1
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Alcohol, HMGB1, and Innate Immune Signaling in the Brain. Alcohol Res 2024; 44:04. [PMID: 39135668 PMCID: PMC11318841 DOI: 10.35946/arcr.v44.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Binge drinking (i.e., consuming enough alcohol to achieve a blood ethanol concentration of 80 mg/dL, approximately 4-5 drinks within 2 hours), particularly in early adolescence, can promote progressive increases in alcohol drinking and alcohol-related problems that develop into compulsive use in the chronic relapsing disease, alcohol use disorder (AUD). Over the past decade, neuroimmune signaling has been discovered to contribute to alcohol-induced changes in drinking, mood, and neurodegeneration. This review presents a mechanistic hypothesis supporting high mobility group box protein 1 (HMGB1) and Toll-like receptor (TLR) signaling as key elements of alcohol-induced neuroimmune signaling across glia and neurons, which shifts gene transcription and synapses, altering neuronal networks that contribute to the development of AUD. This hypothesis may help guide further research on prevention and treatment. SEARCH METHODS The authors used the search terms "HMGB1 protein," "alcohol," and "brain" across PubMed, Scopus, and Embase to find articles published between 1991 and 2023. SEARCH RESULTS The database search found 54 references in PubMed, 47 in Scopus, and 105 in Embase. A total of about 100 articles were included. DISCUSSION AND CONCLUSIONS In the brain, immune signaling molecules play a role in normal development that differs from their functions in inflammation and the immune response, although cellular receptors and signaling are shared. In adults, pro-inflammatory signals have emerged as contributing to brain adaptation in stress, depression, AUD, and neurodegenerative diseases. HMGB1, a cytokine-like signaling protein released from activated cells, including neurons, is hypothesized to activate pro-inflammatory signals through TLRs that contribute to adaptations to binge and chronic heavy drinking. HMGB1 alone and in heteromers with other molecules activates TLRs and other immune receptors that spread signaling across neurons and glia. Both blood and brain levels of HMGB1 increase with ethanol exposure. In rats, an adolescent intermittent ethanol (AIE) binge drinking model persistently increases brain HMGB1 and its receptors; alters microglia, forebrain cholinergic neurons, and neuronal networks; and increases alcohol drinking and anxiety while disrupting cognition. Studies of human postmortem AUD brain have found elevated levels of HMGB1 and TLRs. These signals reduce cholinergic neurons, whereas microglia, the brain's immune cells, are activated by binge drinking. Microglia regulate synapses through complement proteins that can change networks affected by AIE that increase drinking, contributing to risks for AUD. Anti-inflammatory drugs, exercise, cholinesterase inhibitors, and histone deacetylase epigenetic inhibitors prevent and reverse the AIE-induced pathology. Further, HMGB1 antagonists and other anti-inflammatory treatments may provide new therapies for alcohol misuse and AUD. Collectively, these findings suggest that restoring the innate immune signaling balance is central to recovering from alcohol-related pathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Allard RL, Mayfield J, Barchiesi R, Salem NA, Mayfield RD. Toll-like receptor 7: A novel neuroimmune target to reduce excessive alcohol consumption. Neurobiol Stress 2024; 31:100639. [PMID: 38765062 PMCID: PMC11101708 DOI: 10.1016/j.ynstr.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Toll-like receptors (TLRs) are a family of innate immune receptors that recognize molecular patterns in foreign pathogens and intrinsic danger/damage signals from cells. TLR7 is a nucleic acid sensing endosomal TLR that is activated by single-stranded RNAs from microbes or by small noncoding RNAs that act as endogenous ligands. TLR7 signals through the MyD88 adaptor protein and activates the transcription factor interferon regulatory factor 7 (IRF7). TLR7 is found throughout the brain and is highly expressed in microglia, the main immune cells of the brain that have also been implicated in alcohol drinking in mice. Upregulation of TLR7 mRNA and protein has been identified in postmortem hippocampus and cortex from AUD subjects that correlated positively with lifetime consumption of alcohol. Similarly, Tlr7 and downstream signaling genes were upregulated in rat hippocampal and cortical slice cultures after chronic alcohol exposure and in these regions after chronic binge-like alcohol treatment in mice. In addition, repeated administration of the synthetic TLR7 agonists imiquimod (R837) or resiquimod (R848) increased voluntary alcohol drinking in different rodent models and produced sustained upregulation of IRF7 in the brain. These findings suggest that chronic TLR7 activation may drive excessive alcohol drinking. In the brain, this could occur through increased levels of endogenous TLR7 activators, like microRNAs and Y RNAs. This review explores chronic TLR7 activation as a pathway of dysregulated neuroimmune signaling in AUD and the endogenous small RNA ligands in the brain that could perpetuate innate immune responses and escalate alcohol drinking.
