1
|
Liu X, Hu F, Wang W, Chen X, Niu X, Huang S, Wang Z, Wang J, Ran X. Genome-wide identification of copy number variations in wrinkled skin cases of Xiang pigs. Sci Rep 2024; 14:19695. [PMID: 39181933 PMCID: PMC11344843 DOI: 10.1038/s41598-024-70732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Copy number variation (CNV) tends to occur in genetically enriched regions and is likely associated with a number of complex diseases such as skin aging. In this study, we investigated the genome-wide CNVs in 20 wrinkled skin cases (WSC) of Xiang pigs and 63 controls, and identified 7893 copy number variable regions (CNVRs). We estimated the F-statistic (Fst) at each locus and identified that 93 case-controls stratified CNVRs (Fst > = 0.15) overlapped with 87 known genes. Functional enrichment analysis showed that most of these genes were predominantly enriched in pathways and terms related to the extracellular matrix. Finally, we found that some CNVs were predicted to have high effects on genes such as VCAN, TIMP1 and FOXO1 through transcriptional amplification, transcript ablation and so on. Most of the genes overlapped with those CNVRs have been reported to be related to aging in human or animals. The copy numbers presented the positive correlations with the transcript level of the genes in skins between the cases and controls. Our results suggested that those 22 CNVRs, including 19 CNV losses and 3 CNV gains, were putatively associated with the skin wrinkle of Xiang pigs.
Collapse
Affiliation(s)
- Xiaoli Liu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Fenbin Hu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xia Chen
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Zhou Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, College of Life Science, College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Lin D, Qiu Y, Zhou F, Li X, Deng S, Yang J, Chen Q, Cai G, Yang J, Wu Z, Zheng E. Genome-wide detection of multiple variants associated with teat number in French Yorkshire pigs. BMC Genomics 2024; 25:722. [PMID: 39054457 PMCID: PMC11271213 DOI: 10.1186/s12864-024-10611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Teat number is a vital reproductive trait in sows, crucial for providing immunity and nutrition to piglets during lactation. However, "missing heritability" in Single Nucleotide Polymorphism (SNP)-based Genome-Wide Association Studies (GWAS) has led to an increasing focus on structural variations in the genetic analysis of complex biological traits. RESULTS In this study, we generated a comprehensive CNV map in a population of French Yorkshire pigs (n = 644) and identified 429 CNVRs. Notably, 44% (189 CNVRs) of these were detected for the first time. Subsequently, we conducted GWAS for teat number in the French Yorkshire pig population using both 80K chip and its imputed data, as well as a GWAS analysis based on CNV regions (CNVR). Interestingly, 80K chip GWAS identified two SNPs located on Sus scrofa chromosome 5 (SSC5) that were simultaneously associated with Total Teat Number (TTN), Left Teat Number (LTN), and Right Teat Number (RTN). The leading SNP (WU_10.2_5_76130558) explained 3.33%, 2.69%, and 2.67% of the phenotypic variance for TTN, LTN, and RTN, respectively. Moreover, through imputed GWAS, we successfully identified 30 genetic variants associated with TTN located within the 73.22 -73.30 Mb region on SSC5. The two SNPs identified in the 80K chip GWAS were also located in this region. In addition, CNVR-based GWAS revealed three significant CNVRs associated with TTN. Finally, through gene annotation, we pinpointed two candidate genes, TRIM66 and PRICKLE1, which are related to diverse processes such as breast cancer and abnormal vertebral development. CONCLUSIONS Our research provides an in-depth analysis of the complex genetic structure underlying teat number, contributing to the genetic enhancement of sows with improved reproductive performance and, ultimately, bolstering the economic benefits of swine production enterprises.
