1
|
Criscione A, Ben Jemaa S, Chessari G, Riggio S, Tumino S, Cammilleri G, Lastra A, Carta F, Sardina MT, Portolano B, Bordonaro S, Cesarani A, Mastrangelo S. Detecting the footprint of selection on the genome of Girgentana goat, a popular ancient breed. Animal 2025; 19:101466. [PMID: 40073591 DOI: 10.1016/j.animal.2025.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Girgentana goats are an ancient breed with distinctive morphological, adaptive, and production traits, making this population an interesting model for studying the genetic architecture underlying these traits. These special features result from natural and human-mediated selection. In this study, we aimed to detect potential signatures of selection in the Girgentana genome by combining the following statistical methods: the integrated haplotype score (iHS), the standardised log-ratio of the integrated site-specific extended haplotype homozygosity test between pairs of populations (Rsb), the runs of homozygosity (ROH) islands and the population differentiation index (FST). A composite dataset of 206 Girgentana and 334 animals from 13 goat populations across Northern and Southern Italy was analysed. All animals were genotyped using an Illumina Goat medium-density BeadChip. Multidimensional scaling and neighbour-joining analyses revealed a clear separation of the three major clades, coinciding with Girgentana, Northern, and Southern Italian goats. Twelve regions putatively under selection were detected using iHS and Rsb, whereas 16 hotspot regions were identified using FST and ROH. Notably, a candidate region on chromosome 01 was consistently identified in all four tests. This region, along with other candidate regions, includes several genes associated with adaptive immunity, reproduction, and body size traits. The Girgentana breed showed signals of ongoing selection in a region of chromosome 6 encompassing several milk quality genes, such as caseins (CSN2, CSN1S2, and CSN3). Our study provides a glimpse into the genomic regions harbouring genes that presumably affect the desired features of Girgentana. This highlights the importance of ancient breeds in providing essential genetic traits for adapting livestock to increasing climate change challenges.
Collapse
Affiliation(s)
- A Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy
| | - S Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049 Ariana, Tunisia
| | - G Chessari
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy; Department of Animal Sciences, Georg-August-University Göttingen 37077 Göttingen, Germany
| | - S Riggio
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - S Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy
| | - G Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo 90129, Italy
| | - A Lastra
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo 90129, Italy
| | - F Carta
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - M T Sardina
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - B Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - S Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy
| | - A Cesarani
- Dipartimento di Scienze Agrarie, University of Sassari, Sassari 07100, Italy; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - S Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
2
|
Ma K, Song J, Li D, Li T, Ma Y. Genetic Diversity and Selection Signal Analysis of Hu Sheep Based on SNP50K BeadChip. Animals (Basel) 2024; 14:2784. [PMID: 39409733 PMCID: PMC11476051 DOI: 10.3390/ani14192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
This research is designed to examine the genetic diversity and kinship among Hu sheep, as well as to discover genes associated with crucial economic traits. A selection of 50 unrelated adult male Hu sheep underwent genotyping with the SNP50K BeadChip. Seven indicators of genetic diversity were assessed based on high-quality SNP data: effective population size (Ne), polymorphic information content (PIC), polymorphic marker ratio (PN), expected heterozygosity (He), observed heterozygosity (Ho), effective number of alleles, and minor allele frequency (MAF). Plink software was employed to compute the IBS genetic distance matrix and detect runs of homozygosity (ROHs), while the G matrix and principal component analysis were performed using GCTA software. Selective sweep analysis was carried out using ROH, Pi, and Tajima's D methodologies. This study identified a total of 64,734 SNPs, of which 56,522 SNPs remained for downstream analysis after quality control. The population displayed relatively high genetic diversity. The 50 Hu sheep were ultimately grouped into 12 distinct families, with families 6, 8, and 10 having the highest numbers of individuals, each consisting of 6 sheep. Furthermore, a total of 294 ROHs were detected, with the majority having lengths between 1 and 5 Mb, and the inbreeding coefficient FROH was 0.01. In addition, 41, 440, and 994 candidate genes were identified by ROH, Pi, and Tajima's D methods, respectively, with 3 genes overlapping (BMPR1B, KCNIP4, and FAM13A). These results offer valuable insights for future Hu sheep breeding, genetic assessment, and population management.
