1
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
2
|
Vitt P, Finch J, Barak RS, Braum A, Frischie S, Redlinski I. Seed sourcing strategies for ecological restoration under climate change: A review of the current literature. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.938110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Climate change continues to alter the seasonal timing and extremes of global temperature and precipitation patterns. These departures from historic conditions along with the predicted variability of future climates present a challenge to seed sourcing, or provenance strategy decisions, within the practice of ecological restoration. The “local is best” for seed sourcing paradigm is predicated upon the assumption that ecotypes are genetically adapted to their local environment. However, local adaptations are potentially being outpaced by climate change, and the ability of plant populations to naturally migrate or shift their distribution accordingly may be limited by habitat fragmentation. Restoration practitioners and natural area managers have a general understanding of the importance of matching the inherent adaptations of source populations with the current and/or future site conditions where those seeds or propagules are planted. However, for many species used in seed-based restoration, there is a lack of empirical evidence to guide seed sourcing decisions, which are critical for the longevity and ecological function of restored natural communities. With the goal of characterizing, synthesizing, and applying experimental research to guide restoration practice, we conducted a systematic review of the literature on provenance testing of taxa undertaken to inform seed sourcing strategies for climate resiliency. We found a strong bias in the choice of study organism: most studies have been conducted on tree species. We also found a strong bias regarding where this research has been conducted, with North America (52%) and Europe (31%) overrepresented. Experiments were designed to assess how propagule origin influences performance across both climatic (26%) and geographic (15%) distance, with some studies focused on determining how climate normal conditions (39%) impacted performance related to survivorship, growth and other parameters. We describe the patterns and gaps our review identified, highlight specific topics which require further research, and provide practical suggestions of immediate and longer-term tools that restoration practitioners can use to guide and build resilient natural communities under future climate scenarios.
Collapse
|
3
|
Ahrens CW, Challis A, Byrne M, Leigh A, Nicotra AB, Tissue D, Rymer P. Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins. THE NEW PHYTOLOGIST 2021; 232:1212-1225. [PMID: 34292598 DOI: 10.1111/nph.17640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The frequency and severity of heatwave events are increasing, exposing species to conditions beyond their physiological limits. Species respond to heatwaves in different ways, however it remains unclear if plants have the adaptive capacity to successfully respond to hotter and more frequent heatwaves. We exposed eight tree populations from two climate regions grown under cool and warm temperatures to repeated heatwave events of moderate (40°C) and extreme (46°C) severity to assess adaptive capacity to heatwaves. Leaf damage and maximum quantum efficiency of photosystem II (Fv /Fm ) were significantly impacted by heatwave severity and growth temperatures, respectively; populations from a warm-origin avoided damage under moderate heatwaves compared to those from a cool-origin, indicating a degree of local adaptation. We found that plasticity to heatwave severity and repeated heatwaves contributed to enhanced thermal tolerance and lower leaf temperatures, leading to greater thermal safety margins (thermal tolerance minus leaf temperature) in a second heatwave. Notably, while we show that adaptation and physiological plasticity are important factors affecting plant adaptive capacity to thermal stress, plasticity of thermal tolerances and thermal safety margins provides the opportunity for trees to persist among fluctuating heatwave exposures.
Collapse
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Anthea Challis
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| | - Andrea Leigh
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Paul Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
4
|
Mogilski M, Fensham RJ, Firn J. Effects of local environmental heterogeneity and provenance selection on two direct seeded eucalypt forest species. Restor Ecol 2020. [DOI: 10.1111/rec.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michelle Mogilski
- School of Agriculture and Food Sciences University of Queensland St Lucia Queensland 4072 Australia
| | - Roderick J Fensham
- Department of Environment and Science Queensland Herbarium Mt Coot‐tha Road, Toowong Queensland 4066 Australia
- School of Biological Sciences University of Queensland St Lucia Queensland 4072 Australia
| | - Jennifer Firn
- School of Earth, Environmental and Biological Sciences Queensland University of Technology Brisbane Queensland 4001 Australia
| |
Collapse
|
5
|
Young DJN, Blush TD, Landram M, Wright JW, Latimer AM, Safford HD. Assisted gene flow in the context of large‐scale forest management in California,
USA. Ecosphere 2020. [DOI: 10.1002/ecs2.3001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Derek J. N. Young
- Department of Plant Sciences University of California Davis California 95616 USA
| | - Thomas D. Blush
- Pacific Southwest Region USDA Forest Service Vallejo California 94592 USA
| | - Michael Landram
- Pacific Southwest Region USDA Forest Service Vallejo California 94592 USA
| | - Jessica W. Wright
- Pacific Southwest Research Station USDA Forest Service Davis California 95618 USA
| | - Andrew M. Latimer
- Department of Plant Sciences University of California Davis California 95616 USA
| | - Hugh D. Safford
- Pacific Southwest Region USDA Forest Service Vallejo California 94592 USA
