1
|
HONG S, AHN M, MOON C, ORTIZ-LEAL I, SANCHEZ-QUINTEIRO P, KANG T, SHIN T. Histological evaluation of the alpaca (Vicugna pacos) vomeronasal organ. J Vet Med Sci 2024; 86:458-462. [PMID: 38508726 PMCID: PMC11144526 DOI: 10.1292/jvms.23-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Little is known about the neuronal structure of the vomeronasal organ (VNO), a receptor organ responsible for pheromone perception, in the alpaca (Vicugna pacos). This study was performed to determine the localization of neuronal elements, including protein gene product 9.5 (PGP 9.5), a pan-neuronal marker, olfactory marker protein (OMP), a marker of mature olfactory receptor cells, and phospholipase C beta 2 (PLC-β2), a marker of solitary chemoreceptor cells (SCCs), in the VNO. OMP was identified in receptor cells of the vomeronasal sensory epithelium (VSE), while PGP 9.5 and PLC-β2 were localized in both the VSE and vomeronasal non-sensory epithelium. Collectively, these results suggested that the alpaca VNO possesses SCCs and olfactory receptor cells, which recognize both harmful substances and pheromones.
Collapse
Affiliation(s)
- Sungmoo HONG
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Meejung AHN
- Department of Animal Science, College of Life Science, Sangji University, Wonju, Republic of Korea
| | - Changjong MOON
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic
of Korea
| | - Irene ORTIZ-LEAL
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Pablo SANCHEZ-QUINTEIRO
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Taeyoung KANG
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Taekyun SHIN
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
2
|
Allonursing in Wild and Farm Animals: Biological and Physiological Foundations and Explanatory Hypotheses. Animals (Basel) 2021; 11:ani11113092. [PMID: 34827824 PMCID: PMC8614478 DOI: 10.3390/ani11113092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
The dams of gregarious animals must develop a close bond with their newborns to provide them with maternal care, including protection against predators, immunological transference, and nutrition. Even though lactation demands high energy expenditures, behaviors known as allonursing (the nursing of non-descendant infants) and allosuckling (suckling from any female other than the mother) have been reported in various species of wild or domestic, and terrestrial or aquatic animals. These behaviors seem to be elements of a multifactorial strategy, since reports suggest that they depend on the following: species, living conditions, social stability, and kinship relations, among other group factors. Despite their potential benefits, allonursing and allosuckling can place the health and welfare of both non-filial dams and alien offspring at risk, as it augments the probability of pathogen transmission. This review aims to analyze the biological and physiological foundations and bioenergetic costs of these behaviors, analyzing the individual and collective advantages and disadvantages for the dams' own offspring(s) and alien neonate(s). We also include information on the animal species in which these behaviors occur and their implications on animal welfare.
Collapse
|
3
|
Ibrahim D. Immunolocalization of Receptor and Chemoreceptor Modules in the Sheep Vomeronasal Organ. Cells Tissues Organs 2018; 205:85-92. [PMID: 29672316 DOI: 10.1159/000487758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/16/2023] Open
Abstract
The vomeronasal organ (VNO) is the peripheral receptor organ of the accessory olfactory system, which is responsible for both sexual and innate behaviors. The degree of neuronal differentiation and maturation of the vomeronasal receptor cells together with the verification of the presence of the solitary chemoreceptor cells (SCCs) in the VNO of Corriedale sheep were assessed using immunofluorescence. A protein gene product 9.5 (PGP 9.5), which is a neuronal marker recognized to be expressed in most neurons of vertebrate species, an olfactory marker protein (OMP) that is precise for mature olfactory receptor cells, and lastly phospholipase C-β2 (PLC-β2), a marker in the signal transduction pathway of SCCs, were all tested. The cell bodies and dendrites of almost all receptor cells in the sensory epithelium were strongly positive for PGP 9.5 and to a lesser extent for OMP. In the nonsensory wall, all cells were negative for both PGP 9.5 and OMP; however, some positive PGP 9.5 immunoreactive fibers were identified. For PLC-β2, only 1 basally situated SCC could be identified in the sensory epithelium. A higher number was demonstrated in the nonsensory wall. Corriedale sheep possess matured, fully differentiated vomeronasal receptor cells in their sensory wall, suggesting an appropriate pheromone perception. Additionally, the VNO in sheep may participate in the usual transduction mechanisms, though it is seemingly not a chemoreceptor organ.
Collapse
|
4
|
Moawad UK, Awaad AS, Abedellaah BA. Morphological, histochemical and computed tomography on the vomeronasal organ (Jacobson’s organ) of Egyptian native breeds of goats ( Capra hircus ). BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Kondoh D, Nakamura KG, Ono YS, Yuhara K, Bando G, Watanabe K, Horiuchi N, Kobayashi Y, Sasaki M, Kitamura N. Histological features of the vomeronasal organ in the giraffe, Giraffa camelopardalis. Microsc Res Tech 2017; 80:652-656. [PMID: 28094892 DOI: 10.1002/jemt.22843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/25/2016] [Accepted: 01/05/2017] [Indexed: 11/07/2022]
Abstract
The vomeronasal organ (VNO) that preferentially detects species-specific substances is diverse among animal species, and its morphological properties seem to reflect the ecological features of animals. This histological study of two female reticulated giraffes (Giraffa camelopardalis reticulata) found that the VNO is developed in giraffes. The lateral and medial regions of the vomeronasal lumen were covered with sensory and nonsensory epithelia, respectively. The vomeronasal glands were positive for periodic acid-Schiff and alcian blue (pH 2.5) stains. The VNO comprises several large veins like others in the order Cetartiodactyla, suggesting that these veins function in a pumping mechanism in this order. In addition, numerous thin-walled vessels located immediately beneath the epithelia covering the lumen entirely surrounded the vomeronasal lumen. This sponge-like structure might function as a specific secondary pump in giraffes.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | - Kentaro G Nakamura
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | - Yurie S Ono
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | | | - Gen Bando
- Asahiyama Zoo, Asahikawa, 078-8205, Japan
| | - Kenichi Watanabe
- Veterinary Pathology, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | - Noriyuki Horiuchi
- Veterinary Pathology, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | - Yoshiyasu Kobayashi
- Veterinary Pathology, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | - Motoki Sasaki
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| | - Nobuo Kitamura
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro, 080-8555, Japan
| |
Collapse
|
6
|
Ibrahim D, Abdel-Maksoud F, Taniguchi K, Yamamoto Y, Taniguchi K, Nakamuta N. Immunohistochemical studies for the neuronal elements in the vomeronasal organ of the one-humped camel. J Vet Med Sci 2014; 77:241-5. [PMID: 25319516 PMCID: PMC4363031 DOI: 10.1292/jvms.14-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The neuronal elements of the vomeronasal organ (VNO) of camel were investigated immunohistochemically. PGP 9.5 labeled the receptor cells in the vomeronasal sensory epithelium, but not the supporting or basal cells. OMP stained some receptor cells, but no immunoreactive signals for OMP were detected in the non-sensory epithelium. PLCβ2 labeled scattered cells in the sensory epithelium and a larger number of cells in the non-sensory epithelium. Double labeling immunohistochemistry revealed that the PLCβ2-positive cells were surrounded by substance P-positive nerve fibers. Collectively, these data suggest that the camel VNO bears, in addition to the mature vomeronasal receptor cells, trigeminally-innervated solitary chemosensory cells which are expected to play a substantial role in the control of stimulus access to the VNO.
Collapse
Affiliation(s)
- Dalia Ibrahim
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | | | | | | | | | | |
Collapse
|