Collapse
Affiliation(s)
| | | | | | | | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (K.M.); (J.S.); (D.L.); (T.L.)
| |
Collapse
|
3
|
Baldan S, Sölkner J, Gebre KT, Mészáros G, Crooijmans R, Periasamy K, Pichler R, Manaljav B, Baatar N, Purevdorj M. Genetic characterization of cashmere goat ( Capra hircus) populations in Mongolia. Front Genet 2024; 15:1421529. [PMID: 39355687 PMCID: PMC11442248 DOI: 10.3389/fgene.2024.1421529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 10/03/2024] Open
Abstract
Objective Characterization studies of the phenotypic and genetic diversity of Mongolian goats are limited, despite several goat breeds being registered in the country. This study aimed to evaluate the phenotypic and genetic diversity of 14 cashmere goat populations in Mongolia, consisting largely of identified goat breeds. Methods Body weight, cashmere quality, and coat color were the phenotypic traits considered in this study. A linear model was used to fit body weight and cashmere traits, and least squares means (LSMs) were estimated for the region and location classes. Genetic diversity and structure were assessed using a goat 50K SNP array. Results The studied populations exhibited greater phenotypic diversity at the regional level. A very small overall differentiation index (Fst: 0.017) was revealed by Wright's Fst and a very small overall inbreeding index (F ROH1 :0.019) was revealed based on runs of homozygosity. Genetic clustering of populations by principal components showed large variances for the two goat populations of the Russian admixture (Gobi Gurvan Saikhan and Uuliin Bor), and smaller but differentiated clusters for the remaining populations. Similar results were observed in the admixture analysis, which identified populations with the highest (Govi Gurvan Saikhan and Uuliin Bor) and lowest (Tsagaan Ovoo Khar) exotic admixtures. A genomewide association study (GWAS) of body weight and cashmere traits identified a few significant variants on chromosomes 2, 4, 5, 9, and 15, with the strongest variant for cashmere yield on chromosome 4. The GWAS on coat color yielded nine significant variants, with the strongest variants located on chromosomes 6, 13, and 18 and potential associations with KIT, ASIP, and MC1R genes. These signals were also found in other studies on coat color and patterns in goats. Conclusion Mongolian cashmere goats showed relatively low genetic differentiation and low inbreeding levels, possibly caused by the traditional pastoral livestock management system and the practice of trading breeding bucks across provinces, along with a recent increase in the goat population. Further investigation of cashmere traits using larger samples and alternative methods may help identify the genes or genomic regions underlying cashmere quality in goats.
Collapse
Affiliation(s)
- Sergelen Baldan
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Johann Sölkner
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Kahsa Tadel Gebre
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
- Department of Animal, Rangeland and Wildlife Sciences (ARWS), Enda-Eyesus Campus, Mekelle University, Mekelle, Ethiopia
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Richard Crooijmans
- Wageningen University and Research, Animal Breeding and Genomics, Wageningen, Netherlands
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Vienna, Austria
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Vienna, Austria
| | - Bayarjargal Manaljav
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Narantuya Baatar
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Myagmarsuren Purevdorj
- Department for Animal Science, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
4
|
Davoudi P, Do DN, Rathgeber B, Colombo S, Sargolzaei M, Plastow G, Wang Z, Miar Y. Characterization of runs of homozygosity islands in American mink using whole-genome sequencing data. J Anim Breed Genet 2024; 141:507-520. [PMID: 38389405 DOI: 10.1111/jbg.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- Select Sires Inc., Plain City, Ohio, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
5
|
Le SV, de Las Heras-Saldana S, Alexandri P, Olmo L, Walkden-Brown SW, van der Werf JHJ. Genetic diversity, population structure and origin of the native goats in Central Laos. J Anim Breed Genet 2024; 141:531-549. [PMID: 38520124 DOI: 10.1111/jbg.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Maintaining genetic diversity and variation in livestock populations is critical for natural and artificial selection promoting genetic improvement while avoiding problems due to inbreeding. In Laos, there are concerns that there has been a decline in genetic diversity and a rise in inbreeding among native goats in their village-based smallholder system. In this study, we investigated the genetic diversity of Lao native goats in Phin, Songkhone and Sepon districts in Central Laos for the first time using Illumina's Goat SNP50 BeadChip. We also explored the genetic relationships between Lao goats with 163 global goat populations from 36 countries. Our results revealled a close genetic relationship between Lao native goats and Chinese, Mongolian and Pakistani goats, sharing ancestries with Guangfen, Jining Grey and Luoping Yellow breeds (China) and Teddi goats (Pakistan). The observed (Ho) and expected (He) heterozygosity were 0.292 and 0.303 (Laos), 0.288 and 0.288 (Sepon), 0.299 and 0.308 (Phin) and 0.289 and 0.305 (Songkhone), respectively. There was low to moderate genetic differentiation (FST: 0.011-0.043) and negligible inbreeding coefficients (FIS: -0.001 to 0.052) between goat districts. The runs of homozygosity (ROH) had an average length of 5.92-6.85 Mb, with short ROH segments (1-5 Mb length) being the most prevalent (66.34%). Longer ROH segments (20-40 and >40 Mb length categories) were less common, comprising only 4.81% and 1.01%, respectively. Lao goats exhibit moderate genetic diversity, low-inbreeding levels and adequate effective population size. Some genetic distinctions between Lao goats may be explained by geographic and cultural features.
