1
|
Villate A, Olivares M, Usobiaga A, Unzueta-Larrinaga P, Barrena-Barbadillo R, Callado LF, Etxebarria N, Urigüen L. Uncovering metabolic dysregulation in schizophrenia and cannabis use disorder through untargeted plasma lipidomics. Sci Rep 2024; 14:31492. [PMID: 39733019 DOI: 10.1038/s41598-024-83288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds. Notably, a marked reduction in acylcarnitines, including octanoylcarnitine and decanoylcarnitine, was observed across all patient groups compared to controls. In cannabis use disorder patients, N-acyl amino acids (NAAAs), particularly N-palmitoyl threonine and N-palmitoyl serine, showed a strong downregulation, a pattern also seen in schizophrenia and dual diagnosis patients. Conversely, elevated levels of 7-dehydrodesmosterol were detected in schizophrenia and dual diagnosis patients relative to controls. These findings suggest a potential link between metabolic disruptions and the pathophysiology of both disorders. The untargeted lipidomics approach offers a powerful tool to identify novel biomarkers, enhancing our understanding of the biological relationship between cannabis abuse and schizophrenia, and paving the way for future therapeutic strategies targeting metabolic pathways in these conditions.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Paula Unzueta-Larrinaga
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Rocío Barrena-Barbadillo
- BioBizkaia Health Research Institute, Bizkaia, Spain
- Department of Nursing, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | - Luis Felipe Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
- BioBizkaia Health Research Institute, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain.
| |
Collapse
|
2
|
Bortoletto R, Garzitto M, Piscitelli F, Fornasaro S, Scipioni C, Sepulcri O, Fabris M, Curcio F, Balestrieri M, Colizzi M. The Endocannabinoid Activity Remodulation for Psychosis Liability in Youth (EARLY) Study: An Open-Label Feasibility Trial of Ultramicronized-Palmitoylethanolamide Oral Supplementation in Clinical High-Risk State for Psychosis. Brain Sci 2024; 14:1230. [PMID: 39766429 PMCID: PMC11727594 DOI: 10.3390/brainsci14121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/15/2025] Open
Abstract
To date, no psychotropic medication has shown to effectively halt progression to psychosis among individuals at Clinical High-Risk for psychosis (CHR), fueling the search for novel therapeutic agents. Recent evidence supports Palmitoylethanolamide (PEA) signaling as a potential psychosis biomarker, also indicating a therapeutic role for its supplementation in the treatment of psychotic disorders. Nonetheless, the effect of sustained PEA intake in CHR subjects has never been explored so far. We will assess the feasibility of enrolling 20 CHR young adults presenting with attenuated psychotic symptoms (APS) in a 12-week, open-label, investigator-initiated, proof-of-concept, single-arm trial of ultramicronized-PEA (um-PEA) 600 mg/day. Once completed the 12-week phase, participants will be proposed to enter a 24-week extension phase of the study. We will examine um-PEA ability to reduce APS and psychic distress, um-PEA safety and tolerability, and the biological basis of um-PEA effect in terms of modulation of inflammatory response, endocannabinoid (eCB) signaling, and microbiome composition. Our trial aims to address an unmet clinical need in CHR subjects, providing an initial solid basis for the development of future studies evaluating the efficacy and tolerability of PEA supplementation in this group of patients.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.G.); (C.S.); (M.B.)
| | - Marco Garzitto
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.G.); (C.S.); (M.B.)
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council (CNR), 80078 Pozzuoli, Italy;
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Claudia Scipioni
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.G.); (C.S.); (M.B.)
| | - Orietta Sepulcri
- Unit of Psychiatry and Eating Disorders, Friuli Centrale Health University Authority (ASUFC), 33100 Udine, Italy;
| | - Martina Fabris
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.F.); (F.C.)
- Institute of Clinical Pathology, Friuli Centrale Health University Authority (ASUFC), 33100 Udine, Italy
| | - Francesco Curcio
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.F.); (F.C.)
- Institute of Clinical Pathology, Friuli Centrale Health University Authority (ASUFC), 33100 Udine, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.G.); (C.S.); (M.B.)
| | - Marco Colizzi
- Unit of Psychiatry and Eating Disorders, Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.G.); (C.S.); (M.B.)
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
3
|
Haddad NM, De Jesus LP, Serpa M, Van De Bilt M, Talib L, Costa A, Gattaz W, Loch AA. Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01788-x. [PMID: 38502208 DOI: 10.1007/s00406-024-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.
Collapse
Affiliation(s)
- Natalia Mansur Haddad
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil.