Collapse
Affiliation(s)
- Ruth L. Allard
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Riccardo Barchiesi
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nihal A. Salem
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
5
|
Van Voorhies KJ, Liu W, Lovelock DF, Lin S, Liu J, Guan D, Gay EA, Jin C, Besheer J. Novel RXFP3 negative allosteric modulator RLX-33 reduces alcohol self-administration in rats. J Neurochem 2023; 167:204-217. [PMID: 37674350 PMCID: PMC10592109 DOI: 10.1111/jnc.15949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is much interest in identifying novel pharmacotherapeutic targets that improve clinical outcomes for the treatment of alcohol use disorder (AUD). One promising target for therapeutic intervention is the relaxin family peptide 3 (RXFP3) receptor, a cognate receptor for neuropeptide relaxin-3, which has previously been implicated in regulating alcohol drinking behavior. Recently, we developed the first small-molecule RXFP3-selective negative allosteric modulator (NAM) RLX-33. Therefore, the goal of the present work was to characterize the impact of this novel NAM on affective-related behaviors and alcohol self-administration in rats. First, the effects of RLX-33 were tested on alcohol and sucrose self-administration in Wistar and alcohol-preferring P rats to determine the dose-response profile and specificity for alcohol. Then, we assessed the effects of systemic RLX-33 injection in Wistar rats in a battery of behavioral assays (open-field test, elevated zero maze, acoustic startle response test, and prepulse inhibition) and tested for alcohol clearance. We found that the lowest effective dose (5 mg/kg) reduced alcohol self-administration in both male and female Wistar rats, while in alcohol-preferring P rats, this effect was restricted to males, and there were no effects on sucrose self-administration or general locomotor activity. The characterization of affective and metabolic effects in Wistar rats generally found few locomotor, affective, or alcohol clearance changes, particularly at the 5 mg/kg dose. Overall, these findings are promising and suggest that RXFP3 NAM has potential as a pharmacological target for treating AUD.
Collapse
Affiliation(s)
- Kalynn J. Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wen Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dennis F. Lovelock
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sophia Lin
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiaqi Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dongliang Guan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Elaine A. Gay
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Atkinson NS. The Role of Toll and Nonnuclear NF-κB Signaling in the Response to Alcohol. Cells 2023; 12:1508. [PMID: 37296629 PMCID: PMC10252657 DOI: 10.3390/cells12111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
An understanding of neuroimmune signaling has become central to a description of how alcohol causes addiction and how it damages people with an AUD. It is well known that the neuroimmune system influences neural activity via changes in gene expression. This review discusses the roles played by CNS Toll-like receptor (TLR) signaling in the response to alcohol. Also discussed are observations in Drosophila that show how TLR signaling pathways can be co-opted by the nervous system and potentially shape behavior to a far greater extent and in ways different than generally recognized. For example, in Drosophila, TLRs substitute for neurotrophin receptors and an NF-κB at the end of a TLR pathway influences alcohol responsivity by acting non-genomically.
Collapse
Affiliation(s)
- Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Ornelas LC, Boero G, Van Voorhies K, O’Buckley TK, Besheer J, Morrow AL. Pharmacological administration of 3α,5α-THP into the nucleus accumbens core increases 3α,5α-THP expression and reduces alcohol self-administration. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:459-469. [PMID: 36587947 PMCID: PMC10234128 DOI: 10.1111/acer.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Randall CA, Sun D, Randall PA. Differential Effects of Nicotine, Alcohol, and Coexposure on Neuroimmune-Related Protein and Gene Expression in Corticolimbic Brain Regions of Rats. ACS Chem Neurosci 2023; 14:628-644. [PMID: 36705334 DOI: 10.1021/acschemneuro.2c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nicotine and alcohol co-use is extremely common and their use constitutes two of the most common causes of preventable death, yet the underlying biological mechanisms are largely understudied. Activation of neuroimmune toll-like receptors (TLRs) promotes the induction of proinflammatory cascades and increases alcohol intake in rodents, which further promotes TLRs in the brain; nicotine may decrease central proinflammatory signaling. The current studies sought to determine the effects of nicotine ± alcohol (alone or in combination) on circulating blood plasma and TLR protein/gene expression in addiction-associated corticolimbic brain regions, including the prefrontal cortex-prelimbic (mPFC-PL) and nucleus accumbens core (AcbC). Adult rats were treated with alcohol (0 or 2 g/kg, IG) and exposed to nicotine vapor (0 or 30 mg/mL solution) daily for 2, 14, or 28 days. Plasma studies indicated no effects of independent exposure or coexposure in males. Coexposure decreased plasma nicotine levels versus nicotine-only treated females, yet alcohol and cotinine concentrations were unchanged. By 28 days, the anti-inflammatory cytokine IL-13 was decreased in alcohol-only females. Divergent changes in TLR3 (but not TLR4) protein occurred for independent-drug exposed males (but not coexposure), with reductions in the mPFC-PL after 14 days and increases in the AcbC by 28 days. Gene expression following chronic coexposure suggests nicotine may regionally counteract alcohol-induced inflammation, including increased AcbC-TLR3/4/7 and several downstream markers in females and increased mPFC-PL-TLR3 and -STAT3 (but not IRF3) evident in males with exposure to either drug alone. These findings give further insight into the role of sex and the neuroimmune system in independent exposure and coexposure to nicotine ± alcohol.
Collapse
Affiliation(s)
- Christie A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| |
Collapse
|
9
|
Giffin KA, Lovelock DF, Besheer J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav Brain Res 2023; 438:114200. [PMID: 36334783 PMCID: PMC10123804 DOI: 10.1016/j.bbr.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.
Collapse
Affiliation(s)
| | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Grantham EK, Barchiesi R, Salem NA, Mayfield RD. Neuroimmune pathways as targets to reduce alcohol consumption. Pharmacol Biochem Behav 2023; 222:173491. [PMID: 36400266 PMCID: PMC9906983 DOI: 10.1016/j.pbb.2022.173491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Affiliation(s)
| | - Riccardo Barchiesi
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, United States.
| | | | | |
Collapse
|