Collapse
Affiliation(s)
- Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Xuehua Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoxiong Deng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jisheng Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoer Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Yuan H, Wei W, Zhang Y, Li C, Zhao S, Chao Z, Xia C, Quan J, Gao C. Unveiling the Influence of Copy Number Variations on Genetic Diversity and Adaptive Evolution in China's Native Pig Breeds via Whole-Genome Resequencing. Int J Mol Sci 2024; 25:5843. [PMID: 38892031 PMCID: PMC11172908 DOI: 10.3390/ijms25115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Wenjing Wei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Yue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China;
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| |
Collapse
|
4
|
Cendron F, Cassandro M, Penasa M. Genome-wide investigation to assess copy number variants in the Italian local chicken population. J Anim Sci Biotechnol 2024; 15:2. [PMID: 38167097 PMCID: PMC10763469 DOI: 10.1186/s40104-023-00965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Copy number variants (CNV) hold significant functional and evolutionary importance. Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure of livestock. High-density chips have enabled the detection of CNV with increased resolution, leading to the identification of even small CNV. This study aimed to identify CNV in local Italian chicken breeds and investigate their distribution across the genome. RESULTS Copy number variants were mainly distributed across the first six chromosomes and primarily associated with loss type CNV. The majority of CNV in the investigated breeds were of types 0 and 1, and the minimum length of CNV was significantly larger than that reported in previous studies. Interestingly, a high proportion of the length of chromosome 16 was covered by copy number variation regions (CNVR), with the major histocompatibility complex being the likely cause. Among the genes identified within CNVR, only those present in at least five animals across breeds (n = 95) were discussed to reduce the focus on redundant CNV. Some of these genes have been associated to functional traits in chickens. Notably, several CNVR on different chromosomes harbor genes related to muscle development, tissue-specific biological processes, heat stress resistance, and immune response. Quantitative trait loci (QTL) were also analyzed to investigate potential overlapping with the identified CNVR: 54 out of the 95 gene-containing regions overlapped with 428 QTL associated to body weight and size, carcass characteristics, egg production, egg components, fat deposition, and feed intake. CONCLUSIONS The genomic phenomena reported in this study that can cause changes in the distribution of CNV within the genome over time and the comparison of these differences in CNVR of the local chicken breeds could help in preserving these genetic resources.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
- Federazione Delle Associazioni Nazionali Di Razza E Specie, Via XXIV Maggio 43, 00187, Rome, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
5
|
Bolner M, Bertolini F, Bovo S, Schiavo G, Fontanesi L. Investigation of ABO Gene Variants across More Than 60 Pig Breeds and Populations and Other Suidae Species Using Whole-Genome Sequencing Datasets. Animals (Basel) 2023; 14:5. [PMID: 38200737 PMCID: PMC10778222 DOI: 10.3390/ani14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Polymorphisms in the human ABO gene determine the major blood classification system based on the three well-known forms: A; B; and O. In pigs that carry only two main alleles in this gene (A and O), we still need to obtain a more comprehensive distribution of variants, which could also impact its function. In this study, we mined more than 500 whole-genome sequencing datasets to obtain information on the ABO gene in different Suidae species, pig breeds, and populations and provide (i) a comprehensive distribution of the A and O alleles, (ii) evolutionary relationships of ABO gene sequences across Suidae species, and (iii) an exploratory evaluation of the effect of the different ABO gene variants on production traits and blood-related parameters in Italian Large White pigs. We confirmed that allele O is likely under balancing selection, present in all Sus species investigated, without being fixed in any of them. We reported a novel structural variant in perfect linkage disequilibrium with allele O that made it possible to estimate the evolutionary time window of occurrence of this functional allele. We also identified two single nucleotide polymorphisms that were suggestively associated with plasma magnesium levels in pigs. Other studies can also be constructed over our results to further evaluate the effect of this gene on economically relevant traits and basic biological functions.
Collapse
Affiliation(s)
| | | | | | | | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (M.B.); (S.B.); (G.S.)
| |
Collapse
|
6
|
Panda S, Kumar A, Gaur GK, Ahmad SF, Chauhan A, Mehrotra A, Dutt T. Genome wide copy number variations using Porcine 60K SNP Beadchip in Landlly pigs. Anim Biotechnol 2023; 34:1891-1899. [PMID: 35369845 DOI: 10.1080/10495398.2022.2056047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, Porcine 60K SNP genotype data from 69 Landlly pigs were used to explore Copy Number Variations (CNVs) across the autosomes. A total of 386 CNVs were identified using Hidden Markov Model (HMM) in PennCNV software, which were subsequently aggregated to 115 CNV regions (CNVRs). Among the total detected CNVRs, 58 gain, 49 were loss type while remaining 8 events were both gain and loss types. Identified CNVRs covered 12.5 Mb (0.55%) of Sus scrofa reference 11.1 genome. Comparison of our results with previous investigations on pigs revealed that approximately 75% CNVRs were novel, which may be due to differences in genetic background, environment and implementation of artificial selection in Landlly pigs. Functional annotation and pathway analysis showed the significant enrichment of 267 well-annotated Sus scrofa genes in CNVRs. These genes were involved in different biological functions like sensory perception, meat quality traits, back fat thickness and immunity. Additionally, KIT and FUT1 were two major genes detected on CNVR in our population. This investigation provided a comprehensive overview of CNV distribution in the Indian porcine genome for the first time, which may be useful for further investigating the association of important quantitative traits in Landlly pigs.Highlights115 CNVRs were identified in 69 Landlly pig population.Approximately 75% detected CNVRs were novel for Landlly population.Significant enrichment of 267 well-annotated Sus scrofa genes observed in these CNVRs.These genes were involved in different biological functions like sensory perception, meat quality traits, back fat thickness and immunity.Comprehensive CNV map in the Indian porcine genome developed for the first time.