Collapse
Affiliation(s)
- Sang V Le
- School of Rural & Environmental Science, University of New England, Armidale, New South Wales, Australia
| | - Sara de Las Heras-Saldana
- AGBU, a Joint Venture of the NSW Department of Primary Industries and the University of New England, Armidale, New South Wales, Australia
| | - Panoraia Alexandri
- AGBU, a Joint Venture of the NSW Department of Primary Industries and the University of New England, Armidale, New South Wales, Australia
| | - Luisa Olmo
- School of Rural & Environmental Science, University of New England, Armidale, New South Wales, Australia
| | - Stephen W Walkden-Brown
- School of Rural & Environmental Science, University of New England, Armidale, New South Wales, Australia
| | - Julius H J van der Werf
- School of Rural & Environmental Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
6
|
Petretto E, Dettori ML, Luigi-Sierra MG, Noce A, Pazzola M, Vacca GM, Molina A, Martínez A, Goyache F, Carolan S, Amills M. Investigating the footprint of post-domestication dispersal on the diversity of modern European, African and Asian goats. Genet Sel Evol 2024; 56:55. [PMID: 39068382 PMCID: PMC11282621 DOI: 10.1186/s12711-024-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Goats were domesticated in the Fertile Crescent about 10,000 years before present (YBP) and subsequently spread across Eurasia and Africa. This dispersal is expected to generate a gradient of declining genetic diversity with increasing distance from the areas of early livestock management. Previous studies have reported the existence of such genetic cline in European goat populations, but they were based on a limited number of microsatellite markers. Here, we have analyzed data generated by the AdaptMap project and other studies. More specifically, we have used the geographic coordinates and estimates of the observed (Ho) and expected (He) heterozygosities of 1077 European, 1187 African and 617 Asian goats belonging to 38, 43 and 22 different breeds, respectively, to find out whether genetic diversity and distance to Ganj Dareh, a Neolithic settlement in western Iran for which evidence of an early management of domestic goats has been obtained, are significantly correlated. RESULTS Principal component and ADMIXTURE analyses revealed an incomplete regional differentiation of European breeds, but two genetic clusters representing Northern Europe and the British-Irish Isles were remarkably differentiated from the remaining European populations. In African breeds, we observed five main clusters: (1) North Africa, (2) West Africa, (3) East Africa, (4) South Africa, and (5) Madagascar. Regarding Asian breeds, three well differentiated West Asian, South Asian and East Asian groups were observed. For European and Asian goats, no strong evidence of significant correlations between Ho and He and distance to Ganj Dareh was found. In contrast, in African breeds we detected a significant gradient of diversity, which decreased with distance to Ganj Dareh. CONCLUSIONS The detection of a genetic cline associated with distance to the Ganj Dareh in African but not in European or Asian goat breeds might reflect differences in the post-domestication dispersal process and subsequent migratory movements associated with the management of caprine populations from these three continents.
Collapse
Affiliation(s)
- Elena Petretto
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - María Gracia Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonia Noce
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | | | - Antonio Molina
- Department of Genetics, University of Cordoba, 14071, Córdoba, Spain
| | - Amparo Martínez
- Department of Genetics, University of Cordoba, 14071, Córdoba, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | | | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
7
|
Sheriff O, Ahbara AM, Haile A, Alemayehu K, Han JL, Mwacharo JM. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Front Genet 2024; 15:1353026. [PMID: 38854428 PMCID: PMC11156998 DOI: 10.3389/fgene.2024.1353026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ethiopia has about 52 million indigenous goats with marked phenotypic variability, which is the outcome of natural and artificial selection. Here, we obtained whole-genome sequence data of three Ethiopian indigenous goat populations (Arab, Fellata, and Oromo) from northwestern Ethiopia and analyzed their genome-wide genetic diversity, population structure, and signatures of selection. We included genotype data from four other Ethiopian goat populations (Abergelle, Keffa, Gumuz, and Woyto-Guji) and goats from Asia; Europe; and eastern, southern, western, and northern Africa to investigate the genetic predisposition of the three Ethiopian populations and performed comparative genomic analysis. Genetic diversity analysis showed that Fellata goats exhibited the lowest heterozygosity values (Ho = 0.288 ± 0.005 and He = 0.334 ± 0.0001). The highest values were observed in Arab goats (Ho = 0.310 ± 0.010 and He = 0.347 ± 4.35e-05). A higher inbreeding coefficient (FROH = 0.137 ± 0.016) was recorded for Fellata goats than the 0.105 ± 0.030 recorded for Arab and the 0.112 ± 0.034 recorded for Oromo goats. This indicates that the Fellata goat population should be prioritized in future conservation activities. The three goat populations showed the majority (∼63%) of runs of homozygosity in the shorter (100-150 Kb) length category, illustrating ancient inbreeding and/or small founder effects. Population relationship and structure analysis separated the Ethiopian indigenous goats into two distinct genetic clusters lacking phylogeographic structure. Arab, Fellata, Oromo, Abergelle, and Keffa represented one genetic cluster. Gumuz and Woyto-Guji formed a separate cluster and shared a common genetic background with the Kenyan Boran goat. Genome-wide selection signature analysis identified nine strongest regions spanning 163 genes influencing adaptation to arid and semi-arid environments (HOXC12, HOXC13, HOXC4, HOXC6, and HOXC9, MAPK8IP2), immune response (IL18, TYK2, ICAM3, ADGRG1, and ADGRG3), and production and reproduction (RARG and DNMT1). Our results provide insights into a thorough understanding of genetic architecture underlying selection signatures in Ethiopian indigenous goats in a semi-arid tropical environment and deliver valuable information for goat genetic improvement, conservation strategy, genome-wide association study, and marker-assisted breeding.
