Luo
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Victória Trindade Pons
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nathaniel S Thomas
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John Drake
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, Arizona, USA
| | - Mei-Hsin Su
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vladimir Vladimirov
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, Arizona, USA
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanna M van Loo
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Zhu Y, Wu Q, Guo J, Xu B, Zhao H, Liu C. Ferroptosis-associated alterations in diabetes following ischemic stroke: Insights from RNA sequencing. Brain Res 2024; 1845:149274. [PMID: 39395647 DOI: 10.1016/j.brainres.2024.149274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. Though diabetes worsens cerebral injury and clinical outcomes in stroke, it is poorly understood whether ferroptosis contributes to diabetes-exacerbated stroke. This study aimed to identify ferroptosis-associated differentially expressed genes in ischemic stroke under diabetic condition and then explore their roles using comprehensive bioinformatics analyses. METHODS Type 1 diabetes (T1D) model was established in male mice at 8-10 weeks of age by one intraperitoneal injection of streptozotocin (110 mg/kg). Ischemic stroke was induced by a transient 45-minute middle cerebral artery occlusion and evaluated three days thereafter. Ischemic brain cortex was dissected 24 h after the reperfusion and subjected to bulk tissue RNA sequencing followed by bioinformatics analysis and verification of key findings via quantitative real-time PCR. RESULTS Enlarged infarct size was seen in diabetic, as compared with non-diabetic mice, in conjunction with worsened neurological behaviors. Both body and spleen weights were reduced in diabetic as compared with non-diabetic mice. There was a trend for reduced survival rate in diabetic mice following the stroke. In RNA sequencing analysis, we identified 1299 differentially expressed genes in ischemic brain between diabetic and non-diabetic mice, with upregulation and downregulation for 732 and 567 genes, respectively. Among these genes, 27 genes were associated with ferroptosis. Further analysis reveals that solute carrier family 25 member 28(SLC25A28) and sterol carrier protein 2(SCP2) were the top genes associated with ferroptosis in diabetic mice following ischemic stroke. In several bioinformatics analyses, we found SLC25A28, one of the top ferroptosis-related genes, is involved in several metabolic and regulatory pathways as well as the regulatory complexity of microRNAs and circular RNAs, which demonstrates the potential role of SLC25A28 in diabetes-exacerbated stroke. Drug network analysis suggests SLC25A28 as a potential therapeutic target for ameliorating ischemic injury in diabetes. CONCLUSIONS Our bulk RNA sequencing and bioinformatics analyses show that altered ferroptosis signaling pathway was associated with the exacerbation of experimental stroke injury under diabetic condition. Especially, additional investigation into the mechanisms of SLC25A28 and SCP2 in diabetes-exacerbated stroke will be explored in the future study.
Collapse
MESH Headings
- Animals
- Ferroptosis/physiology
- Ferroptosis/genetics
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Ischemic Stroke/metabolism
- Ischemic Stroke/genetics
- Sequence Analysis, RNA/methods
- Mice, Inbred C57BL
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/complications
- Brain Ischemia/metabolism
- Brain Ischemia/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- Stroke/genetics
- Stroke/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ying Zhu
- School of Nursing, Capital Medical University, Beijing, China
| | - Qike Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jiayi Guo
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zheng Y, Cong X, Liu H, Storey KB, Chen M. Neuronal cell populations in circumoral nerve ring of sea cucumber Apostichopus japonicus: Ultrastructure and transcriptional profile. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101263. [PMID: 38850626 DOI: 10.1016/j.cbd.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The echinoderm nervous system has been studied as a model for understanding the evolution of the chordate nervous system. Neuronal cells are essential groups that release a 'cocktail' of messenger molecules providing a spectrum of biological actions in the nervous system. Among echinoderms, most evidence on neuronal cell types has been obtained from starfish and sea urchin. In sea cucumbers, most research has focused on the location of neuronal cells, whereas their transcriptional features have rarely been investigated. Here, we observed the ultrastructure of neuronal cells in the sea cucumber, Apostichopus japonicus. The transcriptional profile of neuronal cells from the circumoral nerve ring (CNR) was investigated using single-cell RNA sequencing (scRNA-seq), and a total of six neuronal cell types were identified. 