Collapse
Affiliation(s)
- Snehasmita Panda
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Anuj Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Arnav Mehrotra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
- Animal Genomics, ETH Zürich, Zürich, Switzerland
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| |
Collapse
|
7
|
Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-Wide Detection of Copy Number Variations Associated with Miniature Features in Horses. Genes (Basel) 2023; 14:1934. [PMID: 37895283 PMCID: PMC10606273 DOI: 10.3390/genes14101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Copy number variations (CNVs) are crucial structural genomic variants affecting complex traits in humans and livestock animals. The current study was designed to conduct a comprehensive comparative copy number variation analysis among three breeds, Debao (DB), Baise (BS), and Warmblood (WB), with a specific focus on identifying genomic regions associated with miniature features in horses. Using whole-genome next-generation resequencing data, we identified 18,974 CNVs across 31 autosomes. Among the breeds, we found 4279 breed-specific CNV regions (CNVRs). Baise, Debao, and Warmblood displayed 2978, 986, and 895 distinct CNVRs, respectively, with 202 CNVRs shared across all three breeds. After removing duplicates, we obtained 1545 CNVRs from 26 horse genomes. Functional annotation reveals enrichment in biological functions, including antigen processing, cell metabolism, olfactory conduction, and nervous system development. Debao horses have 970 genes overlapping with CNVRs, possibly causing their small size and mountainous adaptations. We also found that the genes GHR, SOX9, and SOX11 may be responsible for the miniature features of the Debao horse by analyzing their overlapping CNVRs. Overall, this study offers valuable insights into the widespread presence of CNVs in the horse genome. The findings contribute to mapping horse CNVs and advance research on unique miniature traits observed in the Debao horse.
Collapse
Affiliation(s)
- Md. Panir Choudhury
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Bangladesh Livestock Research Institute, Ministry of Fisheries and Livestock, Savar, Dhaka 1341, Bangladesh
| | - Zihao Wang
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Min Zhu
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shaohua Teng
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Jing Yan
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shuwei Cao
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Guoqiang Yi
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
8
|
Bordonaro S, Chessari G, Mastrangelo S, Senczuk G, Chessa S, Castiglioni B, Tumino S, Marletta D, Criscione A. Genome-wide population structure, homozygosity, and heterozygosity patterns of Nero Siciliano pig in the framework of Italian and cosmopolitan breeds. Anim Genet 2023; 54:591-605. [PMID: 37381662 DOI: 10.1111/age.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Analysis of genomic data is becoming more and more common for the effective management of livestock breeding programmes, even in the case of local populations. In this work, the genome-wide data of Nero Siciliano pig breed were compared to that of wild boar, Italian local and cosmopolitan breeds to investigate its genetic structure, and runs of homozygosity (ROH) and heterozygosity patterns. The Nero Siciliano has been reported to have the highest rate of genetic diversity among the Italian breeds, and a genetic variability comparable to that of the cosmopolitan breeds. Analyses of genomic structure and relationships underlined its proximity to wild boar, and an internal substructure probably linked to different family lines. The breed showed a low value of inbreeding estimated from ROH, and the highest diversity index among the Italian breeds, even if lower than that of the cosmopolitans. Four ROH islands in three chromosomes (SSC8, SSC11, and SSC14) and one heterozygosity-rich region (SSC1) were identified in Nero Siciliano, highlighting genomic regions related to productive QTL. Across breeds, SSC8 and SSC14 were the chromosomes with most ROH islands, with Mora Romagnola and wild boar showing the highest level of autozygosity. Chromosomes SSC2, SSC6, SSC8 and SSC13 showed the majority of runs of heterozygosity regions, mainly found in the cosmopolitan pig breeds, which reported several genes associated with health-related QTL. The outlined results can help to better identify the genomic profile of this local breed in order to plan matings, maintain adequate internal diversity and exploit the production system.