Collapse
Affiliation(s)
- Oumer Sheriff
- Department of Animal Science, Assosa University, Assosa, Ethiopia
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abulgasim M. Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
| | - Aynalem Haile
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Kefyalew Alemayehu
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Ethiopian Agricultural Transformation Institute, Amhara Agricultural Transformation Center, Bahir Dar, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Bekele R, Taye M, Abebe G, Meseret S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int J Genomics 2023; 2023:8497453. [PMID: 37547753 PMCID: PMC10400298 DOI: 10.1155/2023/8497453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Genome-wide association studies (GWAS) are a powerful tool for identifying genomic regions and causative genes associated with economically important traits in dairy cattle, particularly complex traits, such as milk production. This is possible due to advances in next-generation sequencing technology. This review summarized information on identified candidate genes and genomic regions associated with milk production traits in Holstein and its crossbreds from various regions of the world. Milk production traits are important in dairy cattle breeding programs because of their direct economic impact on the industry and their close relationship with nutritional requirements. GWAS has been used in a large number of studies to identify genomic regions and candidate genes associated with milk production traits in dairy cattle. Many genomic regions and candidate genes have already been identified in Holstein and its crossbreds. Genes and single nucleotide polymorphisms (SNPs) that significantly affect milk yield (MY) were found in all autosomal chromosomes except chromosomes 27 and 29. Half of the reported SNPs associated with fat yield and fat percentage were found on chromosome 14. However, a large number of significant SNPs for protein yield (PY) and protein percentage were found on chromosomes 1, 5, and 20. Approximately 155 SNPs with significant influence on multiple milk production traits have been identified. Several promising candidate genes, including diacylglycerol O-acyltransferase 1, plectin, Rho GTPase activating protein 39, protein phosphatase 1 regulatory subunit 16A, and sphingomyelin phosphodiesterase 5 were found to have pleiotropic effects on all five milk production traits. Thus, to improve milk production traits it is of practical relevance to focus on significant SNPs and pleiotropic genes frequently found to affect multiple milk production traits.
Collapse
Affiliation(s)
- R. Bekele
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
- Department of Animal Science, College of Agriculture and Natural Resource Sciences, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - M. Taye
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - G. Abebe
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - S. Meseret
- Livestock Genetics, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Zhong T, Wang X, Huang C, Yang L, Zhao Q, Chen X, Freitas-de-Melo A, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Niu L. A genome-wide perspective on the diversity and selection signatures in indigenous goats using 53 K single nucleotide polymorphism array. Animal 2023; 17:100706. [PMID: 36758301 DOI: 10.1016/j.animal.2023.100706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Tibetan goats, Taihang goats, Jining grey goats, and Meigu goats are the representative indigenous goats in China, found in Qinghai-Tibet Plateau, Western pastoral area, Northern and Southern agricultural regions. Very few studies have conducted a comprehensive analysis of the genomic diversity and selection of these breeds. We genotyped 96 unrelated individuals, using goat 53 K Illumina BeadChip array, of the following goat breeds: Tibetan (TG), Taihang (THG), Jining grey (JGG), and Meigu (MGG). A total of 45 951 single nucleotide polymorphisms were filtered to estimate the genetic diversity and selection signatures. All breeds had a high proportion (over 95%) of polymorphic loci. The observed and excepted heterozygosity ranged from 0.338 (MGG) to 0.402 (JGG) and 0.339 (MGG) to 0.395 (JGG), respectively. Clustering analysis displayed a genetically distinct lineage for each breed, and their Fst were greater than 0.25, indicating that they had a higher genetic differentiation between groups. Furthermore, effective population size reduced in all four populations, indicating a loss of genetic diversity. In addition, runs of homozygosity were mainly distributed in 5-10 Mb. Lastly, we identified signature genes, which were closely related to high-altitude adaptation (ADIRF) and prolificity (CNTROB, SMC3, and PTEN). This study provides a valuable resource for future studies on genome-wide perspectives on the diversity and selection signatures of Chinese indigenous goats.