26 neuropeptide precursor genes (NPPs) and 28 G-protein-coupled receptors (GPCR) were expressed in the six neuronal cell types, comprising five NPP/NP-GPCR pairs. Unsupervised pseudotime analysis of neuronal cells showed their different differentiation status. We also located the neuronal cells in the CNR by immunofluorescence (IF) and identified the potential hub genes of key cell populations. This broad resource serves as a valuable support in the development of cell-specific markers for accurate cell-type identification in sea cucumbers. It also contributes to facilitating comparison across species, providing a deeper understanding of the evolutionary processes of neuronal cells.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China. https://twitter.com/Yingqiu_Zheng
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
5
|
de Bejczy A, Addolorato G, Aubin HJ, Guiraud J, Korpi ER, John Nutt D, Witkiewitz K, Söderpalm B. AUD in perspective. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:1-19. [PMID: 38555113 DOI: 10.1016/bs.irn.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Alcohol is a major cause of pre-mature death and individual suffering worldwide, and the importance of diagnosing and treating AUD cannot be overstated. Given the global burden and the high attributable factor of alcohol in a vast number of diseases, the need for additional interventions and the development of new medicines is considered a priority by the World Health Organization (WHO). As of today, AUD is severely under-treated with a treatment gap nearing 90%, strikingly higher than that for other psychiatric disorders. Patients often seek treatment late in the progress of the disease and even among those who seek treatment only a minority receive medication, mirroring the still-prevailing stigma of the disease, and a lack of access to effective treatments, as well as a reluctance to total abstinence. To increase adherence, treatment goals should focus not only on maintaining abstinence, but also on harm reduction and psychosocial functioning. A personalised approach to AUD treatment, with a holistic view, and tailored therapy has the potential to improve AUD treatment outcomes by targeting the heterogeneity in genetics and pathophysiology, as well as reason for, and reaction to drinking. Also, the psychiatric co-morbidity rates are high in AUD and dual diagnosis can worsen symptoms and influence treatment response and should be considered in the treatment strategies.
Collapse
Affiliation(s)
- Andrea de Bejczy
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Giovanni Addolorato
- Department of Medical and Surgical Sciences, Università Cattolica di Roma, Rome, Italy; Internal Medicine and Alcohol Related Disease Unit, Columbus-Gemelli Hospital, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Henri-Jean Aubin
- Université Paris-Saclay, Inserm, CESP, Villejuif, France; AP-HP, Université Paris Saclay, Villejuif, France
| | - Julien Guiraud
- Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands; Vergio, Clichy, France
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David John Nutt
- Imperial College London and GABA Labs, London, United Kingdom
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use, and Addictions, University of New Mexico, Albuquerque, New Mexico, United States
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Dabrowski KR, Floris G, Gillespie A, Daws SE. Orbitofrontal intronic circular RNA from Nrxn3 mediates reward learning and motivation for reward. Prog Neurobiol 2024; 232:102546. [PMID: 38036039 PMCID: PMC10843848 DOI: 10.1016/j.pneurobio.2023.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The orbitofrontal cortex (OFC) is a vital component of brain reward circuitry that is important for reward seeking behavior. However, OFC-mediated molecular mechanisms underlying rewarding behavior are understudied. Here, we report the first circular RNA (circRNA) profile associated with appetitive reward and identify regulation of 92 OFC circRNAs by sucrose self-administration. Among these changes, we observed downregulation of circNrxn3, a circRNA originating from neurexin 3 (Nrxn3), a gene involved in synaptogenesis, learning, and memory. Transcriptomic profiling via RNA sequencing and qPCR of the OFC following in vivo knock-down of circNrxn3 revealed differential regulation of genes associated with pathways important for learning and memory and altered splicing of Nrxn3. Furthermore, circNrxn3 knock-down enhanced sucrose self-administration and motivation for sucrose. Using RNA-immunoprecipitation, we report binding of circNrxn3 to the known Nrxn3 splicing factor SAM68. circNrxn3 is the first reported circRNA capable of regulating reward behavior and circNrxn3-mediated interactions with SAM68 may impact subsequent downstream processing of RNAs such as the regulation of gene expression and splicing.