Collapse
Affiliation(s)
- Salvatore Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Giorgio Chessari
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università del Molise, Campobasso, Italy
| | - Stefania Chessa
- Dipartimento di Scienze Veterinarie, Università di Torino, Torino, Italy
| | - Bianca Castiglioni
- Istituto di Biologia e Biotecnologia Agraria, National Research Council, Lodi, Italy
| | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| |
Collapse
|
9
|
Giovannini S, Strillacci MG, Bagnato A, Albertini E, Sarti FM. Genetic and Phenotypic Characteristics of Belted Pig Breeds: A Review. Animals (Basel) 2023; 13:3072. [PMID: 37835678 PMCID: PMC10571877 DOI: 10.3390/ani13193072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Belted pig breeds have unique, distinguishing phenotypic characteristics. This review summarises the current knowledge on pig breeds displaying a belted coat pattern. Belts of different widths and positions around the animal's trunk characterise specific pig breeds from all around the world. All the breeds included in the present paper have been searched through the FAO domestic animal diversity information system (DAD-IS), Every country was checked to identify all breeds described as having black or red piebald coat pattern variations. Advances in genomic technologies have made it possible to identify the specific genes and genetic markers associated with the belted phenotype and explore the genetic relationships between different local breeds. Thus, the origin, history, and production traits of these breeds, together with all the genomic information related to the mechanism of skin pigmentation, are discussed. By increasing our understanding of these breeds, we can appreciate the richness of our biological and cultural heritage and work to preserve the biodiversity of the world's animals.
Collapse
Affiliation(s)
- Samira Giovannini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Maria Giuseppina Strillacci
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Alessandro Bagnato
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| |
Collapse
|
10
|
Ribani A, Taurisano V, Karatosidi D, Schiavo G, Bovo S, Bertolini F, Fontanesi L. Signatures of Admixture and Genetic Uniqueness in the Autochthonous Greek Black Pig Breed Deduced from Gene Polymorphisms Affecting Domestication-Derived Traits. Animals (Basel) 2023; 13:1763. [PMID: 37889646 PMCID: PMC10251807 DOI: 10.3390/ani13111763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 09/29/2023] Open
Abstract
The Greek Black Pig (or Greek Pig) is the only recognized autochthonous pig breed raised in Greece, usually in extensive or semi-extensive production systems. According to its name, the characteristic breed coat color is solid black. In this study, with the aim to start a systematic genetic characterization of the Greek Black Pig breed, we investigated polymorphisms in major genes well known to affect exterior and production traits (MC1R, KIT, NR6A1, VRTN and IGF2) and compared these data with population genetic information available in other Mediterranean and Western Balkan pig breeds and wild boars. None of the investigated gene markers were fixed for one allele, suggesting that, in the past, this breed experienced introgression from wild boars and admixture from cosmopolitan pig breeds, enriching the breed genetic pool that should be further investigated to design appropriate conservation genetic strategies. We identified a new MC1R allele, containing two missense mutations already reported in two other independent alleles, but here present in the same haplotype. This allele might be useful to disclose biological information that can lead to better understanding the cascade transmission of signals to produce melanin pigments. This study demonstrated that autochthonous genetic resources can be an interesting reservoir of unexpected genetic variants.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Despoina Karatosidi
- Research Institute of Animal Science, General Directorate of Hellenic Agricultural Organisation “Demeter”, Paralimni Giannitsa, 58100 Pella, Greece;
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Francesca Bertolini
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| |
Collapse
|
11
|