Collapse
Affiliation(s)
- Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlu Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Cheng H, Zhang Z, Wen J, Lenstra JA, Heller R, Cai Y, Guo Y, Li M, Li R, Li W, He S, Wang J, Shao J, Song Y, Zhang L, Billah M, Wang X, Liu M, Jiang Y. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet 2023; 19:e1010615. [PMID: 36821549 PMCID: PMC9949681 DOI: 10.1371/journal.pgen.1010615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenrong Li
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masum Billah
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
- * E-mail: (ML); (YJ)
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- * E-mail: (ML); (YJ)
| |
Collapse
|
11
|
Li Y, Gong Y, Zhang Z, Li L, Liu X, He X, Zhao Q, Pu Y, Ma Y, Jiang L. Whole-genome sequencing reveals selection signals among Chinese, Pakistani, and Nepalese goats. J Genet Genomics 2023; 50:362-365. [PMID: 36724853 DOI: 10.1016/j.jgg.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Yefang Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ying Gong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Zhengkai Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ling Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xuexue Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Centre d'Anthropobiologie et de Genomique de Toulouse, Universite Paul Sabatier, Toulouse 31000, France
| | - Xiaohong He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianjun Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yabin Pu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lin Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Machová K, Marina H, Arranz JJ, Pelayo R, Rychtářová J, Milerski M, Vostrý L, Suárez-Vega A. Genetic diversity of two native sheep breeds by genome-wide analysis of single nucleotide polymorphisms. Animal 2023; 17:100690. [PMID: 36566708 DOI: 10.1016/j.animal.2022.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic.
| | - Héctor Marina
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Juan Jose Arranz
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Rocío Pelayo
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Jana Rychtářová
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Michal Milerski
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Luboš Vostrý
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic
| | - Aroa Suárez-Vega
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| |
Collapse
|
13
|
Zhang W, Li X, Jiang Y, Zhou M, Liu L, Su S, Xu C, Li X, Wang C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front Genet 2022; 13:1022261. [PMID: 36324508 PMCID: PMC9618877 DOI: 10.3389/fgene.2022.1022261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
The genetic resources among pigs in Anhui Province are diverse, but their value and potential have yet to be discovered. To illustrate the genetic diversity and population structure of the Anhui pigs population, we resequenced the genome of 150 pigs from six representative Anhui pigs populations and analyzed this data together with the sequencing data from 40 Asian wild boars and commercial pigs. Our results showed that Anhui pigs were divided into two distinct types based on ancestral descent: Wannan Spotted pig (WSP) and Wannan Black pig (WBP) origins from the same ancestor and the other four populations origins from another ancestor. We also identified several potential selective sweep regions associated with domestication characteristics among Anhui pigs, including reproduction-associated genes (CABS1, INSL6, MAP3K12, IGF1R, INSR, LIMK2, PATZ1, MAPK1), lipid- and meat-related genes (SNX19, MSTN, MC5R, PRKG1, CREBBP, ADCY9), and ear size genes (MSRB3 and SOX5). Therefore, these findings expand the catalogue and how these genetic differences among pigs and this newly generated data will be a valuable resource for future genetic studies and for improving genome-assisted breeding of pigs and other domesticated animals.