Collapse
Affiliation(s)
- Konrad R Dabrowski
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Biology, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Aria Gillespie
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Daws SE, Gillespie A. Circular RNA regulation and function in drug seeking phenotypes. Mol Cell Neurosci 2023; 125:103841. [PMID: 36935046 PMCID: PMC10247439 DOI: 10.1016/j.mcn.2023.103841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Drug overdoses have increased dramatically in the United States over the last decade where they are now the leading cause of accidental death. To develop efficient therapeutic options for decreasing drug consumption and overdose risk, it is critical to understand the neurobiological changes induced by drug exposure. Chronic systemic exposure to all drug classes, including opioids, psychostimulants, nicotine, cannabis, and alcohol, induces profound molecular neuroadaptations within the central nervous system that may reveal crucial information about the lasting effects that these substances impart on brain cells. Transcriptome analyses of messenger RNAs (mRNAs) have identified gene patterns in the brain that result from exposure to various classes of drugs. However, mRNAs represent only a small fraction of the RNA within the cell, and drug exposure also impacts other classes of RNA that are largely understudied, especially circular RNAs. Circular RNAs (circRNAs) are a naturally occurring RNA species formed from back-splicing events during mRNA processing and are enriched in the nervous system. circRNAs are a pleiotropic class of RNAs and have a diverse impact on cellular function, with putative functions including regulation of mRNA transcription, protein translation, microRNA sponging, and sequestration of RNA-binding proteins. Recent studies have demonstrated that circRNAs can modulate cognition and are regulated in the brain in response to drug exposure, yet very few studies have explored the contribution of circRNAs to drug seeking phenotypes. In this review, we will provide an overview of the mechanisms of circRNA function in the cell to highlight how drug-induced circRNA dysregulation may impact the molecular substrates that mediate drug seeking behavior and the current studies that have reported drug-induced dysregulation of circRNAs in the brain. Furthermore, we will discuss how principles of circRNA biology can be adapted to study circRNAs in models of drug exposure and seek to provide further insight into the neurobiology of addiction.
Collapse
Affiliation(s)
- Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| | - Aria Gillespie
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X, Li S, Guo Y. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother 2023; 162:114672. [PMID: 37060662 DOI: 10.1016/j.biopha.2023.114672] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
In recent years, breakthroughs in bioinformatics have been made with the discovery of many functionally significant non-coding RNAs (ncRNAs). The discovery of these ncRNAs has further demonstrated the multi-level characteristics of intracellular gene expression regulation, which plays an important role in assisting diagnosis, guiding clinical drug use and determining prognosis in the treatment process of various diseases. microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are the three major types of ncRNAs that interact with each other. Studies have shown that lncRNAs and circRNAs can sponge miRNAs, thereby influencing normal physiological processes and regulating mRNA expression and, thus, the physiological state of cells. This paper summarizes the mechanism of action and research progress of the three ncRNA and seven types of modalities. This summary is intended to provide new ideas for diagnosing and treating diseases and researching and developing new drugs.
Collapse
Affiliation(s)
- Benchi Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Pufan Shan
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Yufan Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Liping Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Jingyi Yun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Longhui Hao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Shuyan Li
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China; Laboratory of Liver Viscera-State & Syndrome of Emotional Disease, Shandong University of Traditional Chinese Medicine, Jinan 250000, PR China.