Zhukorskyi ОМ, Tsereniuk ОМ, Vashchenko PА, Khokhlov AM, Chereuta YV, Akimov ОV, Kryhina NV. The effect of the ryanodine receptor gene on the reproductive traits of Welsh sows. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The reproductive performance of sows largely determines the efficiency of the entire pig farming industry. The purpose of our work is the evaluation of polymorphism of the ryanodine receptor gene and its impact on the reproductive traits of sows of the Welsh breed of pigs. For this study, 148 pigs of the Welsh breed were used. The reproductive traits of sows were evaluated in two adjacent generations. We conducted a comprehensive assessment of the reproductive ability of sows using the SIRQS (selection index of reproductive qualities of sows), determined phenotypic consolidation coefficients and assessed the genetic potential of the animals’ productivity. The polymorphism of the RYR1 gene was determined using polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP). Data processing was performed using single-factor analysis of variance (ANOVA). Polymorphism of the ryanodine receptor gene in sows of the Welsh pig breed was evaluated. 8.0% of the animals were identified as carriers of the mutant allele of the RYR1 gene. However, no homozygous RYR1-nn animals were found. Pigs of the maternal generation carrying the homozygous NN genotype had better reproductive performance in all indicators. Sows that were carriers of the mutant allele were characterized by lower values of the genetic productivity potential compared with the entire estimated population for all productive traits. Sows which were free of the mutant allele of the RYR1 gene were characterized by large values of the SIRQS index. The values of the coefficients of phenotypic consolidation of the number of live born piglets in sows without the mutant allele were lower than in sows with the mutant allele n. Better performance of sows free of the mutant allele of the RYR1 gene was established over sows carrying it in all evaluated traits of reproductive capacity (for different traits P ranged from 0.021 to 1.0*10–4), except for number of piglets born alive per sow in the daughter generation. Sows with the NN genotype had better selection index values by 15.7% in the maternal generation and by 10.2% in the daughter generation. In order to increase the reproductive ability of sows in the studied population of Welsh pigs and achieve similar results in other herds of this breed, animals free from the mutant allele of the RYR1 gene should be selected for further reproduction in the process of breeding, while on the contrary, carriers of this gene should be gradually eliminated from the herd. To carry out breeding work, further research is needed on the entire population of Welsh pigs for the RYR1 gene.
Collapse
|
12
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Davoudi P, Do DN, Rathgeber B, Colombo SM, Sargolzaei M, Plastow G, Wang Z, Karimi K, Hu G, Valipour S, Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics 2022; 23:649. [PMID: 36096727 PMCID: PMC9468235 DOI: 10.1186/s12864-022-08874-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc., Plain City, OH, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
14
|
Mo J, Lu Y, Zhu S, Feng L, Qi W, Chen X, Xie B, Chen B, Lan G, Liang J. Genome-Wide Association Studies, Runs of Homozygosity Analysis, and Copy Number Variation Detection to Identify Reproduction-Related Genes in Bama Xiang Pigs. Front Vet Sci 2022; 9:892815. [PMID: 35711794 PMCID: PMC9195146 DOI: 10.3389/fvets.2022.892815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Litter size and teat number are economically important traits in the porcine industry. However, the genetic mechanisms influencing these traits remain unknown. In this study, we analyzed the genetic basis of litter size and teat number in Bama Xiang pigs and evaluated the genomic inbreeding coefficients of this breed. We conducted a genome-wide association study to identify runs of homozygosity (ROH), and copy number variation (CNV) using the novel Illumina PorcineSNP50 BeadChip array in Bama Xiang pigs and annotated the related genes in significant single nucleotide polymorphisms and common copy number variation region (CCNVR). We calculated the ROH-based genomic inbreeding coefficients (FROH) and the Spearman coefficient between FROH and reproduction traits. We completed a mixed linear model association analysis to identify the effect of high-frequency copy number variation (HCNVR; over 5%) on Bama Xiang pig reproductive traits using TASSEL software. Across eight chromosomes, we identified 29 significant single nucleotide polymorphisms, and 12 genes were considered important candidates for litter-size traits based on their vital roles in sperm structure, spermatogenesis, sperm function, ovarian or follicular function, and male/female infertility. We identified 9,322 ROHs; the litter-size traits had a significant negative correlation to FROH. A total of 3,317 CNVs, 24 CCNVR, and 50 HCNVR were identified using cnvPartition and PennCNV. Eleven genes related to reproduction were identified in CCNVRs, including seven genes related to the testis and sperm function in CCNVR1 (chr1 from 311585283 to 315307620). Two candidate genes (NEURL1 and SH3PXD2A) related to reproduction traits were identified in HCNVR34. The result suggests that these genes may improve the litter size of Bama Xiang by marker-assisted selection. However, attention should be paid to deter inbreeding in Bama Xiang pigs to conserve their genetic diversity.