- Department of Environmental Science and Policy University of California Davis California95616USA
| |
Collapse
|
6
|
Camarretta N, Harrison PA, Bailey T, Davidson N, Lucieer A, Hunt M, Potts BM. Stability of species and provenance performance when translocated into different community assemblages. Restor Ecol 2020. [DOI: 10.1111/rec.13098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nicolò Camarretta
- School of Natural Sciences and ARC Training Centre for Forest Value University of Tasmania, Private Bag 55 Hobart Tasmania 7001 Australia
| | - Peter A. Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value University of Tasmania, Private Bag 55 Hobart Tasmania 7001 Australia
| | - Tanya Bailey
- School of Natural Sciences and ARC Training Centre for Forest Value University of Tasmania, Private Bag 55 Hobart Tasmania 7001 Australia
- Greening Australia Mt. Nelson Tasmania Australia
| | | | - Arko Lucieer
- School of Technology, Environments and Design University of Tasmania Hobart Tasmania Australia
| | - Mark Hunt
- School of Natural Sciences and ARC Training Centre for Forest Value University of Tasmania, Private Bag 55 Hobart Tasmania 7001 Australia
| | - Brad M. Potts
- School of Natural Sciences and ARC Training Centre for Forest Value University of Tasmania, Private Bag 55 Hobart Tasmania 7001 Australia
| |
Collapse
|
7
|
Zhu Y, Fu S, Liu H, Wang Z, Chen HYH. Heat stress tolerance determines the survival and growth of introduced Canadian sugar maple in subtropical China. TREE PHYSIOLOGY 2019; 39:417-426. [PMID: 30239951 DOI: 10.1093/treephys/tpy098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The introduction of species contributes to both ecological restoration and regional economics, while serving as a potential strategy to conserve species under rapid climate change. Despite an anticipated significant increase in temperature at high latitudes by the end of the 21st century, very few experimental migration trials have been conducted regarding large climate range changes. We employed a provenance trial by introducing a temperate sugar maple (Acer saccharum Marsh) of three provenances with a mean annual temperature of 3.0 °C in Manitoba, 4.2 °C in Quebec and 9.4 °C in Ontario, Canada, to 15.8 °C at an introduced site in subtropical China. We measured survival, growth, summer photosynthesis in the field and stress-resistance responses under a temperature gradient in growth chambers with first-year seedlings. We found that the Ontario provenance had the highest propensity for survival and growth, followed by the Quebec provenance, while the Manitoba provenance had the lowest. The photosynthetic parameters of the seedlings changed over time of the day, with the Ontario provenance having a higher photosynthesis rate and stomatal conductance than the Quebec and Manitoba provenances. Furthermore, the growth chamber results revealed that the Ontario provenance had the best physiological adjustment for self-protection from heat stress, followed by the Quebec and Manitoba provenances. Our results suggested that the change in climate range drove the survival and growth of introduced seedlings and that the tolerance to summer heat stress through physiological mechanisms was responsible for the success of species introduction, from a cold to a warm climate.
Collapse
Affiliation(s)
- Yingying Zhu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada
| | - Songling Fu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Liu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhaocheng Wang
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
8
|
Bucharova A, Bossdorf O, Hölzel N, Kollmann J, Prasse R, Durka W. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1067-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Bucharova A, Durka W, Hölzel N, Kollmann J, Michalski S, Bossdorf O. Are local plants the best for ecosystem restoration? It depends on how you analyze the data. Ecol Evol 2017; 7:10683-10689. [PMID: 29299248 PMCID: PMC5743477 DOI: 10.1002/ece3.3585] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
One of the key questions in ecosystem restoration is the choice of the seed material for restoring plant communities. The most common strategy is to use local seed sources, based on the argument that many plants are locally adapted and thus local seed sources should provide the best restoration success. However, the evidence for local adaptation is inconsistent, and some of these inconsistencies may be due to different experimental approaches that have been used to test for local adaptation. We illustrate how conclusions about local adaptation depend on the experimental design and in particular on the method of data analysis. We used data from a multispecies reciprocal transplant experiment and analyzed them in three different ways: (1) comparing local vs. foreign plants within species and sites, corresponding to tests of the “local is best” paradigm in ecological restoration, (2) comparing sympatric vs. allopatric populations across sites but within species, and (3) comparing sympatric and allopatric populations across multiple species. These approaches reflect different experimental designs: While a local vs. foreign comparison can be done even in small experiments with a single species and site, the other two approaches require a reciprocal transplant experiment with one or multiple species, respectively. The three different analyses led to contrasting results. While the local/foreign approach indicated lack of local adaptation or even maladaptation, the more general sympatric/allopatric approach rather suggested local adaptation, and the most general cross‐species sympatric/allopatric test provided significant evidence for local adaptation. The analyses demonstrate how the design of experiments and methods of data analysis impact conclusions on the presence or absence of local adaptation. While small‐scale, single‐species experiments may be useful for identifying the appropriate seed material for a specific restoration project, general patterns can only be detected in reciprocal transplant experiments with multiple species and sites.