Collapse
|
14
|
Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Sonejita Nayak S, Ghildiyal K, Kaisa K, Parida S, Bhushan B, Dutt T. Trajectory of livestock genomics in South Asia: A comprehensive review. Gene 2022; 843:146808. [PMID: 35973570 DOI: 10.1016/j.gene.2022.146808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Livestock plays a central role in sustaining human livelihood in South Asia. There are numerous and distinct livestock species in South Asian countries. Several of them have experienced genetic development in recent years due to the application of genomic technologies and effective breeding programs. This review discusses genomic studies on cattle, buffalo, sheep, goat, pig, horse, camel, yak, mithun, and poultry. The frontiers covered in this review are genetic diversity, admixture studies, selection signature research, QTL discovery, genome-wide association studies (GWAS), and genomic selection. The review concludes with recommendations for South Asian livestock systems to increasingly leverage genomic technologies, based on the lessons learned from the numerous case studies. This paper aims to present a comprehensive analysis of the dichotomy in the South Asian livestock sector and argues that a realistic approach to genomics in livestock can ensure long-term genetic advancements.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kaiho Kaisa
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
15
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Hall SJG. Genetic Differentiation among Livestock Breeds-Values for F st. Animals (Basel) 2022; 12:1115. [PMID: 35565543 PMCID: PMC9103131 DOI: 10.3390/ani12091115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
Collapse
Affiliation(s)
- Stephen J G Hall
- Department of Environmental Protection and Landscape, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| |
Collapse
|
17
|
|
18
|
Pogorevc N, Simčič M, Khayatzadeh N, Sölkner J, Berger B, Bojkovski D, Zorc M, Dovč P, Medugorac I, Horvat S. Post-genotyping optimization of dataset formation could affect genetic diversity parameters: an example of analyses with alpine goat breeds. BMC Genomics 2021; 22:546. [PMID: 34273960 PMCID: PMC8285797 DOI: 10.1186/s12864-021-07802-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/13/2021] [Indexed: 12/05/2022] Open
Abstract
Background Local breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. Our first objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia, and five and one local breeds from neighboring Austria and Italy, respectively. For optimal conservation and breeding programs of endangered local breeds, it is important to detect past admixture events and strive for preservation of purebred representatives of each breed with low or without admixture. In the second objective, we hence investigated the effect of inclusion or exclusion of outliers from datasets on genetic diversity and population structure parameters. Results Distinct genetic origin of the Drežnica goat was demonstrated as having closest nodes to Austrian and Italian breeds. A phylogenetic study of these breeds with other goat breeds having SNP data available in the DRYAD repository positioned them in the alpine, European and global context. Swiss breeds clustered with cosmopolitan alpine breeds and were closer to French and Spanish breeds. On the other hand, the Drežnica goat, Austrian and Italian breeds were closer to Turkish breeds. Datasets where outliers were excluded affected estimates of genetic diversity parameters within the breed and increased the pairwise genetic distances between most of the breeds. Alpine breeds, including Drežnica, Austrian and Italian goats analyzed here, still exhibit relatively high levels of genetic variability, homogeneous genetic structure and strong geographical partitioning. Conclusions Genetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps. The here employed outlier test and datasets optimization approaches provided an objective and statistically powerful tool for removal of admixed outliers. Importance of this test in selecting the representatives of each breed is warranted to obtain more objective diversity parameters and phylogenetic analysis. Such parameters are often the basis of breeding and management programs and are therefore important for preserving genetic variability and uniqueness of local rare breeds. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07802-z.
Collapse
Affiliation(s)
- Neža Pogorevc
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Mojca Simčič
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Negar Khayatzadeh
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str. 33, A-1180, Vienna, Austria
| | - Johann Sölkner
- Division of Livestock Science, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str. 33, A-1180, Vienna, Austria
| | - Beate Berger
- Department Animal Genetic Resources, AREC Raumberg-Gumpenstein, Institute of Organic Farming and Biodiversity of Farm Animals, 4601 Thalheim b., Wels, Austria
| | - Danijela Bojkovski
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Minja Zorc
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Peter Dovč
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Straβe 48, 8215, Martinsried/Planegg, Germany
| | - Simon Horvat
- Department of Animal science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
An Overview of the Use of Genotyping Techniques for Assessing Genetic Diversity in Local Farm Animal Breeds. Animals (Basel) 2021; 11:ani11072016. [PMID: 34359144 PMCID: PMC8300386 DOI: 10.3390/ani11072016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The number of local farm animal breeds is declining worldwide. However, these breeds have different degrees of genetic diversity. Measuring genetic diversity is important for the development of conservation strategies and, therefore, various genomic analysis techniques are available. The aim of the present work was to shed light on the use of these techniques in diversity studies of local breeds. In summary, a total of 133 worldwide studies that examined genetic diversity in local cattle, sheep, goat, chicken and pig breeds were reviewed. The results show that over time, almost all available genomic techniques were used and various diversity parameters were calculated. Therefore, the present results provide a comprehensive overview of the application of these techniques in the field of local breeds. This can provide helpful insights into the advancement of the conservation of breeds with high genetic diversity. Abstract Globally, many local farm animal breeds are threatened with extinction. However, these breeds contribute to the high amount of genetic diversity required to combat unforeseen future challenges of livestock production systems. To assess genetic diversity, various genotyping techniques have been developed. Based on the respective genomic information, different parameters, e.g., heterozygosity, allele frequencies and inbreeding coefficient, can be measured in order to reveal genetic diversity between and within breeds. The aim of the present work was to shed light on the use of genotyping techniques in the field of local farm animal breeds. Therefore, a total of 133 studies across the world that examined genetic diversity in local cattle, sheep, goat, chicken and pig breeds were reviewed. The results show that diversity of cattle was most often investigated with microsatellite use as the main technique. Furthermore, a large variety of diversity parameters that were calculated with different programs were identified. For 15% of the included studies, the used genotypes are publicly available, and, in 6%, phenotypes were recorded. In conclusion, the present results provide a comprehensive overview of the application of genotyping techniques in the field of local breeds. This can provide helpful insights to advance the conservation of breeds.