Collapse
Affiliation(s)
- Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Siran Zhu
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Lingli Feng
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Wenjing Qi
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xingfa Chen
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Bingkun Xie
- College of Animal Science & Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Baojian Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning, China
- *Correspondence: Jing Liang
| |
Collapse
|
15
|
Wang M, Liu Y, Bi X, Ma H, Zeng G, Guo J, Guo M, Ling Y, Zhao C. Genome-Wide Detection of Copy Number Variants in Chinese Indigenous Horse Breeds and Verification of CNV-Overlapped Genes Related to Heat Adaptation of the Jinjiang Horse. Genes (Basel) 2022; 13:genes13040603. [PMID: 35456409 PMCID: PMC9033042 DOI: 10.3390/genes13040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, genome-wide CNVs were detected in a total of 301 samples from 10 Chinese indigenous horse breeds using the Illumina Equine SNP70 Bead Array, and the candidate genes related to adaptability to high temperature and humidity in Jinjiang horses were identified and validated. We determined a total of 577 CNVs ranging in size from 1.06 Kb to 2023.07 Kb on the 31 pairs of autosomes. By aggregating the overlapping CNVs for each breed, a total of 495 CNVRs were detected in the 10 Chinese horse breeds. As many as 211 breed-specific CNVRs were determined, of which 64 were found in the Jinjiang horse population. By removing repetitive CNV regions between breeds, a total of 239 CNVRs were identified in the Chinese indigenous horse breeds including 102 losses, 133 gains and 4 of both events (losses and gains in the same region), in which 131 CNVRs were novel and only detected in the present study compared with previous studies. The total detected CNVR length was 41.74 Mb, accounting for 1.83% of the total length of equine autosomal chromosomes. The coverage of CNVRs on each chromosome varied from 0.47% to 15.68%, with the highest coverage on ECA 12, but the highest number of CNVRs was detected on ECA1 and ECA24. A total of 229 genes overlapping with CNVRs were detected in the Jinjiang horse population, which is an indigenous horse breed unique to the southeastern coast of China exhibiting adaptability to high temperature and humidity. The functional annotation of these genes showed significant relation to cellular heat acclimation and immunity. The expression levels of the candidate genes were validated by heat shock treatment of various durations on fibroblasts of horses. The results show that the expression levels of HSPA1A were significantly increased among the different heat shock durations. The expression level of NFKBIA and SOCS4 declined from the beginning of heat shock to 2 h after heat shock and then showed a gradual increase until it reached the highest value at 6 h and 10 h of heat shock, respectively. Breed-specific CNVRs of Chinese indigenous horse breeds were revealed in the present study, and the results facilitate mapping CNVs on the whole genome and also provide valuable insights into the molecular mechanisms of adaptation to high temperature and humidity in the Jinjiang horse.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Xiaokun Bi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Hongying Ma
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Guorong Zeng
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Jintu Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Minghao Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Yao Ling
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
| | - Chunjiang Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
- Correspondence:
| |
Collapse
|
16
|
Bovo S, Ballan M, Schiavo G, Ribani A, Tinarelli S, Utzeri VJ, Dall'Olio S, Gallo M, Fontanesi L. Single-marker and haplotype-based genome-wide association studies for the number of teats in two heavy pig breeds. Anim Genet 2021; 52:440-450. [PMID: 34096632 PMCID: PMC8362157 DOI: 10.1111/age.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
The number of teats is a reproductive‐related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single‐marker and haplotypes‐based genome‐wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype‐based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single‐marker and haplotype‐based genome‐wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs.