| |
Collapse
|
9
|
Papageorgiou G, Amoah SK, Pierotti C, Otero M, Eckel S, Coffey K, Allan AM, Caldwell KK, Mellios N. Prenatal alcohol exposure results in brain region- and sex-specific changes in circHomer1 expression in adult mouse brain. Front Neurosci 2023; 17:1087950. [PMID: 36875647 PMCID: PMC9983553 DOI: 10.3389/fnins.2023.1087950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel category of covalently-closed non-coding RNAs mainly derived from the back-splicing of exons or introns of protein-coding genes. In addition to their inherent high overall stability, circRNAs, have been shown to have strong functional effects on gene expression via a multitude of transcriptional and post-transcriptional mechanisms. Furthermore, circRNAs, appear to be particularly enriched in the brain and able to influence both prenatal development and postnatal brain function. However, little is known about the potential involvement of circRNAs in the long term influence of prenatal alcohol exposure (PAE) in the brain and their relevance for Fetal Alcohol Spectrum Disorders (FASD). Using circRNA-specific quantification, we have found that circHomer1, an activity-dependent circRNA derived from Homer protein homolog 1 (Homer1) and enriched in postnatal brain, is significantly down-regulated in the male frontal cortex and hippocampus of mice subjected to modest PAE. Our data further suggest that the expression of H19, an imprinted embryonic brain-enriched long non-coding RNA (lncRNA), is significantly up-regulated in the frontal cortex of male PAE mice. Furthermore, we show opposing changes in the developmental- and brain region specific- expression of circHomer1 and H19. Lastly, we show that knockdown of H19 results in robust increases in circHomer1 but not linear HOMER1 mRNA expression in human glioblastoma cell lines. Taken together, our work uncovers notable sex- and brain region-specific alterations in circRNA and lncRNA expression following PAE and introduces novel mechanistic insights with potential relevance to FASD.
Collapse
Affiliation(s)
- Grigorios Papageorgiou
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Stephen K. Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Caroline Pierotti
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Madison Otero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Sophie Eckel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kacie Coffey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrea M. Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Kevin K. Caldwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Autophagy, Inflammation, and Metabolism (AIM) Center, Albuquerque, NM, United States
| |
Collapse
|
10
|
Wang JQ, Liu YR, Xia QR, Liang J, Wang JL, Li J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci 2023; 19:1316-1335. [PMID: 36923934 PMCID: PMC10008696 DOI: 10.7150/ijbs.81518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most prevalent neuropsychological disorders worldwide, and its pathogenesis is convoluted and poorly understood. There is considerable evidence demonstrating significant associations between multiple heritable factors and the onset and progression of AUD. In recent years, a substantial body of research conducted by emerging biotechnologies has increasingly highlighted the crucial roles of noncoding RNAs (ncRNAs) in the pathophysiology of mental diseases. As in-depth understanding of ncRNAs and their mechanisms of action, they have emerged as prospective diagnostic indicators and preclinical therapeutic targets for a variety of psychiatric illness, including AUD. Of note, dysregulated expression of ncRNAs such as circRNAs, lncRNAs and miRNAs was routinely found in AUD individuals, and besides, exogenous regulation of partial ncRNAs has also been shown to be effective in ameliorating alcohol preference and excessive alcohol consumption. However, the exact molecular mechanism still remains elusive. Herein, we systematically summarized current knowledge regarding alterations in the expression of certain ncRNAs as well as their-mediated regulatory mechanisms in individuals with AUD. And finally, we detailedly reviewed the potential theranostics applications of gene therapy agents targeting ncRNAs in AUD mice. Overall, a deeper comprehension of functional roles and biological mechanisms of ncRNAs may make significant contributions to the accurate diagnosis and effective treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Ya-Ru Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
11
|
Ali S, Ali U, Qamar A, Zafar I, Yaqoob M, Ain QU, Rashid S, Sharma R, Nafidi HA, Bin Jardan YA, Bourhia M. Predicting the effects of rare genetic variants on oncogenic signaling pathways: A computational analysis of HRAS protein function. Front Chem 2023; 11:1173624. [PMID: 37153521 PMCID: PMC10160440 DOI: 10.3389/fchem.2023.1173624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
The HRAS gene plays a crucial role in regulating essential cellular processes for life, and this gene's misregulation is linked to the development of various types of cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of HRAS can cause detrimental mutations that disrupt wild-type protein function. In the current investigation, we have employed in-silico methodologies to anticipate the consequences of infrequent genetic variations on the functional properties of the HRAS protein. We have discovered a total of 50 nsSNPs, of which 23 were located in the exon region of the HRAS gene and denoting that they were expected to cause harm or be deleterious. Out of these 23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL], [A59L], and [G13R]) were identified as having the most delterious effect based on results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG values -3.21 kcal/mol to 0.87 kcal/mol represent the free energy change associated with protein stability upon mutation. Interestingly, we identified that the three mutations (Y4C, T58I, and Y12E) were found to improve the structural stability of the protein. We performed molecular dynamics (MD) simulations to investigate the structural and dynamic effects of HRAS mutations. Our results showed that the stable model of HRAS had a significantly lower energy value of -18756 kj/mol compared to the initial model of -108915 kj/mol. The RMSD value for the wild-type complex was 4.40 Å, and the binding energies for the G60V, G60D, and D38H mutants were -107.09 kcal/mol, -109.42 kcal/mol, and -107.18 kcal/mol, respectively as compared to wild-type HRAS protein had -105.85 kcal/mol. The result of our investigation presents convincing corroboration for the potential functional significance of nsSNPs in augmenting HRAS expression and adding to the activation of malignant oncogenic signalling pathways.