Collapse
Affiliation(s)
- Anna Bucharova
- Plant Evolutionary Ecology Institute of Evolution & Ecology University of Tübingen Tübingen Germany.,Nature Conservation and Landscape Ecology University of Freiburg Freiburg im Breisgau Germany
| | - Walter Durka
- Department of Community Ecology Helmholtz Centre for Environmental Research-UFZ Halle Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Norbert Hölzel
- Biodiversity and Ecosystem Research Group Institute of Landscape Ecology University of Münster Münster Germany
| | - Johannes Kollmann
- Department of Ecology & Ecosystem Management Restoration Ecology Technical University of Munich München Germany.,Norwegian Institute of Bioeconomy Research (NIBIO) Ås Norway
| | - Stefan Michalski
- Department of Community Ecology Helmholtz Centre for Environmental Research-UFZ Halle Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Institute of Evolution & Ecology University of Tübingen Tübingen Germany
| |
Collapse
|
10
|
Broadhurst L, Waters C, Coates D. Native seed for restoration: a discussion of key issues using examples from the flora of southern Australia. RANGELAND JOURNAL 2017. [DOI: 10.1071/rj17055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Land clearing across southern Australia since European settlement has fundamentally changed the amount and distribution of native vegetation; it has also substantially reduced genetic diversity in plant species throughout Australia, especially in agricultural regions. The most recent State of the Environment report indicates that Australian biodiversity continues to decline. Many approaches to restoration are used in Australia including re-establishing plant populations using tube stock or by direct seeding. Native seed for these projects is often assumed to be plentiful and available for the majority of species we wish to restore but these assumptions are rarely true. We also rely on a small number of species for the majority of restoration projects despite the vast number of species required to fully restore complex plant communities. The majority of seed for restoration is still primarily collected from native vegetation despite longstanding concerns regarding the sustainability of this practice and the globally recognised impacts of vegetation fragmentation on seed production and genetic diversity. Climate change is also expected to challenge seed production as temperatures rise and water availability becomes more limited; changes to current planting practices may also be required. Until now native seed collection has relied on market forces to build a strong and efficient industry sector, but in reality the Australian native seed market is primarily driven by Federal, State and Territory funding. In addition, unlike other seed-based agri-businesses native seed collection lacks national industry standards. A new approach is required to support development of the native seed collection and use sector into an innovative industry.
Collapse
|
11
|
Gross CL, Fatemi M, Simpson IH. Seed provenance for changing climates: early growth traits of nonlocal seed are better adapted to future climatic scenarios, but not to current field conditions. Restor Ecol 2016. [DOI: 10.1111/rec.12474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Caroline L. Gross
- Ecosystem Management; University of New England; Armidale NSW 2351 Australia
| | - Mohammad Fatemi
- Department of Biology; Golestan University; Behesti Street Gorgan Iran
| | - Ian H. Simpson
- Ecosystem Management; University of New England; Armidale NSW 2351 Australia
| |
Collapse
|
12
|
Bucharova A. Assisted migration within species range ignores biotic interactions and lacks evidence. Restor Ecol 2016. [DOI: 10.1111/rec.12457] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anna Bucharova
- Department of Plant Evolutionary Ecology, Institute of Evolution and Ecology; Karl Eberhard University; Tübingen 72076 Germany
| |
Collapse
|
13
|
Emery NJ, Henwood MJ, Offord CA, Wardle GM. Right here, right now: Populations of
Actinotus helianthi
differ in their early performance traits and interactions. AUSTRAL ECOL 2016. [DOI: 10.1111/aec.12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan J. Emery
- School of Life and Environmental Sciences University of Sydney Heydon‐Laurence Building (A08) Sydney New South Wales 2006 Australia
- The Australian PlantBank Royal Botanic Gardens & Domain Trust The Australian Botanic Garden Mount Annan Mount Annan New South Wales 2567 Australia
| | - Murray J. Henwood
- School of Life and Environmental Sciences University of Sydney Heydon‐Laurence Building (A08) Sydney New South Wales 2006 Australia
| | - Catherine A. Offord
- The Australian PlantBank Royal Botanic Gardens & Domain Trust The Australian Botanic Garden Mount Annan Mount Annan New South Wales 2567 Australia
| | - Glenda M. Wardle
- School of Life and Environmental Sciences University of Sydney Heydon‐Laurence Building (A08) Sydney New South Wales 2006 Australia
| |
Collapse
|
14
|
Bucharova A, Durka W, Hermann JM, Hölzel N, Michalski S, Kollmann J, Bossdorf O. Plants adapted to warmer climate do not outperform regional plants during a natural heat wave. Ecol Evol 2016; 6:4160-5. [PMID: 27516871 PMCID: PMC4880551 DOI: 10.1002/ece3.2183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022] Open
Abstract
With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm‐adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4–2.0°C higher than the long‐term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long‐term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm‐adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm‐adapted plants, despite elevated temperatures, which suggests that translocating warm‐adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.