Collapse
Affiliation(s)
- S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Ballan
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Tinarelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy.,Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
17
|
Tinarelli S, Ribani A, Utzeri VJ, Taurisano V, Bovo C, Dall’Olio S, Nen F, Bovo S, Schiavo G, Gallo M, Fontanesi L. Redefinition of the Mora Romagnola Pig Breed Herd Book Standard Based on DNA Markers Useful to Authenticate Its "Mono-Breed" Products: An Example of Sustainable Conservation of a Livestock Genetic Resource. Animals (Basel) 2021; 11:ani11020526. [PMID: 33670521 PMCID: PMC7923016 DOI: 10.3390/ani11020526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Autochthonous breeds are, in general, well adapted to their production systems in which they have been constituted but they are usually less efficient than commercial breeds. Therefore, conservation strategies of livestock genetic resources should be designed to assure profitability to the farmers. The development of “mono-breed” brand products is one of the most effective actions towards this aim. These products are usually sold at a higher price compared to undifferentiated ones, as the consumers consider positively the link between these breeds and the perceived quality of their products. The premium price, however, also attracts fraudsters that unscrupulously see an economic advantage by selling mis-labelled products to obtain an unjustified additional economic gain. These frauds undermine the whole strategy designed to support a sustainable conservation of autochthonous genetic resources. Mora Romagnola is a local pig breed raised in the north of Italy. Mono-breed pork products derived from this breed are part of an important niche value chain that is intrinsically linked to the conservation of this local genetic resource. In this study we present how the Mora Romagnola Herd Book standard integrated information of DNA markers of two genes (MC1R and NR6A1), affecting morphological traits, to allow the authentication of mono-breed products of this breed. This is one of the first examples of sustainable conservation of a pig genetic resource designed starting from the genotype of the animals registered to the breed herd book, with the specific purpose to combat frauds. Abstract Mora Romagnola is an autochthonous pig breed, raised in the north of Italy. Mono-breed pork products of this breed are part of important niche value chain that is intrinsically linked to the conservation of this local genetic resources that can only survive due to the premium price that these products can obtain on the market. However, the added value attracts fraudsters that unscrupulously sell mis-labelled Mora Romagnola products, causing consumer distrust that, in turn, undermines the conservation strategy of this breed. To monitor and better characterise this local breed, we phenotyped 826 Mora Romagnola pigs for three breed-specific traits. Then, we genotyped almost all living sows and boars registered to the Herd Book (n. = 357 animals) for polymorphisms in the MC1R and NR6A1 genes (affecting coat colour and vertebral number, respectively). The results were used to re-define the breed descriptors of the Mora Romagnala breed that included information on the allowed genotypes at these two genes. A few pigs that did not carry the allowed genotypes were excluded from its Herd Book. Finally, we evaluated the usefulness of these DNA markers to authenticate Mora Romagnola meat against meat derived from other 11 pig breeds and wild boars. To our knowledge, the Mora Romagnola Herd Book is one of the first examples that established a direct link between a genetic standard of a breed with the possibility to authenticate mono-breed products using DNA markers with the specific purpose to combat frauds and, indirectly, support the conservation of a livestock genetic resource.
Collapse
Affiliation(s)
- Silvia Tinarelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy; (F.N.); (M.G.)
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Claudio Bovo
- Associazione Regionale Allevatori dell’Emilia-Romagna, Viale Della Mercanzia 240-242-244, 40050 Funo di Argelato (BO), Italy;
| | - Stefania Dall’Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Francesco Nen
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy; (F.N.); (M.G.)
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy; (F.N.); (M.G.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
- Correspondence: ; Tel.: +39-051-2096535
| |
Collapse
|
18
|
Copy number variation: Characteristics, evolutionary and pathological aspects. Biomed J 2021; 44:548-559. [PMID: 34649833 PMCID: PMC8640565 DOI: 10.1016/j.bj.2021.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host–microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.
Collapse
|
19
|
Bovo S, Schiavo G, Ribani A, Utzeri VJ, Taurisano V, Ballan M, Muñoz M, Alves E, Araujo JP, Bozzi R, Charneca R, Di Palma F, Djurkin Kušec I, Etherington G, Fernandez AI, García F, García-Casco J, Karolyi D, Gallo M, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Škrlep M, Usai G, Zimmer C, Ovilo C, Fontanesi L. Describing variability in pig genes involved in coronavirus infections for a One Health perspective in conservation of animal genetic resources. Sci Rep 2021; 11:3359. [PMID: 33564056 PMCID: PMC7873263 DOI: 10.1038/s41598-021-82956-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Coronaviruses silently circulate in human and animal populations, causing mild to severe diseases. Therefore, livestock are important components of a “One Health” perspective aimed to control these viral infections. However, at present there is no example that considers pig genetic resources in this context. In this study, we investigated the variability of four genes (ACE2, ANPEP and DPP4 encoding for host receptors of the viral spike proteins and TMPRSS2 encoding for a host proteinase) in 23 European (19 autochthonous and three commercial breeds and one wild boar population) and two Asian Sus scrofa populations. A total of 2229 variants were identified in the four candidate genes: 26% of them were not previously described; 29 variants affected the protein sequence and might potentially interact with the infection mechanisms. The results coming from this work are a first step towards a “One Health” perspective that should consider conservation programs of pig genetic resources with twofold objectives: (i) genetic resources could be reservoirs of host gene variability useful to design selection programs to increase resistance to coronaviruses; (ii) the described variability in genes involved in coronavirus infections across many different pig populations might be part of a risk assessment including pig genetic resources.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Valerio J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Mohamad Ballan