| | - Leonardo Peroni De Jesus
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Mauricio Serpa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Martinus Van De Bilt
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alana Costa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alexandre Andrade Loch
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| |
Collapse
|
4
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
5
|
Lamanna-Rama N, Romero-Miguel D, Casquero-Veiga M, MacDowell KS, Santa-Marta C, Torres-Sánchez S, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. THC improves behavioural schizophrenia-like deficits that CBD fails to overcome: a comprehensive multilevel approach using the Poly I:C maternal immune activation. Psychiatry Res 2024; 331:115643. [PMID: 38064909 DOI: 10.1016/j.psychres.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 01/02/2024]
Abstract
Prenatal infections and cannabis use during adolescence are well-recognized risk factors for schizophrenia. As inflammation and oxidative stress (OS) contribute to this disorder, anti-inflammatory drugs have been proposed as potential therapies. This study aimed to evaluate the association between delta-9-tetrahydrocannabinol (THC) and schizophrenia-like abnormalities in a maternal immune activation (MIA) model. Additionally, we assessed the preventive effect of cannabidiol (CBD), a non-psychotropic/anti-inflammatory cannabinoid. THC and/or CBD were administered to Saline- and MIA-offspring during periadolescence. At adulthood, THC-exposed MIA-offspring showed significant improvements in sensorimotor gating deficits. Structural and metabolic brain changes were evaluated by magnetic resonance imaging, revealing cortical shrinkage in Saline- and enlargement in MIA-offspring after THC-exposure. Additionally, MIA-offspring displayed enlarged ventricles and decreased hippocampus, which were partially reverted by both cannabinoids. CBD prevented THC-induced reduction in the corpus callosum, despite affecting white matter structure. Post-mortem studies revealed detrimental effects of THC, including increased inflammation and oxidative stress. CBD partially reverted these pro-inflammatory alterations and modulated THC's effects on the endocannabinoid system. In conclusion, contrary to expectations, THC exhibited greater behavioural and morphometric benefits, despite promoting a pro-inflammatory state that CBD partially reverted. Further research is needed to elucidate the underlying mechanisms involved in the observed benefits of THC.
Collapse
Affiliation(s)
- Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés (Madrid) 28911, Spain
| | | | | | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, 28040 - Madrid, Spain
| | | | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, 28040 - Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés (Madrid) 28911, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.
| |
Collapse
|
6
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
7
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
8
|
Bortoletto R, Piscitelli F, Candolo A, Bhattacharyya S, Balestrieri M, Colizzi M. Questioning the role of palmitoylethanolamide in psychosis: a systematic review of clinical and preclinical evidence. Front Psychiatry 2023; 14:1231710. [PMID: 37533892 PMCID: PMC10390736 DOI: 10.3389/fpsyt.2023.1231710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The endocannabinoid (eCB) system disruption has been suggested to underpin the development of psychosis, fueling the search for novel, better-tolerated antipsychotic agents that target the eCB system. Among these, palmitoylethanolamide (PEA), an N-acylethanolamine (AE) with neuroprotective, anti-inflammatory, and analgesic properties, has drawn attention for its antipsychotic potential. Methods This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at reappraising all clinical and preclinical studies investigating the biobehavioral role of PEA in psychosis. Results Overall, 13 studies were eligible for data extraction (11 human, 2 animal). Observational studies investigating PEA tone in psychosis patients converged on the evidence for increased PEA plasma (6 human) and central nervous system (CNS; 1 human) levels, as a potential early compensatory response to illness and its severity, that seems to be lost in the longer-term (CNS; 1 human), opening to the possibility of exogenously supplementing it to sustain control of the disorder. Consistently, PEA oral supplementation reduced negative psychotic and manic symptoms among psychosis patients, with no serious adverse events (3 human). No PEA changes emerged in either preclinical psychosis model (2 animal) studied. Discussion Evidence supports PEA signaling as a potential psychosis biomarker, also indicating a therapeutic role of its supplementation in the disorder. Systematic review registration https://doi.org/10.17605/OSF.IO/AFMTK.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Piscitelli
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Anna Candolo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Verdejo-Garcia A. Searching for biomarkers in the fluidity of mental ill-health. World Psychiatry 2023; 22:268-270. [PMID: 37159347 PMCID: PMC10168163 DOI: 10.1002/wps.21083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Antonio Verdejo-Garcia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Reece AS, Hulse GK. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16721. [PMID: 36554603 PMCID: PMC9778714 DOI: 10.3390/ijerph192416721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Twelve separate streams of empirical data make a strong case for cannabis-induced accelerated aging including hormonal, mitochondriopathic, cardiovascular, hepatotoxic, immunological, genotoxic, epigenotoxic, disruption of chromosomal physiology, congenital anomalies, cancers including inheritable tumorigenesis, telomerase inhibition and elevated mortality. METHODS Results from a recently published longitudinal epigenomic screen were analyzed with regard to the results of recent large epidemiological studies of the causal impacts of cannabis. We also integrate theoretical syntheses with prior studies into these combined epigenomic and epidemiological results. RESULTS Cannabis dependence not only recapitulates many of the key features of aging, but is characterized by both age-defining and age-generating illnesses including immunomodulation, hepatic inflammation, many psychiatric syndromes with a neuroinflammatory basis, genotoxicity and epigenotoxicity. DNA breaks, chromosomal breakage-fusion-bridge morphologies and likely cycles, and altered intergenerational DNA methylation and disruption of both the histone and tubulin codes in the context of increased clinical congenital anomalies, cancers and heritable tumors imply widespread disruption of the genome and epigenome. Modern epigenomic clocks indicate that, in cannabis-dependent patients, cannabis advances cellular DNA methylation age by 25-30% at age 30 years. Data have implications not only for somatic but also stem cell and germ line tissues including post-fertilization zygotes. This effect is likely increases with the square of chronological age. CONCLUSION Recent epigenomic studies of cannabis exposure provide many explanations for the broad spectrum of cannabis-related teratogenicity and carcinogenicity and appear to account for many epidemiologically observed findings. Further research is indicated on the role of cannabinoids in the aging process both developmentally and longitudinally, from stem cell to germ cell to blastocystoids to embryoid bodies and beyond.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|