Collapse
Affiliation(s)
- Anna Bucharova
- Plant Evolutionary Ecology Institute of Evolution & Ecology University of Tübingen Tübingen Germany
| | - Walter Durka
- Department of Community Ecology Helmholtz Centre for Environmental Research-UFZ Halle Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Julia-Maria Hermann
- Restoration Ecology Department of Ecology & Ecosystem Management Technische Universität München München Germany
| | - Norbert Hölzel
- Biodiversity and Ecosystem Research Group Institute of Landscape Ecology University of Münster Münster Germany
| | - Stefan Michalski
- Department of Community Ecology Helmholtz Centre for Environmental Research-UFZ Halle Germany
| | - Johannes Kollmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Institute of Evolution & Ecology University of Tübingen Tübingen Germany
| |
Collapse
|
15
|
Silva L, Dias EF, Sardos J, Azevedo EB, Schaefer H, Moura M. Towards a more holistic research approach to plant conservation: the case of rare plants on oceanic islands. AOB PLANTS 2015; 7:plv066. [PMID: 26068940 PMCID: PMC4571168 DOI: 10.1093/aobpla/plv066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/01/2015] [Indexed: 05/27/2023]
Abstract
Research dedicated to rare endemic plants is usually focused on one given aspect. However, holistic studies, addressing several key issues, might be more useful, supporting management programmes while unravelling basic knowledge about ecological and population-level processes. A more comprehensive approach to research is proposed, encompassing: phylogenetics/systematics, pollination biology and seed dispersal, propagation, population genetics, species distribution models (SDMs), threats and monitoring. We present a holistic study dedicated to Veronica dabneyi Hochst. ex Seub., an endangered chamaephyte endemic to the Azores. Veronica dabneyi was mainly found associated with other endemic taxa; however, invasive plants were also present and together with introduced cattle, goats and rabbits are a major threat. Most populations grow at somewhat rocky and steep locations that appeared to work as refuges. Seed set in the wild was generally high and recruitment of young plants from seed seemed to be frequent. In the laboratory, it was possible to germinate and fully develop V. dabneyi seedlings, which were planted at their site of origin. No dormancy was detected and time for 50 % germination was affected by incubation temperature. Eight new microsatellite markers were applied to 72 individuals from 7 sites. A considerable degree of admixture was found between samples from the two islands Flores and Corvo, with 98 % of the genetic variability allocated within populations. Levels of heterozygosity were high and no evidence of inbreeding was found. Species distribution models based on climatic and topographic variables allowed the estimation of the potential distribution of V. dabneyi on Flores and Corvo using ecological niche factor analysis and Maxent. The inclusion of land-use variables only slightly increased the information explained by the models. Projection of the expected habitat in Faial largely coincided with the only historic record of V. dabneyi on that island. This research could be the basis for the design of a recovery plan, showing the pertinence of more holistic research approaches to plant conservation.
Collapse
Affiliation(s)
- Luís Silva
- InBIO, Rede de Investigação em Biodiversidade, Laboratório Associado, CIBO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Polo-Açores, Departamento de Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| | - Elisabete Furtado Dias
- InBIO, Rede de Investigação em Biodiversidade, Laboratório Associado, CIBO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Polo-Açores, Departamento de Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| | - Julie Sardos
- Bioversity-France, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Eduardo Brito Azevedo
- Research Center for Climate, Meteorology and Global Change (CMMG - CITA-A), Departamento de Ciências Agrárias, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
| | - Hanno Schaefer
- Plant Biodiversity Research, Technische Universität München, D-85354 Freising, Germany
| | - Mónica Moura
- InBIO, Rede de Investigação em Biodiversidade, Laboratório Associado, CIBO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Polo-Açores, Departamento de Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| |
Collapse
|