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Estefania Alves
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Jose P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, 4990-706, Ponte de Lima, Portugal
| | - Riccardo Bozzi
- DAGRI - Animal Science Section, University of Florence, Via delle Cascine 5, 50144, Florence, Italy
| | - Rui Charneca
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Federica Di Palma
- Biodiversity School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47UH, UK
| | - Ivona Djurkin Kušec
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - Graham Etherington
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, Norfolk, NR47UZ, UK
| | - Ana I Fernandez
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Fabián García
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Juan García-Casco
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Danijel Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000, Zagreb, Croatia
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Rome, Italy
| | - José Manuel Martins
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Marie-José Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu Cedex, France
| | - Yolanda Núñez
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Raquel Quintanilla
- Programa de Genética y Mejora Animal, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, 11080, Belgrade-Zemun, Serbia
| | - Violeta Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, Lithuania
| | - Juliette Riquet
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRA, Chemin de Borde-Rouge 24, Auzeville Tolosane, 31326, Castanet Tolosan, France
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - Martin Škrlep
- Kmetijski Inštitut Slovenije, Hacquetova 17, 1000, Ljubljana, Slovenia
| | - Graziano Usai
- AGRIS SARDEGNA, Loc. Bonassai, 07100, Sassari, Italy
| | - Christoph Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Cristina Ovilo
- Departamento Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria yAlimentaria (INIA), Crta. de la Coruña, km. 7, 5, 28040, Madrid, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
20
|
Schiavo G, Bovo S, Muñoz M, Ribani A, Alves E, Araújo JP, Bozzi R, Čandek-Potokar M, Charneca R, Fernandez AI, Gallo M, García F, Karolyi D, Kušec G, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim Genet 2021; 52:155-170. [PMID: 33544919 DOI: 10.1111/age.13045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
ROHs are long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROHs and their length are indicators of the level and origin of inbreeding. Frequent common ROHs within the same population define ROH islands and indicate hotspots of selection. In this work, we investigated ROHs in a total of 1131 pigs from 20 European local pig breeds and in three cosmopolitan breeds, genotyped with the GGP Porcine HD Genomic Profiler. plink software was used to identify ROHs. Size classes and genomic inbreeding parameters were evaluated. ROH islands were defined by evaluating different thresholds of homozygous SNP frequency. A functional overview of breed-specific ROH islands was obtained via over-representation analyses of GO biological processes. Mora Romagnola and Turopolje breeds had the largest proportions of genome covered with ROH (~1003 and ~955 Mb respectively), whereas Nero Siciliano and Sarda breeds had the lowest proportions (~207 and 247 Mb respectively). The highest proportion of long ROH (>16 Mb) was in Apulo-Calabrese, Mora Romagnola and Casertana. The largest number of ROH islands was identified in the Italian Landrace (n = 32), Cinta Senese (n = 26) and Lithuanian White Old Type (n = 22) breeds. Several ROH islands were in regions encompassing genes known to affect morphological traits. Comparative ROH structure analysis among breeds indicated the similar genetic structure of local breeds across Europe. This study contributed to understanding of the genetic history of the investigated pig breeds and provided information to manage these pig genetic resources.
Collapse
Affiliation(s)
- G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - E Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J P Araújo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, Ponte de Lima, 4990-706, Portugal
| | - R Bozzi
- DAGRI - Animal Science Division, Università di Firenze, Via delle Cascine 5, Firenze, 50144, Italy
| | - M Čandek-Potokar
- Kmetijski Inštitut Slovenije, Hacquetova 17, Ljubljana, SI-1000, Slovenia
| | - R Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - A I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, Rome, 00198, Italy
| | - F García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, Zagreb, 10000, Croatia
| | - G Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, Osijek, 31000, Croatia
| | - J M Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - M-J Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, Le Rheu Cedex, 35651, France
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - R Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, 82317, Lithuania
| | - J Riquet
- GenPhySE, Université de Toulouse, INRA, Chemin de Borde-Rouge 24, Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - G Usai
- Agris Sardegna, Loc. Bonassai, Sassari, 07100, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, Wolpertshausen, 74549, Germany
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|