Collapse
Affiliation(s)
- Sadaqat Ali
- Medical Department, DHQ Hospital Bhawalnagr, Punjab, Pakistan
| | | | - Adeem Qamar
- Department of Pathology, Sahiwal Medical College Sahiwal, Punjab, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Muhammad Yaqoob
- Department of Life Sciences, ARID University-Barani Institute of Sciences Burewala Campus, Punjab, Pakistan
| | - Qurat ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Summya Rashid
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| |
Collapse
|
12
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
13
|
Plasil SL, Collins VJ, Baratta AM, Farris SP, Homanics GE. Hippocampal ceRNA networks from chronic intermittent ethanol vapor-exposed male mice and functional analysis of top-ranked lncRNA genes for ethanol drinking phenotypes. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10831. [PMID: 36908580 PMCID: PMC10004261 DOI: 10.3389/adar.2022.10831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms regulating the development and progression of alcohol use disorder (AUD) are largely unknown. While noncoding RNAs have previously been implicated as playing key roles in AUD, long-noncoding RNA (lncRNA) remains understudied in relation to AUD. In this study, we first identified ethanol-responsive lncRNAs in the mouse hippocampus that are transcriptional network hub genes. Microarray analysis of lncRNA, miRNA, circular RNA, and protein coding gene expression in the hippocampus from chronic intermittent ethanol vapor- or air- (control) exposed mice was used to identify ethanol-responsive competing endogenous RNA (ceRNA) networks. Highly interconnected lncRNAs (genes that had the strongest overall correlation to all other dysregulated genes identified) were ranked. The top four lncRNAs were novel, previously uncharacterized genes named Gm42575, 4930413E15Rik, Gm15767, and Gm33447, hereafter referred to as Pitt1, Pitt2, Pitt3, and Pitt4, respectively. We subsequently tested the hypothesis that CRISPR/Cas9 mutagenesis of the putative promoter and first exon of these lncRNAs in C57BL/6J mice would alter ethanol drinking behavior. The Drinking in the Dark (DID) assay was used to examine binge-like drinking behavior, and the Every-Other-Day Two-Bottle Choice (EOD-2BC) assay was used to examine intermittent ethanol consumption and preference. No significant differences between control and mutant mice were observed in the DID assay. Female-specific reductions in ethanol consumption were observed in the EOD-2BC assay for Pitt1, Pitt3, and Pitt4 mutant mice compared to controls. Male-specific alterations in ethanol preference were observed for Pitt1 and Pitt2. Female-specific increases in ethanol preference were observed for Pitt3 and Pitt4. Total fluid consumption was reduced in Pitt1 and Pitt2 mutants at 15% v/v ethanol and in Pitt3 and Pitt4 at 20% v/v ethanol in females only. We conclude that all lncRNAs targeted altered ethanol drinking behavior, and that lncRNAs Pitt1, Pitt3, and Pitt4 influenced ethanol consumption in a sex-specific manner. Further research is necessary to elucidate the biological mechanisms for these effects. These findings add to the literature implicating noncoding RNAs in AUD and suggest lncRNAs also play an important regulatory role in the disease.