Collapse
|
20
|
Xiao C, Li J, Xie T, Chen J, Zhang S, Elaksher SH, Jiang F, Jiang Y, Zhang L, Zhang W, Xiang Y, Wu Z, Zhao S, Du X. The assembly of caprine Y chromosome sequence reveals a unique paternal phylogenetic pattern and improves our understanding of the origin of domestic goat. Ecol Evol 2021; 11:7779-7795. [PMID: 34188851 PMCID: PMC8216945 DOI: 10.1002/ece3.7611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
The mammalian Y chromosome offers a unique perspective on the male reproduction and paternal evolutionary histories. However, further understanding of the Y chromosome biology for most mammals is hindered by the lack of a Y chromosome assembly. This study presents an integrated in silico strategy for identifying and assembling the goat Y-linked scaffolds using existing data. A total of 11.5 Mb Y-linked sequences were clustered into 33 scaffolds, and 187 protein-coding genes were annotated. We also identified high abundance of repetitive elements. A 5.84 Mb subset was further ordered into an assembly with the evidence from the goat radiation hybrid map (RH map). The existing whole-genome resequencing data of 96 goats (worldwide distribution) were utilized to exploit the paternal relationships among bezoars and domestic goats. Goat paternal lineages were clearly divided into two clades (Y1 and Y2), predating the goat domestication. Demographic history analyses indicated that maternal lineages experienced a bottleneck effect around 2,000 YBP (years before present), after which goats belonging to the A haplogroup spread worldwide from the Near East. As opposed to this, paternal lineages experienced a population decline around the 10,000 YBP. The evidence from the Y chromosome suggests that male goats were not affected by the A haplogroup worldwide transmission, which implies sexually unbalanced contribution to the goat trade and population expansion in post-Neolithic period.
Collapse
Affiliation(s)
- Changyi Xiao
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Jingjin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Tanghui Xie
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Jianhai Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Institutes for Systems GeneticsFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Sijia Zhang
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Salma Hassan Elaksher
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- Genetics and Genetic Engineering DepartmentFaculty of AgricultureBenha UniversityMoshtohorEgypt
| | - Fan Jiang
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yaoxin Jiang
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Lu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Wei Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Yue Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Zhenyang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
- College of Agroforestry Engineering and PlanningTongren UniversityTongrenChina
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Xiaoyong Du
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of Animal Science and Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
21
|
Paris JM, Letko A, Häfliger IM, Ammann P, Drögemüller C. Ear type in sheep is associated with the MSRB3 locus. Anim Genet 2020; 51:968-972. [PMID: 32805068 DOI: 10.1111/age.12994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 12/01/2022]
Abstract
Ear morphology is an important determinant of sheep breeds. It includes different variable traits such as ear size and erectness, suggesting a polygenic architecture. Here, we performed a comprehensive genome-wide analysis to identify regions under selection for ear morphology in 515 sheep from 17 breeds fixed for diverse ear phenotypes using 34k SNP genotyping data. GWASs for two ear type traits, size and erectness, revealed a single genome-wide significant association on ovine chromosome 3. The derived marker alleles were enriched in sheep with large and/or floppy ears. The GWAS signal harboured the MSRB3 gene encoding methionine sulphoxide reductase B3, which has already been found to be associated with different ear types in other species. We attempted whole-genome resequencing to identify causal variant(s) within a 1 Mb interval around MSRB3. This experiment excluded major copy number variants in the interval, but failed to identify a compelling candidate causal variant. Fine-mapping suggested that the causal variant for large floppy ears most likely resides in a 175 kb interval downstream of the MSRB3 coding region.
Collapse
Affiliation(s)
- J M Paris
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - A Letko
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - I M Häfliger
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - P Ammann
- ProSpecieRara, Basel, 4052, Switzerland
| | - C Drögemüller
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| |
Collapse
|
22
|
Conservation Assessment of the State Goat Farms by Using SNP Genotyping Data. Genes (Basel) 2020; 11:genes11060652. [PMID: 32545749 PMCID: PMC7349881 DOI: 10.3390/genes11060652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023] Open
Abstract
Conservation of genetic resources is of great concern globally to maintain genetic diversity for sustainable food security. Comprehensive identification of the breed composition, estimation of inbreeding and effective population size are essential for the effective management of farm animal genetic resources and to prevent the animals from genetic erosion. The Zhongwei male (ZWM), Arbas Cashmere male (ACM) and Jining Grey male (JGM) goats are conserved in three different state goat farms in China but their family information, level of inbreeding and effective population size are unknown. We investigated the genomic relationship, inbreeding coefficient and effective population size in these three breeds from three state goat farms using the Illumina goat SNP50 BeadChip. Genomic relationships and phylogenetic analysis revealed that the breeds are clearly separated and formed separate clusters based on their genetic relationship. We obtained a high proportion of informative SNPs, ranging from 91.8% in the Arbas Cashmere male to 96.2% in the Jining Grey male goat breeds with an average mean of 96.8%. Inbreeding, as measured by FROH, ranged from 1.79% in ZWM to 8.62% in ACM goat populations. High FROH values, elevated genomic coverage of very long ROH (>30 Mb) and severe decline in effective population size were recorded in ACM goat farm. The existence of a high correlation between FHOM and FROH indicates that FROH can be used as an alternative to inbreeding estimates in the absence of pedigree records. The Ne estimates 13 generations ago were 166, 69 and 79 for ZWM, ACM and JGM goat farm, respectively indicating that these goat breeds were strongly affected by selection pressure or genetic drift. This study provides insight into the genomic relationship, levels of inbreeding and effective population size in the studied goat populations conserved in the state goat farms which will be valuable in prioritizing populations for conservation and for developing suitable management practices for further genetic improvement of these Chinese male goats.
Collapse
|
23
|
Genome-wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color. Animals (Basel) 2020; 10:ani10030493. [PMID: 32183495 PMCID: PMC7143801 DOI: 10.3390/ani10030493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In order to assess sources of variation related to Polverara breed plumage color (black vs. white), we carried out genome-wide analyses to identify the genomic regions involved in this trait. The present work has revealed new candidate genes involved in the phenotypic variability in local chicken populations. These results also contribute insights into the genetic basis for plumage color in poultry, and confirm the great complexity of the mechanisms that control this trait. Abstract Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.
Collapse
|
24
|
Meyermans R, Gorssen W, Buys N, Janssens S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 2020; 21:94. [PMID: 31996125 PMCID: PMC6990544 DOI: 10.1186/s12864-020-6463-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/08/2020] [Indexed: 12/01/2022] Open
Abstract
Background PLINK is probably the most used program for analyzing SNP genotypes and runs of homozygosity (ROH), both in human and in animal populations. The last decade, ROH analyses have become the state-of-the-art method for inbreeding assessment. In PLINK, the --homozyg function is used to perform ROH analyses and relies on several input settings. These settings can have a large impact on the outcome and default values are not always appropriate for medium density SNP array data. Guidelines for a robust and uniform ROH analysis in PLINK using medium density data are lacking, albeit these guidelines are vital for comparing different ROH studies. In this study, 8 populations of different livestock and pet species are used to demonstrate the importance of PLINK input settings. Moreover, the effects of pruning SNPs for low minor allele frequencies and linkage disequilibrium on ROH detection are shown. Results We introduce the genome coverage parameter to appropriately estimate FROH and to check the validity of ROH analyses. The effect of pruning for linkage disequilibrium and low minor allele frequencies on ROH analyses is highly population dependent and such pruning may result in missed ROH. PLINK’s minimal density requirement is crucial for medium density genotypes and if set too low, genome coverage of the ROH analysis is limited. Finally, we provide recommendations for the maximal gap, scanning window length and threshold settings. Conclusions In this study, we present guidelines for an adequate and robust ROH analysis in PLINK on medium density SNP data. Furthermore, we advise to report parameter settings in publications, and to validate them prior to analysis. Moreover, we encourage authors to report genome coverage to reflect the ROH analysis’ validity. Implementing these guidelines will substantially improve the overall quality and uniformity of ROH analyses.
Collapse
Affiliation(s)
- R Meyermans
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium
| | - W Gorssen
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium
| | - N Buys
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium
| | - S Janssens
- Department of Biosystems, Livestock Genetics, KU Leuven, Kasteelpark Arenberg 30 - Box 2472, 3001, Leuven, Belgium.
| |
Collapse
|
25
|
Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes (Basel) 2019; 10:genes10110938. [PMID: 31744198 PMCID: PMC6895971 DOI: 10.3390/genes10110938] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2, TMEM200C, SF1, ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.
Collapse
|
26
|
A combined genome-wide approach identifies a new potential candidate marker associated with the coat color sidedness in cattle. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Mastrangelo S, Ben Jemaa S, Sottile G, Casu S, Portolano B, Ciani E, Pilla F. Combined approaches to identify genomic regions involved in phenotypic differentiation between low divergent breeds: Application in Sardinian sheep populations. J Anim Breed Genet 2019; 136:526-534. [PMID: 31206848 DOI: 10.1111/jbg.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case-control genome-wide association study (GWAS), the Bayesian population differentiation analysis (FST ) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome-wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome-wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Gianluca Sottile
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Sara Casu
- Unità di Ricerca di Genetica e Biotecnologie, Agris Sardegna, Sassari, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze Biotecnologie e Biofarmaceutica, University of Bari, Bari, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| |
Collapse
|