Collapse
Affiliation(s)
- SL Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - VJ Collins
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - AM Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - SP Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - GE Homanics
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Huang Y, Bai Q, Wang Z, Yu H, Li Y, Lu H, Kang H, Shi X, Feng K. circ_0052184 Promotes Colorectal Cancer Progression via Targeting miR-604/HOXA9 Axis. Anal Cell Pathol (Amst) 2022; 2022:8583382. [PMID: 36065412 PMCID: PMC9440801 DOI: 10.1155/2022/8583382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background The mortality rate of colorectal cancer (CRC) ranks second. circRNAs are abnormal expression in some diseases, and their dysregulation is associated with cancer progression. Recent studies have shown that the malignant progression of colorectal cancer is inseparable from the abnormal expression of circRNAs. Methods First, the circ_0052184 expression in clinical tissue and cell samples was analyzed by qRT-PCR. Then, we constructed circ_0052184-silenced CRC cells and detected by qRT-PCR. Furthermore, the proliferation ability of cells was detected by colony formation assay. Cell migration ability was tested by wound healing assay and transwell assay. Cell invasion ability was detected by transwell assay. Results Expression of circ_0052184 was significantly increased in colorectal cancer cell lines and tissues. Silencing circ_0052184 affected the proliferation, migration, and invasion of colorectal cancer cells. miR-604 was targeted by circ_0052184. The downstream target of miR-604 was HOXA9, and silencing circ_0052184 inhibited HOXA9 expression. The existence of the circ_0052184/miR-604/HOXA9 regulatory network in colorectal cancer was validated. circ_0052184 promoted the occurrence and development of colorectal cancer by targeting the miR-604/HOXA9 axis. Conclusions Our study revealed that the molecular mechanism of circ_0052184 regulated the miR-604/HOXA9 axis, which might promote the malignant progression of colorectal cancer cells.
Collapse
Affiliation(s)
- Yandong Huang
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Qinyang Bai
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Zhanlong Wang
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Hongbo Yu
- Practical Education Skills Center of Baotou Medical College, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yanru Li
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Hao Lu
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Huimin Kang
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xuewei Shi
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Feng
- Department of Tumor Center, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
15
|
Floris G, Gillespie A, Zanda MT, Dabrowski KR, Sillivan SE. Heroin Regulates Orbitofrontal Circular RNAs. Int J Mol Sci 2022; 23:1453. [PMID: 35163373 PMCID: PMC8836038 DOI: 10.3390/ijms23031453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The number of drug overdose deaths involving opioids continues to rise in the United States. Many patients with opioid use disorder (OUD) that seek treatment still experience relapse. Perseverant opioid seeking behaviors represent a major challenge to treating OUD and additional therapeutic development will require insight into opioid-induced neurobiological adaptations. In this study, we explored the regulation of a novel class of RNAs, circular RNAs (circRNAs), by the addictive opioid heroin in the rat orbitofrontal cortex (OFC), a brain region that mediates behavioral responses to rewarding stimuli. Microarray analysis identified 76 OFC circRNAs significantly regulated in male rats after heroin self-administration. We evaluated the specificity of these findings by measuring heroin-associated circRNA expression in female rats after heroin self-administration and in rats that self-administered sucrose. We identify circGrin2b, circUbe2cp, circAnks1a, circAdcy5 and circSlc24A2 as heroin-responsive circRNAs in the OFC. Linear mRNA levels of heroin-associated circRNAs were unchanged except for Grin2b and Adcy5. An integrated bioinformatics analysis of regulated circRNAs identified microRNAs predicted to bind heroin-associated circRNAs and downstream targets of circRNA: microRNA sponging. Thus, heroin regulates the expression of OFC RNA splice variants that circularize and may impact cellular processes that contribute to the neurobiological adaptations that arise from chronic heroin exposure.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aria Gillespie
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Konrad R. Dabrowski
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Biological Sciences, Temple University, Philadelphia, PA 19122, USA
| | - Stephanie E. Sillivan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|